diff options
Diffstat (limited to 'theories/Arith/Mult.v')
-rw-r--r-- | theories/Arith/Mult.v | 107 |
1 files changed, 48 insertions, 59 deletions
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v index a43579f9..8346cae3 100644 --- a/theories/Arith/Mult.v +++ b/theories/Arith/Mult.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Mult.v 11015 2008-05-28 20:06:42Z herbelin $ i*) +(*i $Id$ i*) Require Export Plus. Require Export Minus. @@ -43,7 +43,7 @@ Hint Resolve mult_1_l: arith v62. Lemma mult_1_r : forall n, n * 1 = n. Proof. - induction n; [ trivial | + induction n; [ trivial | simpl; rewrite IHn; reflexivity]. Qed. Hint Resolve mult_1_r: arith v62. @@ -52,9 +52,9 @@ Hint Resolve mult_1_r: arith v62. Lemma mult_comm : forall n m, n * m = m * n. Proof. -intros; elim n; intros; simpl in |- *; auto with arith. -elim mult_n_Sm. -elim H; apply plus_comm. +intros; induction n; simpl; auto with arith. +rewrite <- mult_n_Sm. +rewrite IHn; apply plus_comm. Qed. Hint Resolve mult_comm: arith v62. @@ -62,29 +62,28 @@ Hint Resolve mult_comm: arith v62. Lemma mult_plus_distr_r : forall n m p, (n + m) * p = n * p + m * p. Proof. - intros; elim n; simpl in |- *; intros; auto with arith. - elim plus_assoc; elim H; auto with arith. + intros; induction n; simpl; auto with arith. + rewrite <- plus_assoc, IHn; auto with arith. Qed. Hint Resolve mult_plus_distr_r: arith v62. Lemma mult_plus_distr_l : forall n m p, n * (m + p) = n * m + n * p. Proof. induction n. trivial. - intros. simpl in |- *. rewrite (IHn m p). apply sym_eq. apply plus_permute_2_in_4. + intros. simpl in |- *. rewrite IHn. symmetry. apply plus_permute_2_in_4. Qed. Lemma mult_minus_distr_r : forall n m p, (n - m) * p = n * p - m * p. Proof. - intros; pattern n, m in |- *; apply nat_double_ind; simpl in |- *; intros; - auto with arith. - elim minus_plus_simpl_l_reverse; auto with arith. + intros; induction n m using nat_double_ind; simpl; auto with arith. + rewrite <- minus_plus_simpl_l_reverse; auto with arith. Qed. Hint Resolve mult_minus_distr_r: arith v62. Lemma mult_minus_distr_l : forall n m p, n * (m - p) = n * m - n * p. Proof. - intros n m p. rewrite mult_comm. rewrite mult_minus_distr_r. - rewrite (mult_comm m n); rewrite (mult_comm p n); reflexivity. + intros n m p. + rewrite mult_comm, mult_minus_distr_r, (mult_comm m n), (mult_comm p n); reflexivity. Qed. Hint Resolve mult_minus_distr_l: arith v62. @@ -92,9 +91,9 @@ Hint Resolve mult_minus_distr_l: arith v62. Lemma mult_assoc_reverse : forall n m p, n * m * p = n * (m * p). Proof. - intros; elim n; intros; simpl in |- *; auto with arith. + intros; induction n; simpl; auto with arith. rewrite mult_plus_distr_r. - elim H; auto with arith. + induction IHn; auto with arith. Qed. Hint Resolve mult_assoc_reverse: arith v62. @@ -108,23 +107,18 @@ Hint Resolve mult_assoc: arith v62. Lemma mult_is_O : forall n m, n * m = 0 -> n = 0 \/ m = 0. Proof. - destruct n as [| n]. - intros; left; trivial. - - simpl; intros m H; right. - assert (H':m = 0 /\ n * m = 0) by apply (plus_is_O _ _ H). - destruct H'; trivial. + destruct n as [| n]; simpl; intros m H. + left; trivial. + right; apply plus_is_O in H; destruct H; trivial. Qed. Lemma mult_is_one : forall n m, n * m = 1 -> n = 1 /\ m = 1. Proof. - destruct n as [|n]. - simpl; intros m H; elim (O_S _ H). - - simpl; intros m H. - destruct (plus_is_one _ _ H) as [[Hm Hnm] | [Hm Hnm]]. - rewrite Hm in H; simpl in H; rewrite mult_0_r in H; elim (O_S _ H). - rewrite Hm in Hnm; rewrite mult_1_r in Hnm; auto. + destruct n as [|n]; simpl; intros m H. + edestruct O_S; eauto. + destruct plus_is_one with (1:=H) as [[-> Hnm] | [-> Hnm]]. + simpl in H; rewrite mult_0_r in H; elim (O_S _ H). + rewrite mult_1_r in Hnm; auto. Qed. (** ** Multiplication and successor *) @@ -151,18 +145,16 @@ Hint Resolve mult_O_le: arith v62. Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m. Proof. - induction p as [| p IHp]. intros. simpl in |- *. apply le_n. - intros. simpl in |- *. apply plus_le_compat. assumption. - apply IHp. assumption. + induction p as [| p IHp]; intros; simpl in |- *. + apply le_n. + auto using plus_le_compat. Qed. Hint Resolve mult_le_compat_l: arith. Lemma mult_le_compat_r : forall n m p, n <= m -> n * p <= m * p. Proof. - intros m n p H. - rewrite mult_comm. rewrite (mult_comm n). - auto with arith. + intros m n p H; rewrite mult_comm, (mult_comm n); auto with arith. Qed. Lemma mult_le_compat : @@ -184,8 +176,9 @@ Qed. Lemma mult_S_lt_compat_l : forall n m p, m < p -> S n * m < S n * p. Proof. - intro m; induction m. intros. simpl in |- *. rewrite <- plus_n_O. rewrite <- plus_n_O. assumption. - intros. exact (plus_lt_compat _ _ _ _ H (IHm _ _ H)). + induction n; intros; simpl in *. + rewrite <- 2! plus_n_O; assumption. + auto using plus_lt_compat. Qed. Hint Resolve mult_S_lt_compat_l: arith. @@ -201,40 +194,36 @@ Qed. Lemma mult_S_le_reg_l : forall n m p, S n * m <= S n * p -> m <= p. Proof. - intros m n p H. elim (le_or_lt n p). trivial. - intro H0. cut (S m * n < S m * n). intro. elim (lt_irrefl _ H1). - apply le_lt_trans with (m := S m * p). assumption. - apply mult_S_lt_compat_l. assumption. + intros m n p H; destruct (le_or_lt n p). trivial. + assert (H1:S m * n < S m * n). + apply le_lt_trans with (m := S m * p). assumption. + apply mult_S_lt_compat_l. assumption. + elim (lt_irrefl _ H1). Qed. (** * n|->2*n and n|->2n+1 have disjoint image *) Theorem odd_even_lem : forall p q, 2 * p + 1 <> 2 * q. Proof. - intros p; elim p; auto. - intros q; case q; simpl in |- *. - red in |- *; intros; discriminate. - intros q'; rewrite (fun x y => plus_comm x (S y)); simpl in |- *; red in |- *; - intros; discriminate. - intros p' H q; case q. - simpl in |- *; red in |- *; intros; discriminate. - intros q'; red in |- *; intros H0; case (H q'). - replace (2 * q') with (2 * S q' - 2). - rewrite <- H0; simpl in |- *; auto. - repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *; auto. - simpl in |- *; repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *; - auto. - case q'; simpl in |- *; auto. + induction p; destruct q. + discriminate. + simpl; rewrite plus_comm. discriminate. + discriminate. + intro H0; destruct (IHp q). + replace (2 * q) with (2 * S q - 2). + rewrite <- H0; simpl. + repeat rewrite (fun x y => plus_comm x (S y)); simpl; auto. + simpl; rewrite (fun y => plus_comm q (S y)); destruct q; simpl; auto. Qed. (** * Tail-recursive mult *) -(** [tail_mult] is an alternative definition for [mult] which is - tail-recursive, whereas [mult] is not. This can be useful +(** [tail_mult] is an alternative definition for [mult] which is + tail-recursive, whereas [mult] is not. This can be useful when extracting programs. *) -Fixpoint mult_acc (s:nat) m n {struct n} : nat := +Fixpoint mult_acc (s:nat) m n : nat := match n with | O => s | S p => mult_acc (tail_plus m s) m p @@ -244,7 +233,7 @@ Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n. Proof. induction n as [| p IHp]; simpl in |- *; auto. intros s m; rewrite <- plus_tail_plus; rewrite <- IHp. - rewrite <- plus_assoc_reverse; apply (f_equal2 (A1:=nat) (A2:=nat)); auto. + rewrite <- plus_assoc_reverse; apply f_equal2; auto. rewrite plus_comm; auto. Qed. @@ -255,7 +244,7 @@ Proof. intros; unfold tail_mult in |- *; rewrite <- mult_acc_aux; auto. Qed. -(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus] +(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus] and [mult] and simplify *) Ltac tail_simpl := |