diff options
Diffstat (limited to 'theories/Arith/Euclid.v')
-rw-r--r-- | theories/Arith/Euclid.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/theories/Arith/Euclid.v b/theories/Arith/Euclid.v index 513fd110..3abdff98 100644 --- a/theories/Arith/Euclid.v +++ b/theories/Arith/Euclid.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -19,16 +19,16 @@ Inductive diveucl a b : Set := Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros q r g e. - apply divex with (S q) r; simpl in |- *; auto with arith. + apply divex with (S q) r; simpl; auto with arith. elim plus_assoc. elim e; auto with arith. intros gtbn. - apply divex with 0 n; simpl in |- *; auto with arith. + apply divex with 0 n; simpl; auto with arith. Defined. Lemma quotient : @@ -36,17 +36,17 @@ Lemma quotient : n > 0 -> forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros q Hq; exists (S q). elim Hq; intros r Hr. - exists r; simpl in |- *; elim Hr; intros. + exists r; simpl; elim Hr; intros. elim plus_assoc. elim H1; auto with arith. intros gtbn. - exists 0; exists n; simpl in |- *; auto with arith. + exists 0; exists n; simpl; auto with arith. Defined. Lemma modulo : @@ -54,15 +54,15 @@ Lemma modulo : n > 0 -> forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}. Proof. - intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0. + intros b H a; pattern a; apply gt_wf_rec; intros n H0. elim (le_gt_dec b n). intro lebn. elim (H0 (n - b)); auto with arith. intros r Hr; exists r. elim Hr; intros q Hq. - elim Hq; intros; exists (S q); simpl in |- *. + elim Hq; intros; exists (S q); simpl. elim plus_assoc. elim H1; auto with arith. intros gtbn. - exists n; exists 0; simpl in |- *; auto with arith. + exists n; exists 0; simpl; auto with arith. Defined. |