diff options
Diffstat (limited to 'theories/Arith/Mult.v')
-rw-r--r-- | theories/Arith/Mult.v | 201 |
1 files changed, 62 insertions, 139 deletions
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v index 588afde3..2d82920b 100644 --- a/theories/Arith/Mult.v +++ b/theories/Arith/Mult.v @@ -1,220 +1,144 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Require Export Plus. -Require Export Minus. -Require Export Lt. -Require Export Le. +(** * Properties of multiplication. -Local Open Scope nat_scope. + This file is mostly OBSOLETE now, see module [PeanoNat.Nat] instead. + + [Nat.mul] is defined in [Init/Nat.v]. +*) -Implicit Types m n p : nat. +Require Import PeanoNat. +(** For Compatibility: *) +Require Export Plus Minus Le Lt. -(** Theorems about multiplication in [nat]. [mult] is defined in module [Init/Peano.v]. *) +Local Open Scope nat_scope. (** * [nat] is a semi-ring *) (** ** Zero property *) -Lemma mult_0_r : forall n, n * 0 = 0. -Proof. - intro; symmetry ; apply mult_n_O. -Qed. - -Lemma mult_0_l : forall n, 0 * n = 0. -Proof. - reflexivity. -Qed. +Notation mult_0_l := Nat.mul_0_l (compat "8.4"). (* 0 * n = 0 *) +Notation mult_0_r := Nat.mul_0_r (compat "8.4"). (* n * 0 = 0 *) (** ** 1 is neutral *) -Lemma mult_1_l : forall n, 1 * n = n. -Proof. - simpl; auto with arith. -Qed. -Hint Resolve mult_1_l: arith v62. +Notation mult_1_l := Nat.mul_1_l (compat "8.4"). (* 1 * n = n *) +Notation mult_1_r := Nat.mul_1_r (compat "8.4"). (* n * 1 = n *) -Lemma mult_1_r : forall n, n * 1 = n. -Proof. - induction n; [ trivial | - simpl; rewrite IHn; reflexivity]. -Qed. -Hint Resolve mult_1_r: arith v62. +Hint Resolve mult_1_l mult_1_r: arith v62. (** ** Commutativity *) -Lemma mult_comm : forall n m, n * m = m * n. -Proof. -intros; induction n; simpl; auto with arith. -rewrite <- mult_n_Sm. -rewrite IHn; apply plus_comm. -Qed. +Notation mult_comm := Nat.mul_comm (compat "8.4"). (* n * m = m * n *) + Hint Resolve mult_comm: arith v62. (** ** Distributivity *) -Lemma mult_plus_distr_r : forall n m p, (n + m) * p = n * p + m * p. -Proof. - intros; induction n; simpl; auto with arith. - rewrite <- plus_assoc, IHn; auto with arith. -Qed. -Hint Resolve mult_plus_distr_r: arith v62. +Notation mult_plus_distr_r := + Nat.mul_add_distr_r (compat "8.4"). (* (n+m)*p = n*p + m*p *) -Lemma mult_plus_distr_l : forall n m p, n * (m + p) = n * m + n * p. -Proof. - induction n. trivial. - intros. simpl. rewrite IHn. symmetry. apply plus_permute_2_in_4. -Qed. +Notation mult_plus_distr_l := + Nat.mul_add_distr_l (compat "8.4"). (* n*(m+p) = n*m + n*p *) -Lemma mult_minus_distr_r : forall n m p, (n - m) * p = n * p - m * p. -Proof. - intros; induction n, m using nat_double_ind; simpl; auto with arith. - rewrite <- minus_plus_simpl_l_reverse; auto with arith. -Qed. -Hint Resolve mult_minus_distr_r: arith v62. +Notation mult_minus_distr_r := + Nat.mul_sub_distr_r (compat "8.4"). (* (n-m)*p = n*p - m*p *) -Lemma mult_minus_distr_l : forall n m