summaryrefslogtreecommitdiff
path: root/theories/Arith/Mult.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Mult.v')
-rwxr-xr-xtheories/Arith/Mult.v211
1 files changed, 211 insertions, 0 deletions
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v
new file mode 100755
index 00000000..abfade57
--- /dev/null
+++ b/theories/Arith/Mult.v
@@ -0,0 +1,211 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Mult.v,v 1.21.2.1 2004/07/16 19:31:00 herbelin Exp $ i*)
+
+Require Export Plus.
+Require Export Minus.
+Require Export Lt.
+Require Export Le.
+
+Open Local Scope nat_scope.
+
+Implicit Types m n p : nat.
+
+(** Zero property *)
+
+Lemma mult_0_r : forall n, n * 0 = 0.
+Proof.
+intro; symmetry in |- *; apply mult_n_O.
+Qed.
+
+Lemma mult_0_l : forall n, 0 * n = 0.
+Proof.
+reflexivity.
+Qed.
+
+(** Distributivity *)
+
+Lemma mult_plus_distr_r : forall n m p, (n + m) * p = n * p + m * p.
+Proof.
+intros; elim n; simpl in |- *; intros; auto with arith.
+elim plus_assoc; elim H; auto with arith.
+Qed.
+Hint Resolve mult_plus_distr_r: arith v62.
+
+Lemma mult_plus_distr_l : forall n m p, n * (m + p) = n * m + n * p.
+Proof.
+ induction n. trivial.
+ intros. simpl in |- *. rewrite (IHn m p). apply sym_eq. apply plus_permute_2_in_4.
+Qed.
+
+Lemma mult_minus_distr_r : forall n m p, (n - m) * p = n * p - m * p.
+Proof.
+intros; pattern n, m in |- *; apply nat_double_ind; simpl in |- *; intros;
+ auto with arith.
+elim minus_plus_simpl_l_reverse; auto with arith.
+Qed.
+Hint Resolve mult_minus_distr_r: arith v62.
+
+(** Associativity *)
+
+Lemma mult_assoc_reverse : forall n m p, n * m * p = n * (m * p).
+Proof.
+intros; elim n; intros; simpl in |- *; auto with arith.
+rewrite mult_plus_distr_r.
+elim H; auto with arith.
+Qed.
+Hint Resolve mult_assoc_reverse: arith v62.
+
+Lemma mult_assoc : forall n m p, n * (m * p) = n * m * p.
+Proof.
+auto with arith.
+Qed.
+Hint Resolve mult_assoc: arith v62.
+
+(** Commutativity *)
+
+Lemma mult_comm : forall n m, n * m = m * n.
+Proof.
+intros; elim n; intros; simpl in |- *; auto with arith.
+elim mult_n_Sm.
+elim H; apply plus_comm.
+Qed.
+Hint Resolve mult_comm: arith v62.
+
+(** 1 is neutral *)
+
+Lemma mult_1_l : forall n, 1 * n = n.
+Proof.
+simpl in |- *; auto with arith.
+Qed.
+Hint Resolve mult_1_l: arith v62.
+
+Lemma mult_1_r : forall n, n * 1 = n.
+Proof.
+intro; elim mult_comm; auto with arith.
+Qed.
+Hint Resolve mult_1_r: arith v62.
+
+(** Compatibility with orders *)
+
+Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n.
+Proof.
+induction m; simpl in |- *; auto with arith.
+Qed.
+Hint Resolve mult_O_le: arith v62.
+
+Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m.
+Proof.
+ induction p as [| p IHp]. intros. simpl in |- *. apply le_n.
+ intros. simpl in |- *. apply plus_le_compat. assumption.
+ apply IHp. assumption.
+Qed.
+Hint Resolve mult_le_compat_l: arith.
+
+
+Lemma mult_le_compat_r : forall n m p, n <= m -> n * p <= m * p.
+intros m n p H.
