diff options
Diffstat (limited to 'theories/Arith/Div2.v')
-rw-r--r-- | theories/Arith/Div2.v | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v index da1d9e98..56115c7f 100644 --- a/theories/Arith/Div2.v +++ b/theories/Arith/Div2.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -43,7 +43,7 @@ Qed. Lemma lt_div2 : forall n, 0 < n -> div2 n < n. Proof. - intro n. pattern n in |- *. apply ind_0_1_SS. + intro n. pattern n. apply ind_0_1_SS. (* n = 0 *) inversion 1. (* n=1 *) @@ -99,12 +99,12 @@ Hint Unfold double: arith. Lemma double_S : forall n, double (S n) = S (S (double n)). Proof. - intro. unfold double in |- *. simpl in |- *. auto with arith. + intro. unfold double. simpl. auto with arith. Qed. Lemma double_plus : forall n (m:nat), double (n + m) = double n + double m. Proof. - intros m n. unfold double in |- *. + intros m n. unfold double. do 2 rewrite plus_assoc_reverse. rewrite (plus_permute n). reflexivity. Qed. @@ -115,7 +115,7 @@ Lemma even_odd_double : forall n, (even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))). Proof. - intro n. pattern n in |- *. apply ind_0_1_SS. + intro n. pattern n. apply ind_0_1_SS. (* n = 0 *) split; split; auto with arith. intro H. inversion H. @@ -126,11 +126,11 @@ Proof. intros. destruct H as ((IH1,IH2),(IH3,IH4)). split; split. intro H. inversion H. inversion H1. - simpl in |- *. rewrite (double_S (div2 n0)). auto with arith. - simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. + simpl. rewrite (double_S (div2 n0)). auto with arith. + simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. intro H. inversion H. inversion H1. - simpl in |- *. rewrite (double_S (div2 n0)). auto with arith. - simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. + simpl. rewrite (double_S (div2 n0)). auto with arith. + simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith. Qed. (** Specializations *) |