p, n * (m - p) = n * m - n * p. -Proof. - intros n m p. - rewrite mult_comm, mult_minus_distr_r, (mult_comm m n), (mult_comm p n); reflexivity. -Qed. +Notation mult_minus_distr_l := + Nat.mul_sub_distr_l (compat "8.4"). (* n*(m-p) = n*m - n*p *) + +Hint Resolve mult_plus_distr_r: arith v62. +Hint Resolve mult_minus_distr_r: arith v62. Hint Resolve mult_minus_distr_l: arith v62. (** ** Associativity *) -Lemma mult_assoc_reverse : forall n m p, n * m * p = n * (m * p). -Proof. - intros; induction n; simpl; auto with arith. - rewrite mult_plus_distr_r. - induction IHn; auto with arith. -Qed. -Hint Resolve mult_assoc_reverse: arith v62. +Notation mult_assoc := Nat.mul_assoc (compat "8.4"). (* n*(m*p)=n*m*p *) -Lemma mult_assoc : forall n m p, n * (m * p) = n * m * p. +Lemma mult_assoc_reverse n m p : n * m * p = n * (m * p). Proof. - auto with arith. + symmetry. apply Nat.mul_assoc. Qed. + +Hint Resolve mult_assoc_reverse: arith v62. Hint Resolve mult_assoc: arith v62. (** ** Inversion lemmas *) -Lemma mult_is_O : forall n m, n * m = 0 -> n = 0 \/ m = 0. +Lemma mult_is_O n m : n * m = 0 -> n = 0 \/ m = 0. Proof. - destruct n as [| n]; simpl; intros m H. - left; trivial. - right; apply plus_is_O in H; destruct H; trivial. + apply Nat.eq_mul_0. Qed. -Lemma mult_is_one : forall n m, n * m = 1 -> n = 1 /\ m = 1. +Lemma mult_is_one n m : n * m = 1 -> n = 1 /\ m = 1. Proof. - destruct n as [|n]; simpl; intros m H. - edestruct O_S; eauto. - destruct plus_is_one with (1:=H) as [[-> Hnm] | [-> Hnm]]. - simpl in H; rewrite mult_0_r in H; elim (O_S _ H). - rewrite mult_1_r in Hnm; auto. + apply Nat.eq_mul_1. Qed. (** ** Multiplication and successor *) -Lemma mult_succ_l : forall n m:nat, S n * m = n * m + m. -Proof. - intros; simpl. rewrite plus_comm. reflexivity. -Qed. - -Lemma mult_succ_r : forall n m:nat, n * S m = n * m + n. -Proof. - induction n as [| p H]; intro m; simpl. - reflexivity. - rewrite H, <- plus_n_Sm; apply f_equal; rewrite plus_assoc; reflexivity. -Qed. +Notation mult_succ_l := Nat.mul_succ_l (compat "8.4"). (* S n * m = n * m + m *) +Notation mult_succ_r := Nat.mul_succ_r (compat "8.4"). (* n * S m = n * m + n *) (** * Compatibility with orders *) -Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n. +Lemma mult_O_le n m : m = 0 \/ n <= m * n. Proof. - induction m; simpl; auto with arith. + destruct m; [left|right]; simpl; trivial using Nat.le_add_r. Qed. Hint Resolve mult_O_le: arith v62. -Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m. +Lemma mult_le_compat_l n m p : n <= m -> p * n <= p * m. Proof. - induction p as [| p IHp]; intros; simpl. - apply le_n. - auto using plus_le_compat. + apply Nat.mul_le_mono_nonneg_l, Nat.le_0_l. (* TODO : get rid of 0<=n hyp *) Qed. Hint Resolve mult_le_compat_l: arith. - -Lemma mult_le_compat_r : forall n m p, n <= m -> n * p <= m * p. +Lemma mult_le_compat_r n m p : n <= m -> n * p <= m * p. Proof. - intros m n p H; rewrite mult_comm, (mult_comm n); auto with arith. + apply