summaryrefslogtreecommitdiff
path: root/theories/Arith/Euclid.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Euclid.v')
-rw-r--r--theories/Arith/Euclid.v20
1 files changed, 10 insertions, 10 deletions
diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v
index 513fd110..3abdff98 100644
--- a/theories/Arith/Euclid.v
+++ b/theories/Arith/Euclid.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -19,16 +19,16 @@ Inductive diveucl a b : Set :=
Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q r g e.
- apply divex with (S q) r; simpl in |- *; auto with arith.
+ apply divex with (S q) r; simpl; auto with arith.
elim plus_assoc.
elim e; auto with arith.
intros gtbn.
- apply divex with 0 n; simpl in |- *; auto with arith.
+ apply divex with 0 n; simpl; auto with arith.
Defined.
Lemma quotient :
@@ -36,17 +36,17 @@ Lemma quotient :
n > 0 ->
forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q Hq; exists (S q).
elim Hq; intros r Hr.
- exists r; simpl in |- *; elim Hr; intros.
+ exists r; simpl; elim Hr; intros.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
- exists 0; exists n; simpl in |- *; auto with arith.
+ exists 0; exists n; simpl; auto with arith.
Defined.
Lemma modulo :
@@ -54,15 +54,15 @@ Lemma modulo :
n > 0 ->
forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}.
Proof.
- intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
+ intros b H a; pattern a; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros r Hr; exists r.
elim Hr; intros q Hq.
- elim Hq; intros; exists (S q); simpl in |- *.
+ elim Hq; intros; exists (S q); simpl.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
- exists n; exists 0; simpl in |- *; auto with arith.
+ exists n; exists 0; simpl; auto with arith.
Defined.