summaryrefslogtreecommitdiff
path: root/theories/Arith/Even.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Even.v')
-rw-r--r--theories/Arith/Even.v158
1 files changed, 48 insertions, 110 deletions
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index 1484666b..59209370 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Even.v 10410 2007-12-31 13:11:55Z msozeau $ i*)
+(*i $Id: Even.v 11512 2008-10-27 12:28:36Z herbelin $ i*)
(** Here we define the predicates [even] and [odd] by mutual induction
and we prove the decidability and the exclusion of those predicates.
@@ -52,153 +52,91 @@ Qed.
(** * Facts about [even] & [odd] wrt. [plus] *)
-Lemma even_plus_aux :
- forall n m,
- (odd (n + m) <-> odd n /\ even m \/ even n /\ odd m) /\
- (even (n + m) <-> even n /\ even m \/ odd n /\ odd m).
+Lemma even_plus_split : forall n m,
+ (even (n + m) -> even n /\ even m \/ odd n /\ odd m)
+with odd_plus_split : forall n m,
+ odd (n + m) -> odd n /\ even m \/ even n /\ odd m.
Proof.
- intros n; elim n; simpl in |- *; auto with arith.
- intros m; split; auto.
- split.
- intros H; right; split; auto with arith.
- intros H'; case H'; auto with arith.
- intros H'0; elim H'0; intros H'1 H'2; inversion H'1.
- intros H; elim H; auto.
- split; auto with arith.
- intros H'; elim H'; auto with arith.
- intros H; elim H; auto.
- intros H'0; elim H'0; intros H'1 H'2; inversion H'1.
- intros n0 H' m; elim (H' m); intros H'1 H'2; elim H'1; intros E1 E2; elim H'2;
- intros E3 E4; clear H'1 H'2.
- split; split.
- intros H'0; case E3.
- inversion H'0; auto.
- intros H; elim H; intros H0 H1; clear H; auto with arith.
- intros H; elim H; intros H0 H1; clear H; auto with arith.
- intros H'0; case H'0; intros C0; case C0; intros C1 C2.
- apply odd_S.
- apply E4; left; split; auto with arith.
- inversion C1; auto.
- apply odd_S.
- apply E4; right; split; auto with arith.
- inversion C1; auto.
- intros H'0.
- case E1.
- inversion H'0; auto.
- intros H; elim H; intros H0 H1; clear H; auto with arith.
- intros H; elim H; intros H0 H1; clear H; auto with arith.
- intros H'0; case H'0; intros C0; case C0; intros C1 C2.
- apply even_S.
- apply E2; left; split; auto with arith.
- inversion C1; auto.
- apply even_S.
- apply E2; right; split; auto with arith.
- inversion C1; auto.
+intros. clear even_plus_split. destruct n; simpl in *.
+ auto with arith.
+ inversion_clear H;
+ apply odd_plus_split in H0 as [(H0,?)|(H0,?)]; auto with arith.
+intros. clear odd_plus_split. destruct n; simpl in *.
+ auto with arith.
+ inversion_clear H;
+ apply even_plus_split in H0 as [(H0,?)|(H0,?)]; auto with arith.
Qed.
-
-Lemma even_even_plus : forall n m, even n -> even m -> even (n + m).
+
+Lemma even_even_plus : forall n m, even n -> even m -> even (n + m)
+with odd_plus_l : forall n m, odd n -> even m -> odd (n + m).
Proof.
- intros n m; case (even_plus_aux n m).
- intros H H0; case H0; auto.
+intros n m [|] ?. trivial. apply even_S, odd_plus_l; trivial.
+intros n m [] ?. apply odd_S, even_even_plus; trivial.
Qed.
-
-Lemma odd_even_plus : forall n m, odd n -> odd m -> even (n + m).
+
+Lemma odd_plus_r : forall n m, even n -> odd m -> odd (n + m)
+with odd_even_plus : forall n m, odd n -> odd m -> even (n + m).
Proof.
