summaryrefslogtreecommitdiff
path: root/theories/Arith/Plus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Plus.v')
-rwxr-xr-xtheories/Arith/Plus.v202
1 files changed, 202 insertions, 0 deletions
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v
new file mode 100755
index 00000000..e4ac631e
--- /dev/null
+++ b/theories/Arith/Plus.v
@@ -0,0 +1,202 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Plus.v,v 1.18.2.1 2004/07/16 19:31:00 herbelin Exp $ i*)
+
+(** Properties of addition *)
+
+Require Import Le.
+Require Import Lt.
+
+Open Local Scope nat_scope.
+
+Implicit Types m n p q : nat.
+
+(** Zero is neutral *)
+
+Lemma plus_0_l : forall n, 0 + n = n.
+Proof.
+reflexivity.
+Qed.
+
+Lemma plus_0_r : forall n, n + 0 = n.
+Proof.
+intro; symmetry in |- *; apply plus_n_O.
+Qed.
+
+(** Commutativity *)
+
+Lemma plus_comm : forall n m, n + m = m + n.
+Proof.
+intros n m; elim n; simpl in |- *; auto with arith.
+intros y H; elim (plus_n_Sm m y); auto with arith.
+Qed.
+Hint Immediate plus_comm: arith v62.
+
+(** Associativity *)
+
+Lemma plus_Snm_nSm : forall n m, S n + m = n + S m.
+intros.
+simpl in |- *.
+rewrite (plus_comm n m).
+rewrite (plus_comm n (S m)).
+trivial with arith.
+Qed.
+
+Lemma plus_assoc : forall n m p, n + (m + p) = n + m + p.
+Proof.
+intros n m p; elim n; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve plus_assoc: arith v62.
+
+Lemma plus_permute : forall n m p, n + (m + p) = m + (n + p).
+Proof.
+intros; rewrite (plus_assoc m n p); rewrite (plus_comm m n); auto with arith.
+Qed.
+
+Lemma plus_assoc_reverse : forall n m p, n + m + p = n + (m + p).
+Proof.
+auto with arith.
+Qed.
+Hint Resolve plus_assoc_reverse: arith v62.
+
+(** Simplification *)
+
+Lemma plus_reg_l : forall n m p, p + n = p + m -> n = m.
+Proof.
+intros m p n; induction n; simpl in |- *; auto with arith.
+Qed.
+
+Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m.
+Proof.
+induction p; simpl in |- *; auto with arith.
+Qed.
+
+Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m.
+Proof.
+induction p; simpl in |- *; auto with arith.
+Qed.
+
+(** Compatibility with order *)
+
+Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m.
+Proof.
+induction p; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve plus_le_compat_l: arith v62.
+
+Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p.
+Proof.
+induction 1; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve plus_le_compat_r: arith v62.
+
+Lemma le_plus_l : forall n m, n <= n + m.
+Proof.
+induction n; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve le_plus_l: arith v62.
+
+Lemma le_plus_r : forall n m, m <= n + m.
+Proof.
+intros n m; elim n; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve le_plus_r: arith v62.
+
+Theorem le_plus_trans : forall n m p, n <= m -> n <= m + p.
+Proof.
+intros; apply le_trans with (m := m); auto with arith.
+Qed.
+Hint Resolve le_plus_trans: arith v62.
+
+Theorem lt_plus_trans : forall n m p, n < m -> n < m + p.
+Proof.
+intros; apply lt_le_trans with (m := m); auto with arith.
+Qed.
+Hint Immediate lt_plus_trans: arith v62.
+
+Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m.
+Proof.
+induction p; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve plus_lt_compat_l: arith v62.
+
+Lemma plus_lt_compat_r : forall n m p, n < m -> n + p < m + p.
+Proof.
+intros n m p H; rewrite (plus_comm n p); rewrite (plus_comm m p).
+elim p; auto with arith.
+Qed.
+Hint Resolve plus_lt_compat_r: arith v62.
+
+Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
+Proof.
+intros n m p q H H0.
+elim H; simpl in |- *; auto with arith.
+Qed.
+
+Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q.
+Proof.
+ unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. rewrite plus_Snm_nSm.
+ apply plus_le_compat; assumption.
+Qed.
+
+Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q.
+Proof.
+ unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. apply plus_le_compat; assumption.
+Qed.
+
+Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q.
+Proof.
+ intros. apply plus_lt_le_compat. assumption.
+ apply lt_le_weak. assumption.
+Qed.
+
+(** Inversion lemmas *)
+
+Lemma plus_is_O : forall n m, n + m = 0 -> n = 0 /\ m = 0.
+Proof.
+ intro m; destruct m as [| n]; auto.
+ intros. discriminate H.
+Qed.
+
+Definition plus_is_one :
+ forall m n, m + n = 1 -> {m = 0 /\ n = 1} + {m = 1 /\ n = 0}.
+Proof.
+ intro m; destruct m as [| n]; auto.
+ destruct n; auto.
+ intros.
+ simpl in H. discriminate H.
+Defined.
+
+(** Derived properties *)
+
+Lemma plus_permute_2_in_4 : forall n m p q, n + m + (p + q) = n + p + (m + q).
+Proof.
+ intros m n p q.
+ rewrite <- (plus_assoc m n (p + q)). rewrite (plus_assoc n p q).
+ rewrite (plus_comm n p). rewrite <- (plus_assoc p n q). apply plus_assoc.
+Qed.
+
+(** Tail-recursive plus *)
+
+(** [tail_plus] is an alternative definition for [plus] which is
+ tail-recursive, whereas [plus] is not. This can be useful
+ when extracting programs. *)
+
+Fixpoint plus_acc q n {struct n} : nat :=
+ match n with
+ | O => q
+ | S p => plus_acc (S q) p
+ end.
+
+Definition tail_plus n m := plus_acc m n.
+
+Lemma plus_tail_plus : forall n m, n + m = tail_plus n m.
+unfold tail_plus in |- *; induction n as [| n IHn]; simpl in |- *; auto.
+intro m; rewrite <- IHn; simpl in |- *; auto.
+Qed. \ No newline at end of file