diff options
Diffstat (limited to 'test-suite')
-rw-r--r-- | test-suite/bugs/closed/2319.v | 13 | ||||
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/1507.v | 2 | ||||
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/2145.v | 4 | ||||
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/2262.v | 11 | ||||
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/2303.v | 4 | ||||
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/2347.v | 10 | ||||
-rw-r--r-- | test-suite/output/Notations.out | 28 | ||||
-rw-r--r-- | test-suite/output/Notations.v | 39 | ||||
-rw-r--r-- | test-suite/output/Notations2.out | 15 | ||||
-rw-r--r-- | test-suite/output/Notations2.v | 41 | ||||
-rw-r--r-- | test-suite/output/Search.out | 18 | ||||
-rw-r--r-- | test-suite/output/SearchPattern.out | 18 | ||||
-rw-r--r-- | test-suite/success/Field.v | 2 | ||||
-rw-r--r-- | test-suite/success/Nsatz.v | 132 | ||||
-rw-r--r-- | test-suite/success/Nsatz_domain.v | 274 | ||||
-rw-r--r-- | test-suite/success/Tauto.v | 2 | ||||
-rw-r--r-- | test-suite/success/Typeclasses.v | 6 |
17 files changed, 270 insertions, 349 deletions
diff --git a/test-suite/bugs/closed/2319.v b/test-suite/bugs/closed/2319.v new file mode 100644 index 00000000..e06fb975 --- /dev/null +++ b/test-suite/bugs/closed/2319.v @@ -0,0 +1,13 @@ +Section S. + + CoInductive A (X: Type) := mkA: A X -> A X. + Variable T : Type. + + (* This used to loop (bug #2319) *) + Timeout 5 Eval vm_compute in cofix s : A T := mkA T s. + + CoFixpoint s : A T := mkA T s + with t : A unit := mkA unit (mkA unit t). + Timeout 5 Eval vm_compute in s. + +End S.
\ No newline at end of file diff --git a/test-suite/bugs/closed/shouldsucceed/1507.v b/test-suite/bugs/closed/shouldsucceed/1507.v index f1872a2b..ea72ba89 100644 --- a/test-suite/bugs/closed/shouldsucceed/1507.v +++ b/test-suite/bugs/closed/shouldsucceed/1507.v @@ -2,7 +2,7 @@ Implementing reals a la Stolzenberg Danko Ilik, March 2007 - svn revision: $Id$ + svn revision: $Id: 1507.v 12337 2009-09-17 15:58:14Z glondu $ XField.v -- (unfinished) axiomatisation of the theories of real and rational intervals. diff --git a/test-suite/bugs/closed/shouldsucceed/2145.v b/test-suite/bugs/closed/shouldsucceed/2145.v index b6c5da65..4dc0de74 100644 --- a/test-suite/bugs/closed/shouldsucceed/2145.v +++ b/test-suite/bugs/closed/shouldsucceed/2145.v @@ -1,7 +1,7 @@ (* Test robustness of Groebner tactic in presence of disequalities *) Require Export Reals. -Require Export NsatzR. +Require Export Nsatz. Open Scope R_scope. @@ -15,6 +15,6 @@ Lemma essai : Proof. intros. (* clear H. groebner used not to work when H was not cleared *) -nsatzR. +nsatz. Qed. diff --git a/test-suite/bugs/closed/shouldsucceed/2262.v b/test-suite/bugs/closed/shouldsucceed/2262.v new file mode 100644 index 00000000..b61f18b8 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2262.v @@ -0,0 +1,11 @@ + + +Generalizable Variables A. +Class Test A := { test : A }. + +Lemma mylemma : forall `{Test A}, test = test. +Admitted. (* works fine *) + +Definition mylemma' := forall `{Test A}, test = test. +About mylemma'. + diff --git a/test-suite/bugs/closed/shouldsucceed/2303.v b/test-suite/bugs/closed/shouldsucceed/2303.v new file mode 100644 index 00000000..e614b9b5 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2303.v @@ -0,0 +1,4 @@ +Class A := a: unit. +Class B (x: unit). +Axiom H: forall x: A, @B x -> x = x -> unit. +Definition Field (z: A) (m: @B z) x := (@H _ _ x) = z. diff --git a/test-suite/bugs/closed/shouldsucceed/2347.v b/test-suite/bugs/closed/shouldsucceed/2347.v new file mode 100644 index 00000000..e433f158 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/2347.v @@ -0,0 +1,10 @@ +Require Import EquivDec List. +Generalizable All Variables. + +Program Definition list_eqdec `(eqa : EqDec A eq) : EqDec (list A) eq := + (fun (x y : list A) => _). +Admit Obligations of list_eqdec. + +Program Definition list_eqdec' `(eqa : EqDec A eq) : EqDec (list A) eq := + (fun _ : nat => (fun (x y : list A) => _)) 0. +Admit Obligations of list_eqdec'. diff --git a/test-suite/output/Notations.out b/test-suite/output/Notations.out index 924030ba..215d9b68 100644 --- a/test-suite/output/Notations.out +++ b/test-suite/output/Notations.out @@ -46,6 +46,32 @@ fun x : nat => ifn x is succ n then n else 0 : bool -4 : Z +The command has indeed failed with message: +=> Error: x should not be bound in a recursive pattern of the right-hand side. +The command has indeed failed with message: +=> Error: in the right-hand side, y and z should appear in + term position as part of a recursive pattern. +The command has indeed failed with message: +=> Error: The reference w was not found in the current environment. +The command has indeed failed with message: +=> Error: x is unbound in the right-hand side. +The command has indeed failed with message: +=> Error: in the right-hand side, y and z should appear in + term position as part of a recursive pattern. +The command has indeed failed with message: +=> Error: z is expected to occur in binding position in the right-hand side. +The command has indeed failed with message: +=> Error: as y is a non-closed binder, no such "," is allowed to occur. +The command has indeed failed with message: +=> Error: Cannot find where the recursive pattern starts. +The command has indeed failed with message: +=> Error: Cannot find where the recursive pattern starts. +The command has indeed failed with message: +=> Error: Cannot find where the recursive pattern starts. +The command has indeed failed with message: +=> Error: Cannot find where the recursive pattern starts. +The command has indeed failed with message: +=> Error: Both ends of the recursive pattern are the same. SUM (nat * nat) nat : Set FST (0; 1) @@ -59,6 +85,8 @@ Defining 'I' as keyword : Prop [|1, 2, 3; 4, 5, 6|] : Z * Z * Z * (Z * Z * Z) +[|0 * (1, 2, 3); (4, 5, 6) * false|] + : Z * Z * (Z * Z) * (Z * Z) * (Z * bool * (Z * bool) * (Z * bool)) fun f : Z -> Z -> Z -> Z => {|f; 0; 1; 2|}:Z : (Z -> Z -> Z -> Z) -> Z plus diff --git a/test-suite/output/Notations.v b/test-suite/output/Notations.v index f041b9b7..b8f8f48f 100644 --- a/test-suite/output/Notations.v +++ b/test-suite/output/Notations.v @@ -121,6 +121,39 @@ Notation "- 4" := (-2 + -2). Check -4. (**********************************************************************) +(* Check ill-formed recursive notations *) + +(* Recursive variables not part of a recursive pattern *) +Fail Notation "( x , y , .. , z )" := (pair x .. (pair y z) ..). + +(* No recursive notation *) +Fail Notation "( x , y , .. , z )" := (pair