diff options
Diffstat (limited to 'theories/Arith/Minus.v')
-rw-r--r-- | theories/Arith/Minus.v | 98 |
1 files changed, 55 insertions, 43 deletions
diff --git a/theories/Arith/Minus.v b/theories/Arith/Minus.v index dfecd7cf..2380c2de 100644 --- a/theories/Arith/Minus.v +++ b/theories/Arith/Minus.v @@ -6,9 +6,19 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Minus.v 8642 2006-03-17 10:09:02Z notin $ i*) - -(** Subtraction (difference between two natural numbers) *) +(*i $Id: Minus.v 9245 2006-10-17 12:53:34Z notin $ i*) + +(** [minus] (difference between two natural numbers) is defined in [Init/Peano.v] as: +<< +Fixpoint minus (n m:nat) {struct n} : nat := + match n, m with + | O, _ => 0 + | S k, O => S k + | S k, S l => k - l + end +where "n - m" := (minus n m) : nat_scope. +>> +*) Require Import Lt. Require Import Le. @@ -17,36 +27,37 @@ Open Local Scope nat_scope. Implicit Types m n p : nat. -(** 0 is right neutral *) +(** * 0 is right neutral *) Lemma minus_n_O : forall n, n = n - 0. Proof. -induction n; simpl in |- *; auto with arith. + induction n; simpl in |- *; auto with arith. Qed. Hint Resolve minus_n_O: arith v62. -(** Permutation with successor *) +(** * Permutation with successor *) Lemma minus_Sn_m : forall n m, m <= n -> S (n - m) = S n - m. Proof. -intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; - auto with arith. + intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; + auto with arith. Qed. Hint Resolve minus_Sn_m: arith v62. Theorem pred_of_minus : forall n, pred n = n - 1. -intro x; induction x; simpl in |- *; auto with arith. +Proof. + intro x; induction x; simpl in |- *; auto with arith. Qed. -(** Diagonal *) +(** * Diagonal *) Lemma minus_n_n : forall n, 0 = n - n. Proof. -induction n; simpl in |- *; auto with arith. + induction n; simpl in |- *; auto with arith. Qed. Hint Resolve minus_n_n: arith v62. -(** Simplification *) +(** * Simplification *) Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m). Proof. @@ -54,70 +65,71 @@ Proof. Qed. Hint Resolve minus_plus_simpl_l_reverse: arith v62. -(** Relation with plus *) +(** * Relation with plus *) Lemma plus_minus : forall n m p, n = m + p -> p = n - m. Proof. -intros n m p; pattern m, n in |- *; apply nat_double_ind; simpl in |- *; - intros. -replace (n0 - 0) with n0; auto with arith. -absurd (0 = S (n0 + p)); auto with arith. -auto with arith. + intros n m p; pattern m, n in |- *; apply nat_double_ind; simpl in |- *; + intros. + replace (n0 - 0) with n0; auto with arith. + absurd (0 = S (n0 + p)); auto with arith. + auto with arith. Qed. Hint Immediate plus_minus: arith v62. Lemma minus_plus : forall n m, n + m - n = m. -symmetry in |- *; auto with arith. + symmetry in |- *; auto with arith. Qed. Hint Resolve minus_plus: arith v62. Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n). Proof. -intros n m Le; pattern n, m in |- *; apply le_elim_rel; simpl in |- *; - auto with arith. + intros n m Le; pattern n, m in |- *; apply le_elim_rel; simpl in |- *; + auto with arith. Qed. Hint Resolve le_plus_minus: arith v62. Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m. Proof. -symmetry in |- *; auto with arith. + symmetry in |- *; auto with arith. Qed. Hint Resolve le_plus_minus_r: arith v62. -(** Relation with order *) +(** * Relation with order *) Theorem le_minus : forall n m, n - m <= n. Proof. -intros i h; pattern i, h in |- *; apply nat_double_ind; - [ auto - | auto - | intros m n H; simpl in |- *; apply le_trans with (m := m); auto ]. + intros i h; pattern i, h in |- *; apply nat_double_ind; + [ auto + | auto + | intros m n H; simpl in |- *; apply le_trans with (m := m); auto ]. Qed. Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n. Proof. -intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; - auto with arith. -intros; absurd (0 < 0); auto with arith. -intros p q lepq Hp gtp. -elim (le_lt_or_eq 0 p); auto with arith. -auto with arith. -induction 1; elim minus_n_O; auto with arith. + intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *; + auto with arith. + intros; absurd (0 < 0); auto with arith. + intros p q lepq Hp gtp. + elim (le_lt_or_eq 0 p); auto with arith. + auto with arith. + induction 1; elim minus_n_O; auto with arith. Qed. Hint Resolve lt_minus: arith v62. Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n. Proof. -intros n m; pattern n, m in |- *; apply nat_double_ind; simpl in |- *; - auto with arith. -intros; absurd (0 < 0); trivial with arith. + intros n m; pattern n, m in |- *; apply nat_double_ind; simpl in |- *; + auto with arith. + intros; absurd (0 < 0); trivial with arith. Qed. Hint Immediate lt_O_minus_lt: arith v62. Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0. -intros y x; pattern y, x in |- *; apply nat_double_ind; - [ simpl in |- *; trivial with arith - | intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ] - | simpl in |- *; intros n m H1 H2; apply H1; unfold not in |- *; intros H3; - apply H2; apply le_n_S; assumption ]. -Qed.
\ No newline at end of file +Proof. + intros y x; pattern y, x in |- *; apply nat_double_ind; + [ simpl in |- *; trivial with arith + | intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ] + | simpl in |- *; intros n m H1 H2; apply H1; unfold not in |- *; intros H3; + apply H2; apply le_n_S; assumption ]. +Qed. |