diff options
Diffstat (limited to 'theories/Arith/Plus.v')
-rw-r--r-- | theories/Arith/Plus.v | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v index 02975d8f..5428ada3 100644 --- a/theories/Arith/Plus.v +++ b/theories/Arith/Plus.v @@ -20,7 +20,7 @@ where "n + m" := (plus n m) : nat_scope. Require Import Le. Require Import Lt. -Open Local Scope nat_scope. +Local Open Scope nat_scope. Implicit Types m n p q : nat. @@ -33,7 +33,7 @@ Definition plus_0_r n := eq_sym (plus_n_O n). Lemma plus_comm : forall n m, n + m = m + n. Proof. - intros n m; elim n; simpl in |- *; auto with arith. + intros n m; elim n; simpl; auto with arith. intros y H; elim (plus_n_Sm m y); auto with arith. Qed. Hint Immediate plus_comm: arith v62. @@ -45,7 +45,7 @@ Definition plus_Snm_nSm : forall n m, S n + m = n + S m:= Lemma plus_assoc : forall n m p, n + (m + p) = n + m + p. Proof. - intros n m p; elim n; simpl in |- *; auto with arith. + intros n m p; elim n; simpl; auto with arith. Qed. Hint Resolve plus_assoc: arith v62. @@ -64,42 +64,42 @@ Hint Resolve plus_assoc_reverse: arith v62. Lemma plus_reg_l : forall n m p, p + n = p + m -> n = m. Proof. - intros m p n; induction n; simpl in |- *; auto with arith. + intros m p n; induction n; simpl; auto with arith. Qed. Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. (** * Compatibility with order *) Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Hint Resolve plus_le_compat_l: arith v62. Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p. Proof. - induction 1; simpl in |- *; auto with arith. + induction 1; simpl; auto with arith. Qed. Hint Resolve plus_le_compat_r: arith v62. Lemma le_plus_l : forall n m, n <= n + m. Proof. - induction n; simpl in |- *; auto with arith. + induction n; simpl; auto with arith. Qed. Hint Resolve le_plus_l: arith v62. Lemma le_plus_r : forall n m, m <= n + m. Proof. - intros n m; elim n; simpl in |- *; auto with arith. + intros n m; elim n; simpl; auto with arith. Qed. Hint Resolve le_plus_r: arith v62. @@ -117,7 +117,7 @@ Hint Immediate lt_plus_trans: arith v62. Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m. Proof. - induction p; simpl in |- *; auto with arith. + induction p; simpl; auto with arith. Qed. Hint Resolve plus_lt_compat_l: arith v62. @@ -131,18 +131,18 @@ Hint Resolve plus_lt_compat_r: arith v62. Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q. Proof. intros n m p q H H0. - elim H; simpl in |- *; auto with arith. + elim H; simpl; auto with arith. Qed. Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q. Proof. - unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. rewrite plus_Snm_nSm. + unfold lt. intros. change (S n + p <= m + q). rewrite plus_Snm_nSm. apply plus_le_compat; assumption. Qed. Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q. Proof. - unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. apply plus_le_compat; assumption. + unfold lt. intros. change (S n + p <= m + q). apply plus_le_compat; assumption. Qed. Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q. @@ -190,8 +190,8 @@ Fixpoint tail_plus n m : nat := end. Lemma plus_tail_plus : forall n m, n + m = tail_plus n m. -induction n as [| n IHn]; simpl in |- *; auto. -intro m; rewrite <- IHn; simpl in |- *; auto. +induction n as [| n IHn]; simpl; auto. +intro m; rewrite <- IHn; simpl; auto. Qed. (** * Discrimination *) |