x (pair y z)). + +(* Left-unbound variable *) +Fail Notation "( x , y , .. , z )" := (pair x .. (pair y w) ..). + +(* Right-unbound variable *) +Fail Notation "( x , y , .. , z )" := (pair y .. (pair z 0) ..). + +(* Not the right kind of recursive pattern *) +Fail Notation "( x , y , .. , z )" := (ex (fun z => .. (ex (fun y => x)) ..)). +Fail Notation "( x -- y , .. , z )" := (pair y .. (pair z 0) ..) + (y closed binder, z closed binder). + +(* No separator allowed with open binders *) +Fail Notation "( x -- y , .. , z )" := (ex (fun z => .. (ex (fun y => x)) ..)) + (y binder, z binder). + +(* Ends of pattern do not match *) +Fail Notation "( x , y , .. , z )" := (pair y .. (pair (plus z) 0) ..). +Fail Notation "( x , y , .. , z )" := (pair y .. (plus z 0) ..). +Fail Notation "( x1 , x2 , y , .. , z )" := (y y .. (x2 z 0) ..). +Fail Notation "( x1 , x2 , y , .. , z )" := (x1 y .. (x2 z 0) ..). + +(* Ends of pattern are the same *) +Fail Notation "( x , y , .. , z )" := (pair .. (pair (pair y z) x) .. x). + +(**********************************************************************) (* Check preservation of scopes at printing time *) Notation SUM := sum. @@ -163,6 +196,12 @@ Notation "[| x , y , .. , z ; a , b , .. , c |]" := (pair (pair .. (pair x y) .. z) (pair .. (pair a b) .. c)). Check [|1,2,3;4,5,6|]. +Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" := + (pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z)) + (pair .. (pair (pair a u) (pair b u)) .. (pair c u))) + (t at level 39). +Check [|0*(1,2,3);(4,5,6)*false|]. + (**********************************************************************) (* Test recursive notations involving applications *) (* Caveat: does not work for applied constant because constants are *) diff --git a/test-suite/output/Notations2.out b/test-suite/output/Notations2.out index 20d20d82..6731d505 100644 --- a/test-suite/output/Notations2.out +++ b/test-suite/output/Notations2.out @@ -10,3 +10,18 @@ end : nat let '(a, _, _) := (2, 3, 4) in a : nat +∃ n p : nat, n + p = 0 + : Prop +∀ n p : nat, n + p = 0 + : Prop +λ n p : nat, n + p = 0 + : nat -> nat -> Prop +λ (A : Type) (n p : A), n = p + : ∀ A : Type, A -> A -> Prop +λ A : Type, ∃ n p : A, n = p + : Type -> Prop +λ A : Type, ∀ n p : A, n = p + : Type -> Prop +Defining 'let'' as keyword +let' f (x y z : nat) (_ : bool) := x + y + z + 1 in f 0 1 2 + : bool -> nat diff --git a/test-suite/output/Notations2.v b/test-suite/output/Notations2.v index 2e136edf..57d8ebbc 100644 --- a/test-suite/output/Notations2.v +++ b/test-suite/output/Notations2.v @@ -24,3 +24,44 @@ Check forall (A: Set) (le: A -> A -> Prop) (x y: A), le x y \/ le y x. Remove Printing Let prod. Check match (0,0,0) with (x,y,z) => x+y+z end. Check let '(a,b,c) := ((2,3),4) in a. + +(* Test notations with binders *) + +Notation "∃ x .. y , P":= + (ex (fun x => .. (ex (fun y => P)) ..)) (x binder, y binder, at level 200). + +Check (∃ n p, n+p=0). + +Notation "∀ x .. y , P":= (forall x, .. (forall y, P) ..) + (x binder, at level 200, right associativity). + +Check (∀ n p, n+p=0). + +Notation "'λ' x .. y , P":= (fun x, .. (fun y, P) ..) + (y binder, at level 200, right associativity). + +Check (λ n p, n+p=0). + +Generalizable Variable A. + +Check `(λ n p : A, n=p). +Check `(∃ n p : A, n=p). +Check `(∀ n p : A, n=p). + +Notation "'let'' f x .. y := t 'in' u":= + (let f := fun x => .. (fun y => t) .. in u) + (f ident, x closed binder, y closed binder, at level 200, + right associativity). + +Check let' f x y z (a:bool) := x+y+z+1 in f 0 1 2. + +(* This one is not fully satisfactory because binders in the same type + are re-factorized and parentheses are needed even for atomic binder + +Notation "'mylet' f [ x ; .. ; y ] := t 'in' u":= + (let f := fun x => .. (fun y => t) .. in u) + (f ident, x closed binder, y closed binder, at level 200, + right associativity). + +Check mylet f [x;y;z;(a:bool)] := x+y+z+1 in f 0 1 2. +*) diff --git a/test-suite/output/Search.out b/test-suite/output/Search.out index 99e736dd..154d9cdd 100644 --- a/test-suite/output/Search.out +++ b/test-suite/output/Search.out @@ -2,29 +2,11 @@ le_S: forall n m : nat, n <= m -> n <= S m le_n: forall n : nat, n <= n false: bool true: bool -sumor_beq: - forall (A : Type) (B : Prop), - (A -> A -> bool) -> (B -> B -> bool) -> A + {B} -> A + {B} -> bool -sumbool_beq: - forall A B : Prop, - (A -> A -> bool) -> (B -> B -> bool) -> {A} + {B} -> {A} + {B} -> bool xorb: bool -> bool -> bool -sum_beq: - forall A B : Type, - (A -> A -> bool) -> (B -> B -> bool) -> A + B -> A + B -> bool -prod_beq: - forall A B : Type, - (A -> A -> bool) -> (B -> B -> bool) -> A * B -> A * B -> bool orb: bool -> bool -> bool -option_beq: forall A : Type, (A -> A -> bool) -> option A -> option A -> bool negb: bool -> bool -nat_beq: nat -> nat -> bool -list_beq: forall A : Type, (A -> A -> bool) -> list A -> list A -> bool implb: bool -> bool -> bool -comparison_beq: comparison -> comparison -> bool -bool_beq: bool -> bool -> bool andb: bool -> bool -> bool -Empty_set_beq: Empty_set -> Empty_set -> bool pred_Sn: forall n : nat, n = pred (S n) plus_n_Sm: forall n m : nat, S (n + m) = n + S m plus_n_O: forall n : nat, n = n + 0 diff --git a/test-suite/output/SearchPattern.out b/test-suite/output/SearchPattern.out index 1a87f4cc..c87eaadc 100644 --- a/test-suite/output/SearchPattern.out +++ b/test-suite/output/SearchPattern.out @@ -1,28 +1,10 @@ false: bool true: bool -sumor_beq: - forall (A : Type) (B : Prop), - (A -> A -> bool) -> (B -> B -> bool) -> A + {B} -> A + {B} -> bool -sumbool_beq: - forall A B : Prop, - (A -> A -> bool) -> (B -> B -> bool) -> {A} + {B} -> {A} + {B} -> bool xorb: bool -> bool -> bool -sum_beq: - forall A B : Type, - (A -> A -> bool) -> (B -> B -> bool) -> A + B -> A + B -> bool -prod_beq: - forall A B : Type, - (A -> A -> bool) -> (B -> B -> bool) -> A * B -> A * B -> bool orb: bool -> bool -> bool -option_beq: forall A : Type, (A -> A -> bool) -> option A -> option A -> bool negb: bool -> bool -nat_beq: nat -> nat -> bool -list_beq: forall A : Type, (A -> A -> bool) -> list A -> list A -> bool implb: bool -> bool -> bool -comparison_beq: comparison -> comparison -> bool -bool_beq: bool -> bool -> bool andb: bool -> bool -> bool -Empty_set_beq: Empty_set -> Empty_set -> bool S: nat -> nat O: nat pred: nat -> nat diff --git a/test-suite/success/Field.v b/test-suite/success/Field.v index b5fba17b..cb90e742 100644 --- a/test-suite/success/Field.v +++ b/test-suite/success/Field.