Nat.mul_le_mono_nonneg_r, Nat.le_0_l. Qed. -Lemma mult_le_compat : - forall n m p (q:nat), n <= m -> p <= q -> n * p <= m * q. +Lemma mult_le_compat n m p q : n <= m -> p <= q -> n * p <= m * q. Proof. - intros m n p q Hmn Hpq; induction Hmn. - induction Hpq. - (* m*p<=m*p *) - apply le_n. - (* m*p<=m*m0 -> m*p<=m*(S m0) *) - rewrite <- mult_n_Sm; apply le_trans with (m * m0). - assumption. - apply le_plus_l. - (* m*p<=m0*q -> m*p<=(S m0)*q *) - simpl; apply le_trans with (m0 * q). - assumption. - apply le_plus_r. + intros. apply Nat.mul_le_mono_nonneg; trivial; apply Nat.le_0_l. Qed. -Lemma mult_S_lt_compat_l : forall n m p, m < p -> S n * m < S n * p. +Lemma mult_S_lt_compat_l n m p : m < p -> S n * m < S n * p. Proof. - induction n; intros; simpl in *. - rewrite <- 2 plus_n_O; assumption. - auto using plus_lt_compat. + apply Nat.mul_lt_mono_pos_l, Nat.lt_0_succ. Qed. Hint Resolve mult_S_lt_compat_l: arith. -Lemma mult_lt_compat_l : forall n m p, n < m -> 0 < p -> p * n < p * m. +Lemma mult_lt_compat_l n m p : n < m -> 0 < p -> p * n < p * m. Proof. - intros m n p H Hp. destruct p. elim (lt_irrefl _ Hp). - now apply mult_S_lt_compat_l. + intros. now apply Nat.mul_lt_mono_pos_l. Qed. -Lemma mult_lt_compat_r : forall n m p, n < m -> 0 < p -> n * p < m * p. +Lemma mult_lt_compat_r n m p : n < m -> 0 < p -> n * p < m * p. Proof. - intros m n p H Hp. destruct p. elim (lt_irrefl _ Hp). - rewrite (mult_comm m), (mult_comm n). now apply mult_S_lt_compat_l. + intros. now apply Nat.mul_lt_mono_pos_r. Qed. -Lemma mult_S_le_reg_l : forall n m p, S n * m <= S n * p -> m <= p. +Lemma mult_S_le_reg_l n m p : S n * m <= S n * p -> m <= p. Proof. - intros m n p H; destruct (le_or_lt n p). trivial. - assert (H1:S m * n < S m * n). - apply le_lt_trans with (m := S m * p). assumption. - apply mult_S_lt_compat_l. assumption. - elim (lt_irrefl _ H1). + apply Nat.mul_le_mono_pos_l, Nat.lt_0_succ. Qed. (** * n|->2*n and n|->2n+1 have disjoint image *) -Theorem odd_even_lem : forall p q, 2 * p + 1 <> 2 * q. +Theorem odd_even_lem p q : 2 * p + 1 <> 2 * q. Proof. - induction p; destruct q. - discriminate. - simpl; rewrite plus_comm. discriminate. - discriminate. - intro H0; destruct (IHp q). - replace (2 * q) with (2 * S q - 2). - rewrite <- H0; simpl. - repeat rewrite (fun x y => plus_comm x (S y)); simpl; auto. - simpl; rewrite (fun y => plus_comm q (S y)); destruct q; simpl; auto. + intro. apply (Nat.Even_Odd_False (2*q)). + - now exists q. + - now exists p. Qed. @@ -232,10 +156,9 @@ Fixpoint mult_acc (s:nat) m n : nat := Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n. Proof. - induction n as [| p IHp]; simpl; auto. - intros s m; rewrite <- plus_tail_plus; rewrite <- IHp. - rewrite <- plus_assoc_reverse; apply f_equal2; auto. - rewrite plus_comm; auto. + induction n as [| n IHn]; simpl; auto. + intros. rewrite Nat.add_assoc, IHn. f_equal. + rewrite Nat.add_comm. apply plus_tail_plus. Qed. Definition tail_mult n m := mult_acc 0 m n. |