summaryrefslogtreecommitdiff
path: root/theories/Arith/Even.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Even.v')
-rw-r--r--theories/Arith/Even.v22
1 files changed, 11 insertions, 11 deletions
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index 59209370..eaa1bb2d 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Even.v 11512 2008-10-27 12:28:36Z herbelin $ i*)
+(*i $Id$ i*)
(** Here we define the predicates [even] and [odd] by mutual induction
and we prove the decidability and the exclusion of those predicates.
@@ -17,7 +17,7 @@ Open Local Scope nat_scope.
Implicit Types m n : nat.
-(** * Definition of [even] and [odd], and basic facts *)
+(** * Definition of [even] and [odd], and basic facts *)
Inductive even : nat -> Prop :=
| even_O : even 0
@@ -52,9 +52,9 @@ Qed.
(** * Facts about [even] & [odd] wrt. [plus] *)
-Lemma even_plus_split : forall n m,
+Lemma even_plus_split : forall n m,
(even (n + m) -> even n /\ even m \/ odd n /\ odd m)
-with odd_plus_split : forall n m,
+with odd_plus_split : forall n m,
odd (n + m) -> odd n /\ even m \/ even n /\ odd m.
Proof.
intros. clear even_plus_split. destruct n; simpl in *.
@@ -95,7 +95,7 @@ Proof.
intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
intro; destruct (not_even_and_odd n); auto.
Qed.
-
+
Lemma even_plus_even_inv_l : forall n m, even (n + m) -> even m -> even n.
Proof.
intros n m H; destruct (even_plus_split n m) as [[]|[]]; auto.
@@ -120,13 +120,13 @@ Proof.
intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
intro; destruct (not_even_and_odd m); auto.
Qed.
-
+
Lemma odd_plus_even_inv_r : forall n m, odd (n + m) -> odd n -> even m.
Proof.
intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
intro; destruct (not_even_and_odd n); auto.
Qed.
-
+
Lemma odd_plus_odd_inv_l : forall n m, odd (n + m) -> even m -> odd n.
Proof.
intros n m H; destruct (odd_plus_split n m) as [[]|[]]; auto.
@@ -203,7 +203,7 @@ Proof.
intros n m; case (even_mult_aux n m); auto.
intros H H0; case H0; auto.
Qed.
-
+
Lemma even_mult_r : forall n m, even m -> even (n * m).
Proof.
intros n m; case (even_mult_aux n m); auto.
@@ -219,7 +219,7 @@ Proof.
intros H'3; elim H'3; auto.
intros H; case (not_even_and_odd n); auto.
Qed.
-
+
Lemma even_mult_inv_l : forall n m, even (n * m) -> odd m -> even n.
Proof.
intros n m H' H'0.
@@ -228,13 +228,13 @@ Proof.
intros H'3; elim H'3; auto.
intros H; case (not_even_and_odd m); auto.
Qed.
-
+
Lemma odd_mult : forall n m, odd n -> odd m -> odd (n * m).
Proof.
intros n m; case (even_mult_aux n m); intros H; case H; auto.
Qed.
Hint Resolve even_mult_l even_mult_r odd_mult: arith.
-
+
Lemma odd_mult_inv_l : forall n m, odd (n * m) -> odd n.
Proof.
intros n m H'.