- intros n m; case (even_plus_aux n m).
- intros H H0; case H0; auto.
+intros n m [|] ?. trivial. apply odd_S, odd_even_plus; trivial.
+intros n m [] ?. apply even_S, odd_plus_r; trivial.
+Qed.
+
+Lemma even_plus_aux : forall n m,
+ (odd (n + m) <-> odd n /\ even m \/ even n /\ odd m) /\
+ (even (n + m) <-> even n /\ even m \/ odd n /\ odd m).
+Proof.
+split; split; auto using odd_plus_split, even_plus_split.
+intros [[]|[]]; auto using odd_plus_r, odd_plus_l.
+intros [[]|[]]; auto using even_even_plus, odd_even_plus.
Qed.
Lemma even_plus_even_inv_r : forall n m, even (n + m) -> even n -> even m.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'0.
- intros H'1; case H'1; auto.
- intros H0; elim H0; auto.
- intros H0 H1 H2; case (not_even_and_odd n); auto.
- case H0; auto.
+ intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd n); auto.
Qed.
Lemma even_plus_even_inv_l : forall n m, even (n + m) -> even m -> even n.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'0.
- intros H'1; case H'1; auto.
- intros H0; elim H0; auto.
- intros H0 H1 H2; case (not_even_and_odd m); auto.
- case H0; auto.
+ intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd m); auto.
Qed.
Lemma even_plus_odd_inv_r : forall n m, even (n + m) -> odd n -> odd m.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'0.
- intros H'1; case H'1; auto.
- intros H0 H1 H2; case (not_even_and_odd n); auto.
- case H0; auto.
- intros H0; case H0; auto.
+ intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd n); auto.
Qed.
Lemma even_plus_odd_inv_l : forall n m, even (n + m) -> odd m -> odd n.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'0.
- intros H'1; case H'1; auto.
- intros H0 H1 H2; case (not_even_and_odd m); auto.
- case H0; auto.
- intros H0; case H0; auto.
+ intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd m); auto.
Qed.
Hint Resolve even_even_plus odd_even_plus: arith.
-Lemma odd_plus_l : forall n m, odd n -> even m -> odd (n + m).
-Proof.
- intros n m; case (even_plus_aux n m).
- intros H; case H; auto.
-Qed.
-
-Lemma odd_plus_r : forall n m, even n -> odd m -> odd (n + m).
-Proof.
- intros n m; case (even_plus_aux n m).
- intros H; case H; auto.
-Qed.
-
Lemma odd_plus_even_inv_l : forall n m, odd (n + m) -> odd m -> even n.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'.
- intros H'1; case H'1; auto.
- intros H0 H1 H2; case (not_even_and_odd m); auto.
- case H0; auto.
- intros H0; case H0; auto.
+ intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd m); auto.
Qed.
Lemma odd_plus_even_inv_r : forall n m, odd (n + m) -> odd n -> even m.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'.
- intros H'1; case H'1; auto.
- intros H0; case H0; auto.
- intros H0 H1 H2; case (not_even_and_odd n); auto.
- case H0; auto.
+ intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd n); auto.
Qed.
Lemma odd_plus_odd_inv_l : forall n m, odd (n + m) -> even m -> odd n.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'.
- intros H'1; case H'1; auto.
- intros H0; case H0; auto.
- intros H0 H1 H2; case (not_even_and_odd m); auto.
- case H0; auto.
+ intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd m); auto.
Qed.
Lemma odd_plus_odd_inv_r : forall n m, odd (n + m) -> even n -> odd m.
Proof.
- intros n m H; case (even_plus_aux n m).
- intros H' H'0; elim H'.
- intros H'1; case H'1; auto.
- intros H0 H1 H2; case (not_even_and_odd n); auto.
- case H0; auto.
- intros H0; case H0; auto.
+ intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
+ intro; destruct (not_even_and_odd n); auto.
Qed.
Hint Resolve odd_plus_l odd_plus_r: arith.