summaryrefslogtreecommitdiff
path: root/theories/Arith/Plus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Plus.v')
-rw-r--r--theories/Arith/Plus.v32
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v
index 02975d8f..5428ada3 100644
--- a/theories/Arith/Plus.v
+++ b/theories/Arith/Plus.v
@@ -20,7 +20,7 @@ where "n + m" := (plus n m) : nat_scope.
Require Import Le.
Require Import Lt.
-Open Local Scope nat_scope.
+Local Open Scope nat_scope.
Implicit Types m n p q : nat.
@@ -33,7 +33,7 @@ Definition plus_0_r n := eq_sym (plus_n_O n).
Lemma plus_comm : forall n m, n + m = m + n.
Proof.
- intros n m; elim n; simpl in |- *; auto with arith.
+ intros n m; elim n; simpl; auto with arith.
intros y H; elim (plus_n_Sm m y); auto with arith.
Qed.
Hint Immediate plus_comm: arith v62.
@@ -45,7 +45,7 @@ Definition plus_Snm_nSm : forall n m, S n + m = n + S m:=
Lemma plus_assoc : forall n m p, n + (m + p) = n + m + p.
Proof.
- intros n m p; elim n; simpl in |- *; auto with arith.
+ intros n m p; elim n; simpl; auto with arith.
Qed.
Hint Resolve plus_assoc: arith v62.
@@ -64,42 +64,42 @@ Hint Resolve plus_assoc_reverse: arith v62.
Lemma plus_reg_l : forall n m p, p + n = p + m -> n = m.
Proof.
- intros m p n; induction n; simpl in |- *; auto with arith.
+ intros m p n; induction n; simpl; auto with arith.
Qed.
Lemma plus_le_reg_l : forall n m p, p + n <= p + m -> n <= m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Lemma plus_lt_reg_l : forall n m p, p + n < p + m -> n < m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
(** * Compatibility with order *)
Lemma plus_le_compat_l : forall n m p, n <= m -> p + n <= p + m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_l: arith v62.
Lemma plus_le_compat_r : forall n m p, n <= m -> n + p <= m + p.
Proof.
- induction 1; simpl in |- *; auto with arith.
+ induction 1; simpl; auto with arith.
Qed.
Hint Resolve plus_le_compat_r: arith v62.
Lemma le_plus_l : forall n m, n <= n + m.
Proof.
- induction n; simpl in |- *; auto with arith.
+ induction n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_l: arith v62.
Lemma le_plus_r : forall n m, m <= n + m.
Proof.
- intros n m; elim n; simpl in |- *; auto with arith.
+ intros n m; elim n; simpl; auto with arith.
Qed.
Hint Resolve le_plus_r: arith v62.
@@ -117,7 +117,7 @@ Hint Immediate lt_plus_trans: arith v62.
Lemma plus_lt_compat_l : forall n m p, n < m -> p + n < p + m.
Proof.
- induction p; simpl in |- *; auto with arith.
+ induction p; simpl; auto with arith.
Qed.
Hint Resolve plus_lt_compat_l: arith v62.
@@ -131,18 +131,18 @@ Hint Resolve plus_lt_compat_r: arith v62.
Lemma plus_le_compat : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H H0.
- elim H; simpl in |- *; auto with arith.
+ elim H; simpl; auto with arith.
Qed.
Lemma plus_le_lt_compat : forall n m p q, n <= m -> p < q -> n + p < m + q.
Proof.
- unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. rewrite plus_Snm_nSm.
+ unfold lt. intros. change (S n + p <= m + q). rewrite plus_Snm_nSm.
apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_le_compat : forall n m p q, n < m -> p <= q -> n + p < m + q.
Proof.
- unfold lt in |- *. intros. change (S n + p <= m + q) in |- *. apply plus_le_compat; assumption.
+ unfold lt. intros. change (S n + p <= m + q). apply plus_le_compat; assumption.
Qed.
Lemma plus_lt_compat : forall n m p q, n < m -> p < q -> n + p < m + q.
@@ -190,8 +190,8 @@ Fixpoint tail_plus n m : nat :=
end.
Lemma plus_tail_plus : forall n m, n + m = tail_plus n m.
-induction n as [| n IHn]; simpl in |- *; auto.
-intro m; rewrite <- IHn; simpl in |- *; auto.
+induction n as [| n IHn]; simpl; auto.
+intro m; rewrite <- IHn; simpl; auto.
Qed.
(** * Discrimination *)