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id$ *) +(* $Id: Field.v 13323 2010-07-24 15:57:30Z herbelin $ *) (**** Tests of Field with real numbers ****) diff --git a/test-suite/success/Nsatz.v b/test-suite/success/Nsatz.v index fde9f470..518d22e9 100644 --- a/test-suite/success/Nsatz.v +++ b/test-suite/success/Nsatz.v @@ -1,4 +1,74 @@ -Require Import NsatzR ZArith Reals List Ring_polynom. +Require Import Nsatz ZArith Reals List Ring_polynom. + +(* Example with a generic domain *) + +Variable A: Type. +Variable Ad: Domain A. + +Definition Ari : Ring A:= (@domain_ring A Ad). +Existing Instance Ari. + +Existing Instance ring_setoid. +Existing Instance ring_plus_comp. +Existing Instance ring_mult_comp. +Existing Instance ring_sub_comp. +Existing Instance ring_opp_comp. + +Add Ring Ar: (@ring_ring A (@domain_ring A Ad)). + +Instance zero_ring2 : Zero A := {zero := ring0}. +Instance one_ring2 : One A := {one := ring1}. +Instance addition_ring2 : Addition A := {addition x y := ring_plus x y}. +Instance multiplication_ring2 : Multiplication A := {multiplication x y := ring_mult x y}. +Instance subtraction_ring2 : Subtraction A := {subtraction x y := ring_sub x y}. +Instance opposite_ring2 : Opposite A := {opposite x := ring_opp x}. + +Infix "==" := ring_eq (at level 70, no associativity). + +Ltac nsatzA := simpl; unfold Ari; nsatz_domain. + +Goal forall x y:A, x == y -> x+0 == y*1+0. +nsatzA. +Qed. + +Lemma example3 : forall x y z, + x+y+z==0 -> + x*y+x*z+y*z==0-> + x*y*z==0 -> x*x*x==0. +Proof. +Time nsatzA. +Admitted. + +Lemma example4 : forall x y z u, + x+y+z+u==0 -> + x*y+x*z+x*u+y*z+y*u+z*u==0-> + x*y*z+x*y*u+x*z*u+y*z*u==0-> + x*y*z*u==0 -> x*x*x*x==0. +Proof. +Time nsatzA. +Qed. + +Lemma example5 : forall x y z u v, + x+y+z+u+v==0 -> + x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v==0-> + x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v==0-> + x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z==0 -> + x*y*z*u*v==0 -> x*x*x*x*x ==0. +Proof. +Time nsatzA. +Qed. + +Goal forall x y:Z, x = y -> (x+0)%Z = (y*1+0)%Z. +nsatz. +Qed. + +Goal forall x y:R, x = y -> (x+0)%R = (y*1+0)%R. +nsatz. +Qed. + +Goal forall a b c x:R, a = b -> b = c -> (a*a)%R = (c*c)%R. +nsatz. +Qed. Section Examples. @@ -16,12 +86,12 @@ Lemma example1 : forall x y, x*y=0 -> x^2=0. Proof. - nsatzR. + nsatz. Qed. Lemma example2 : forall x, x^2=0 -> x=0. Proof. - nsatzR. + nsatz. Qed. (* @@ -29,12 +99,12 @@ Notation X := (PEX Z 3). Notation Y := (PEX Z 2). Notation Z_ := (PEX Z 1). *) -Lemma example3 : forall x y z, +Lemma example3b : forall x y z, x+y+z=0 -> x*y+x*z+y*z=0-> x*y*z=0 -> x^3=0. Proof. -Time nsatzR. +Time nsatz. Qed. (* @@ -43,13 +113,13 @@ Notation Y := (PEX Z 3). Notation Z_ := (PEX Z 2). Notation U := (PEX Z 1). *) -Lemma example4 : forall x y z u, +Lemma example4b : forall x y z u, x+y+z+u=0 -> x*y+x*z+x*u+y*z+y*u+z*u=0-> x*y*z+x*y*u+x*z*u+y*z*u=0-> x*y*z*u=0 -> x^4=0. Proof. -Time nsatzR. +Time nsatz. Qed. (* @@ -64,20 +134,20 @@ Notation "x :: y" := (List.app x y) (at level 60, right associativity, format "x :: y"). *) -Lemma example5 : forall x y z u v, +Lemma example5b : forall x y z u v, x+y+z+u+v=0 -> x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0-> x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0-> x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 -> x*y*z*u*v=0 -> x^5=0. Proof. -Time nsatzR. +Time