summaryrefslogtreecommitdiff
path: root/theories/Arith/Peano_dec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Peano_dec.v')
-rw-r--r--theories/Arith/Peano_dec.v26
1 files changed, 22 insertions, 4 deletions
diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v
index 5cceab8b..6eb667c1 100644
--- a/theories/Arith/Peano_dec.v
+++ b/theories/Arith/Peano_dec.v
@@ -1,15 +1,14 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Peano_dec.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import Decidable.
-
+Require Eqdep_dec.
+Require Import Le Lt.
Open Local Scope nat_scope.
Implicit Types m n x y : nat.
@@ -32,3 +31,22 @@ Hint Resolve O_or_S eq_nat_dec: arith.
Theorem dec_eq_nat : forall n m, decidable (n = m).
intros x y; unfold decidable in |- *; elim (eq_nat_dec x y); auto with arith.
Defined.
+
+Definition UIP_nat:= Eqdep_dec.UIP_dec eq_nat_dec.
+
+Lemma le_unique: forall m n (h1 h2: m <= n), h1 = h2.
+Proof.
+fix 3.
+refine (fun m _ h1 => match h1 as h' in _ <= k return forall hh: m <= k, h' = hh
+ with le_n => _ |le_S i H => _ end).
+refine (fun hh => match hh as h' in _ <= k return forall eq: m = k,
+ le_n m = match eq in _ = p return m <= p -> m <= m with |eq_refl => fun bli => bli end h' with
+ |le_n => fun eq => _ |le_S j H' => fun eq => _ end eq_refl).
+rewrite (UIP_nat _ _ eq eq_refl). reflexivity.
+subst m. destruct (Lt.lt_irrefl j H').
+refine (fun hh => match hh as h' in _ <= k return match k as k' return m <= k' -> Prop
+ with |0 => fun _ => True |S i' => fun h'' => forall H':m <= i', le_S m i' H' = h'' end h'
+ with |le_n => _ |le_S j H2 => fun H' => _ end H).
+destruct m. exact I. intros; destruct (Lt.lt_irrefl m H').
+f_equal. apply le_unique.
+Qed.