+rewrite mult_comm. rewrite (mult_comm n).
+auto with arith.
+Qed.
+
+Lemma mult_le_compat :
+ forall n m p (q:nat), n <= m -> p <= q -> n * p <= m * q.
+Proof.
+intros m n p q Hmn Hpq; induction Hmn.
+induction Hpq.
+(* m*p<=m*p *)
+apply le_n.
+(* m*p<=m*m0 -> m*p<=m*(S m0) *)
+rewrite <- mult_n_Sm; apply le_trans with (m * m0).
+assumption.
+apply le_plus_l.
+(* m*p<=m0*q -> m*p<=(S m0)*q *)
+simpl in |- *; apply le_trans with (m0 * q).
+assumption.
+apply le_plus_r.
+Qed.
+
+Lemma mult_S_lt_compat_l : forall n m p, m < p -> S n * m < S n * p.
+Proof.
+ intro m; induction m. intros. simpl in |- *. rewrite <- plus_n_O. rewrite <- plus_n_O. assumption.
+ intros. exact (plus_lt_compat _ _ _ _ H (IHm _ _ H)).
+Qed.
+
+Hint Resolve mult_S_lt_compat_l: arith.
+
+Lemma mult_lt_compat_r : forall n m p, n < m -> 0 < p -> n * p < m * p.
+intros m n p H H0.
+induction p.
+elim (lt_irrefl _ H0).
+rewrite mult_comm.
+replace (n * S p) with (S p * n); auto with arith.
+Qed.
+
+Lemma mult_S_le_reg_l : forall n m p, S n * m <= S n * p -> m <= p.
+Proof.
+ intros m n p H. elim (le_or_lt n p). trivial.
+ intro H0. cut (S m * n < S m * n). intro. elim (lt_irrefl _ H1).
+ apply le_lt_trans with (m := S m * p). assumption.
+ apply mult_S_lt_compat_l. assumption.
+Qed.
+
+(** n|->2*n and n|->2n+1 have disjoint image *)
+
+Theorem odd_even_lem : forall p q, 2 * p + 1 <> 2 * q.
+intros p; elim p; auto.
+intros q; case q; simpl in |- *.
+red in |- *; intros; discriminate.
+intros q'; rewrite (fun x y => plus_comm x (S y)); simpl in |- *; red in |- *;
+ intros; discriminate.
+intros p' H q; case q.
+simpl in |- *; red in |- *; intros; discriminate.
+intros q'; red in |- *; intros H0; case (H q').
+replace (2 * q') with (2 * S q' - 2).
+rewrite <- H0; simpl in |- *; auto.
+repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *; auto.
+simpl in |- *; repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *;
+ auto.
+case q'; simpl in |- *; auto.
+Qed.
+
+
+(** Tail-recursive mult *)
+
+(** [tail_mult] is an alternative definition for [mult] which is
+ tail-recursive, whereas [mult] is not. This can be useful
+ when extracting programs. *)
+
+Fixpoint mult_acc (s:nat) m n {struct n} : nat :=
+ match n with
+ | O => s
+ | S p => mult_acc (tail_plus m s) m p
+ end.
+
+Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n.
+Proof.
+induction n as [| p IHp]; simpl in |- *; auto.
+intros s m; rewrite <- plus_tail_plus; rewrite <- IHp.
+rewrite <- plus_assoc_reverse; apply (f_equal2 (A1:=nat) (A2:=nat)); auto.
+rewrite plus_comm; auto.
+Qed.
+
+Definition tail_mult n m := mult_acc 0 m n.
+
+Lemma mult_tail_mult : forall n m, n * m = tail_mult n m.
+Proof.
+intros; unfold tail_mult in |- *; rewrite <- mult_acc_aux; auto.
+Qed.
+
+(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus]
+ and [mult] and simplify *)
+
+Ltac tail_simpl :=
+ repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult;
+ simpl in |- *. \ No newline at end of file