summaryrefslogtreecommitdiff
path: root/test-suite/success
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/Omega0.v8
-rw-r--r--test-suite/success/ROmega.v14
-rw-r--r--test-suite/success/ROmega0.v35
-rw-r--r--test-suite/success/ROmega2.v19
4 files changed, 46 insertions, 30 deletions
diff --git a/test-suite/success/Omega0.v b/test-suite/success/Omega0.v
index 4614c90d..accaec41 100644
--- a/test-suite/success/Omega0.v
+++ b/test-suite/success/Omega0.v
@@ -8,16 +8,16 @@ Lemma test_romega_0 :
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros.
-(*omega.*)
-Admitted.
+omega.
+Qed.
Lemma test_romega_0b :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros m m'.
-(*omega.*)
-Admitted.
+omega.
+Qed.
Lemma test_romega_1 :
forall (z z1 z2 : Z),
diff --git a/test-suite/success/ROmega.v b/test-suite/success/ROmega.v
index 04b666ed..ff1f57df 100644
--- a/test-suite/success/ROmega.v
+++ b/test-suite/success/ROmega.v
@@ -7,8 +7,8 @@ Lemma lem1 :
forall x y : Z, (-5 < x < 5)%Z -> (-5 < y)%Z -> (-5 < x + y + 5)%Z.
Proof.
intros x y.
- (*romega.*)
-Admitted.
+romega.
+Qed.
(* Proposed by Pierre Crégut *)
@@ -22,8 +22,8 @@ Qed.
Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z.
Proof.
intros.
- (*romega.*)
-Admitted.
+romega.
+Qed.
(* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *)
(* internal variable and a section variable (June 2001) *)
@@ -68,7 +68,7 @@ Variable n : nat.
Variable ap_n : n <> 0.
Let delta := f n ap_n.
Lemma lem7 : n = n.
- (*romega.*) (*ROMEGA CANT DEAL WITH NAT*)
+ (*romega. ---> ROMEGA CANT DEAL WITH NAT*)
Admitted.
End C.
@@ -76,7 +76,7 @@ End C.
Require Import Omega.
Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0.
intros.
-(* romega.*) (*ROMEGA CANT DEAL WITH NAT*)
+(* romega. ---> ROMEGA CANT DEAL WITH NAT*)
Admitted.
(* Bug that what caused by the use of intro_using in Omega *)
@@ -84,7 +84,7 @@ Require Import Omega.
Lemma lem9 :
forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p.
intros.
-(* romega.*)(*ROMEGA CANT DEAL WITH NAT*)
+(* romega. ---> ROMEGA CANT DEAL WITH NAT*)
Admitted.
(* Check that the interpretation of mult on nat enforces its positivity *)
diff --git a/test-suite/success/ROmega0.v b/test-suite/success/ROmega0.v
index 0efca1e1..86cf49cb 100644
--- a/test-suite/success/ROmega0.v
+++ b/test-suite/success/ROmega0.v
@@ -8,16 +8,16 @@ Lemma test_romega_0 :
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros.
-(*romega.*)
-Admitted.
+romega.
+Qed.
Lemma test_romega_0b :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros m m'.
-(*romega.*)
-Admitted.
+romega.
+Qed.
Lemma test_romega_1 :
forall (z z1 z2 : Z),
@@ -42,8 +42,8 @@ Lemma test_romega_1b :
z >= 0.
Proof.
intros z z1 z2.
-(* romega. *)
-Admitted.
+romega.
+Qed.
Lemma test_romega_2 : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
@@ -56,8 +56,8 @@ Lemma test_romega_2b : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros a b c.
-(*romega.*)
-Admitted.
+romega.
+Qed.
Lemma test_romega_3 : forall a b h hl hr ha hb,
0 <= ha - hl <= 1 ->
@@ -115,22 +115,22 @@ Qed.
Lemma test_romega_6b : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros z.
-(*romega. *)
-Admitted.
+romega.
+Qed.
Lemma test_romega_7 : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
-(*romega.*)
-Admitted.
+romega.
+Qed.
Lemma test_romega_7b : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
-(*romega.*)
-Admitted.
+romega.
+Qed.
(* Magaud #240 *)
@@ -144,6 +144,9 @@ intros x y.
romega.
Qed.
+(* Besson #1298 *)
-
-
+Lemma test_romega9 : forall z z':Z, z<>z' -> z'=z -> False.
+intros.
+romega.
+Qed.
diff --git a/test-suite/success/ROmega2.v b/test-suite/success/ROmega2.v
index 9d47c9f6..a3be2898 100644
--- a/test-suite/success/ROmega2.v
+++ b/test-suite/success/ROmega2.v
@@ -4,6 +4,20 @@ Require Import ZArith ROmega.
Open Scope Z_scope.
+
+(* First a simplified version used during debug of romega on Test46 *)
+Lemma Test46_simplified :
+forall v1 v2 v5 : Z,
+0 = v2 + v5 ->
+0 < v5 ->
+0 < v2 ->
+4*v2 <> 5*v1.
+intros.
+romega.
+Qed.
+
+
+(* The complete problem *)
Lemma Test46 :
forall v1 v2 v3 v4 v5 : Z,
((2 * v4) + (5)) + (8 * v2) <= ((4 * v4) + (3 * v4)) + (5 * v4) ->
@@ -23,6 +37,5 @@ forall v1 v2 v3 v4 v5 : Z,
((7 * v1) + (1 * v3)) + ((2 * v3) + (1 * v3)) >= ((6 * v5) + (4)) + ((1) + (9))
-> False.
intros.
-(*romega.*)
-Admitted.
-
+romega.
+Qed.