summaryrefslogtreecommitdiff
path: root/theories/Arith/Gt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Gt.v')
-rw-r--r--theories/Arith/Gt.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/Arith/Gt.v b/theories/Arith/Gt.v
index 32f453e5..31b15507 100644
--- a/theories/Arith/Gt.v
+++ b/theories/Arith/Gt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,7 +15,7 @@ Definition gt (n m:nat) := m < n.
Require Import Le.
Require Import Lt.
Require Import Plus.
-Open Local Scope nat_scope.
+Local Open Scope nat_scope.
Implicit Types m n p : nat.
@@ -47,7 +47,7 @@ Hint Immediate gt_S_n: arith v62.
Theorem gt_S : forall n m, S n > m -> n > m \/ m = n.
Proof.
- intros n m H; unfold gt in |- *; apply le_lt_or_eq; auto with arith.
+ intros n m H; unfold gt; apply le_lt_or_eq; auto with arith.
Qed.
Lemma gt_pred : forall n m, m > S n -> pred m > n.
@@ -110,23 +110,23 @@ Hint Resolve le_gt_S: arith v62.
Theorem le_gt_trans : forall n m p, m <= n -> m > p -> n > p.
Proof.
- red in |- *; intros; apply lt_le_trans with m; auto with arith.
+ red; intros; apply lt_le_trans with m; auto with arith.
Qed.
Theorem gt_le_trans : forall n m p, n > m -> p <= m -> n > p.
Proof.
- red in |- *; intros; apply le_lt_trans with m; auto with arith.
+ red; intros; apply le_lt_trans with m; auto with arith.
Qed.
Lemma gt_trans : forall n m p, n > m -> m > p -> n > p.
Proof.
- red in |- *; intros n m p H1 H2.
+ red; intros n m p H1 H2.
apply lt_trans with m; auto with arith.
Qed.
Theorem gt_trans_S : forall n m p, S n > m -> m > p -> n > p.
Proof.
- red in |- *; intros; apply lt_le_trans with m; auto with arith.
+ red; intros; apply lt_le_trans with m; auto with arith.
Qed.
Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith v62.
@@ -142,7 +142,7 @@ Qed.
Lemma plus_gt_reg_l : forall n m p, p + n > p + m -> n > m.
Proof.
- red in |- *; intros n m p H; apply plus_lt_reg_l with p; auto with arith.
+ red; intros n m p H; apply plus_lt_reg_l with p; auto with arith.
Qed.
Lemma plus_gt_compat_l : forall n m p, n > m -> p + n > p + m.