nsatz. Qed. End Examples. Section Geometry. -Require Export Reals NsatzR. + Open Scope R_scope. Record point:Type:={ @@ -169,6 +239,7 @@ Ltac geo_begin:= (* Examples *) + Lemma Thales: forall O A B C D:point, collinear O A C -> collinear O B D -> parallel A B C D -> @@ -176,26 +247,7 @@ Lemma Thales: forall O A B C D:point, /\ distance2 O B * distance2 C D = distance2 O D * distance2 A B) \/ collinear O A B. repeat geo_begin. -(* Time nsatz. -*) -Time nsatz without sugar. -(* -Time nsatz with lexico sugar. -Time nsatz with lexico. -*) -(* -Time nsatzRpv 1%N 1%Z (@nil R) (@nil R). (* revlex, sugar, no div *) -(*Finished transaction in 1. secs (0.479927u,0.s)*) -Time nsatzRpv 1%N 0%Z (@nil R) (@nil R). (* revlex, no sugar, no div *) -(*Finished transaction in 0. secs (0.543917u,0.s)*) -Time nsatzRpv 1%N 2%Z (@nil R) (@nil R). (* lex, no sugar, no div *) -(*Finished transaction in 0. secs (0.586911u,0.s)*) -Time nsatzRpv 1%N 3%Z (@nil R) (@nil R). (* lex, sugar, no div *) -(*Finished transaction in 0. secs (0.481927u,0.s)*) -Time nsatzRpv 1%N 5%Z (@nil R) (@nil R). (* revlex, sugar, div *) -(*Finished transaction in 1. secs (0.601909u,0.s)*) -*) Time nsatz. Qed. @@ -209,8 +261,26 @@ Lemma hauteurs:forall A B C A1 B1 C1 H:point, \/ collinear A B C. geo_begin. -Time nsatz. -(*Finished transaction in 3. secs (2.43263u,0.010998s)*) + +(* Time nsatzRpv 2%N 1%Z (@nil R) (@nil R).*) +(*Finished transaction in 3. secs (2.363641u,0.s)*) +(*Time nsatz_domainR. trop long! *) +Time + let lv := constr:(Y A1 + :: X A1 + :: Y B1 + :: X B1 + :: Y A0 + :: Y B + :: X B + :: X A0 + :: X H + :: Y C + :: Y C1 :: Y H :: X C1 :: X C :: (@Datatypes.nil R)) in + nsatz_domainpv ltac:pretacR 2%N 1%Z (@Datatypes.nil R) lv ltac:simplR Rdi; + discrR. +(* Finished transaction in 6. secs (5.579152u,0.001s) *) Qed. End Geometry. + diff --git a/test-suite/success/Nsatz_domain.v b/test-suite/success/Nsatz_domain.v deleted file mode 100644 index 8a30b47f..00000000 --- a/test-suite/success/Nsatz_domain.v +++ /dev/null @@ -1,274 +0,0 @@ -Require Import Nsatz_domain ZArith Reals List Ring_polynom. - -Variable A: Type. -Variable Ad: Domain A. - -Add Ring Ar1: (@ring_ring A (@domain_ring _ Ad)). - -Instance Ari : Ring A := { - ring0 := @ring0 A (@domain_ring _ Ad); - ring1 := @ring1 A (@domain_ring _ Ad); - ring_plus := @ring_plus A (@domain_ring _ Ad); - ring_mult := @ring_mult A (@domain_ring _ Ad); - ring_sub := @ring_sub A (@domain_ring _ Ad); - ring_opp := @ring_opp A (@domain_ring _ Ad); - ring_ring := @ring_ring A (@domain_ring _ Ad)}. - -Instance Adi : Domain A := { - domain_ring := Ari; - domain_axiom_product := @domain_axiom_product A Ad; - domain_axiom_one_zero := @domain_axiom_one_zero A Ad}. - -Instance zero_ring2 : Zero A := {zero := ring0}. -Instance one_ring2 : One A := {one := ring1}. -Instance addition_ring2 : Addition A := {addition x y := ring_plus x y}. -Instance multiplication_ring2 : Multiplication A := {multiplication x y := ring_mult x y}. -Instance subtraction_ring2 : Subtraction A := {subtraction x y := ring_sub x y}. -Instance opposite_ring2 : Opposite A := {opposite x := ring_opp x}. - -Goal forall x y:A, x = y -> x+0 = y*1+0. -nsatz_domain. -Qed. - -Goal forall a b c:A, a = b -> b = c -> c = a. -nsatz_domain. -Qed. - -Goal forall a b c:A, a = b -> b = c -> a = c. -nsatz_domain. -Qed. - -Goal forall a b c x:A, a = b -> b = c -> a*a = c*c. -nsatz_domain. -Qed. - -Goal forall x y:Z, x = y -> (x+0)%Z = (y*1+0)%Z. -nsatz_domainZ. -Qed. - -Goal forall x y:R, x = y -> (x+0)%R = (y*1+0)%R. -nsatz_domainR. -Qed. - -Goal forall a b c x:R, a = b -> b = c -> (a*a)%R = (c*c)%R. -nsatz_domainR. -Qed. - -Section Examples. - -Delimit Scope PE_scope with PE. -Infix "+" := PEadd : PE_scope. -Infix "*" := PEmul : PE_scope. -Infix "-" := PEsub : PE_scope. -Infix "^" := PEpow : PE_scope. -Notation "[ n ]" := (@PEc Z n) (at level 0). - -Open Scope R_scope. - -Lemma example1 : forall x y, - x+y=0 -> - x*y=0 -> - x^2=0. -Proof. - nsatz_domainR. -Qed. - -Lemma example2 : forall x, x^2=0 -> x=0. -Proof. - nsatz_domainR. -Qed. - -(* -Notation X := (PEX Z 3). -Notation Y := (PEX Z 2). -Notation Z_ := (PEX Z 1). -*) -Lemma example3 : forall x y z, - x+y+z=0 -> - x*y+x*z+y*z=0-> - x*y*z=0 -> x^3=0. -Proof. -Time nsatz_domainR. -simpl. -discrR. -Qed. - -(* -Notation X := (PEX Z 4). -Notation Y := (PEX Z 3). -Notation Z_ := (PEX Z 2). -Notation U := (PEX Z 1). -*) -Lemma example4 : forall x y z u, - x+y+z+u=0 -> - x*y+x*z+x*u+y*z+y*u+z*u=0-> - x*y*z+x*y*u+x*z*u+y*z*u=0-> - x*y*z*u=0 -> x^4=0. -Proof. -Time nsatz_domainR. -Qed. - -(* -Notation x_ := (PEX Z 5). -Notation y_ := (PEX Z 4). -Notation z_ := (PEX Z 3). -Notation u_ := (PEX Z 2). -Notation v_ := (PEX Z 1). -Notation "x :: y" := (List.cons x y) -(at level 60, right associativity, format "'[hv' x :: '/' y ']'"). -Notation "x :: y" := (List.app x y) -(at level 60, right associativity, format "x :: y"). -*) - -Lemma example5 : forall x y z u v, - x+y+z+u+v=0 -> - x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0-> - x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0-> - x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 -> - x*y*z*u*v=0 -> x^5=0. -Proof. -Time nsatz_domainR. -Qed. - -End Examples. - -Section Geometry. - -Open Scope R_scope. - -Record point:Type:={ - X:R; - Y:R}. - -Definition collinear(A B C:point):= - (X A - X B)*(Y C - Y B)-(Y A - Y B)*(X C - X B)=0. - -Definition parallel (A B C D:point):= - ((X A)-(X B))*((Y C)-(Y D))=((Y A)-(Y B))*((X C)-(X D)). - -Definition notparallel (A B C D:point)(x:R):= - x*(((X A)-(X B))*((Y C)-(Y D))-((Y A)-(Y B))*((X C)-(X D)))=1. - -Definition orthogonal (A B C D:point):= - ((X A)-(X B))*((X C)-(X D))+((Y A)-(Y B))*((Y C)-(Y D))=0. - -Definition equal2(A B:point):= - (X A)=(X B) /\ (Y A)=(Y B). - -Definition equal3(A B:point):= - ((X A)-(X B))^2+((Y A)-(Y B))^2 = 0. - -Definition nequal2(A B:point):= - (X A)<>(X B) \/ (Y A)<>(Y B). - -Definition nequal3(A B:point):= - not (((X A)-(X B))^2+((Y A)-(Y B))^2 = 0). - -Definition middle(A B I:point):= - 2*(X I)=(X A)+(X B) /\ 2*(Y I)=(Y A)+(Y B). - -Definition distance2(A B:point):= - (X B - X A)^2 + (Y B - Y A)^2. - -(* AB = CD *) -Definition samedistance2(A B C D:point):= - (X B - X A)^2 + (Y B - Y A)^2 = (X D - X C)^2 + (Y D - Y C)^2. -Definition determinant(A O B:point):= - (X A - X O)*(Y B - Y O) - (Y A - Y O)*(X B - X O). -Definition scalarproduct(A O B:point):= - (X A - X O)*(X B - X O) + (Y A - Y O)*(Y B - Y O). -Definition norm2(A O B:point):= - ((X A - X O)^2+(Y A - Y O)^2)*((X B - X O)^2+(Y B - Y O)^2). - - -Lemma a1:forall A B C:Prop, ((A\/B)/\(A\/C)) -> (A\/(B/\C)). -intuition. -Qed. - -Lemma a2:forall A B C:Prop, ((A\/C)/\(B\/C)) -> ((A/\B)\/C). -intuition. -Qed. - -Lemma a3:forall a b c d:R, (a-b)*(c-d)=0 -> (a=b \/ c=d). -intros. -assert ( (a-b = 0) \/ (c-d = 0)). -apply Rmult_integral. -trivial. -destruct H0. -left; nsatz_domainR. -right; nsatz_domainR. -Qed. - -Ltac geo_unfold := - unfold collinear; unfold parallel; unfold notparallel; unfold orthogonal; - unfold equal2; unfold equal3; unfold nequal2; unfold nequal3; - unfold middle; unfold samedistance2; - unfold determinant; unfold scalarproduct; unfold norm2; unfold distance2. - -Ltac geo_end := - repeat ( - repeat (match goal with h:_/\_ |- _ => decompose [and] h; clear h end); - repeat (apply a1 || apply a2 || apply a3); - repeat split). - -Ltac geo_rewrite_hyps:= - repeat (match goal with - | h:X _ = _ |- _ => rewrite h in *; clear h - | h:Y _ = _ |- _ => rewrite h in *; clear h - end). - -Ltac geo_begin:= - geo_unfold; - intros; - geo_rewrite_hyps; - geo_end. - -(* Examples *) - -Lemma Thales: forall O A B C D:point, - collinear O A C -> collinear O B D -> - parallel A B C D -> - (distance2 O B * distance2 O C = distance2 O D * distance2 O A - /\ distance2 O B * distance2 C D = distance2 O D * distance2 A B) - \/ collinear O A B. -repeat geo_begin. - -Time nsatz_domainR. -simpl;discrR. -Time nsatz_domainR. -simpl;discrR. -Qed. - -Require Import NsatzR. - -Lemma hauteurs:forall A B C A1 B1 C1 H:point, - collinear B C A1 -> orthogonal A A1 B C -> - collinear A C B1 -> orthogonal B B1 A C -> - collinear A B C1 -> orthogonal C C1 A B -> - collinear A A1 H -> collinear B B1 H -> - - collinear C C1 H - \/ collinear A B C. - -geo_begin. -(* Time nsatzRpv 2%N 1%Z (@nil R) (@nil R).*) -(*Finished transaction in 3. secs (2.363641u,0.s)*) -(*Time nsatz_domainR. trop long! *) -(* en fait nsatz_domain ne tient pas encore compte de la liste des variables! ;-) *) -Time - let lv := constr:(Y A1 - :: X A1 - :: Y B1 - :: X B1 - :: Y A0 - :: Y B - :: X B - :: X A0 - :: X H - :: Y C - :: Y C1 :: Y H :: X C1 :: X C ::nil) in - nsatz_domainpv 2%N 1%Z (@List.nil R) lv ltac:simplR Rdi. -(* Finished transaction in 6. secs (5.579152u,0.001s) *) -Qed. - -End Geometry. diff --git a/test-suite/success/Tauto.v b/test-suite/success/Tauto.v index b9326c64..6322ed2b 100644 --- a/test-suite/success/Tauto.v +++ b/test-suite/success/Tauto.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id$ *) +(* $Id: Tauto.v 13323 2010-07-24 15:57:30Z herbelin $ *) (**** Tactics Tauto and Intuition ****) diff --git a/test-suite/success/Typeclasses.v b/test-suite/success/Typeclasses.v index 55351a47..30a2a742 100644 --- a/test-suite/success/Typeclasses.v +++ b/test-suite/success/Typeclasses.v @@ -8,9 +8,9 @@ Reserved Notation "x >>= y" (at level 65, left associativity). Record Monad {m : Type -> Type} := { - unit : Π {α}, α -> m α where "'return' t" := (unit t) ; - bind : Π {α β}, m α -> (α -> m β) -> m β where "x >>= y" := (bind x y) ; - bind_unit_left : Π {α β} (a : α) (f : α -> m β), return a >>= f = f a }. + unit : forall {α}, α -> m α where "'return' t" := (unit t) ; + bind : forall {α β}, m α -> (α -> m β) -> m β where "x >>= y" := (bind x y) ; + bind_unit_left : forall {α β} (a : α) (f : α -> m β), return a >>= f = f a }. Print Visibility. Print unit. |