diff options
Diffstat (limited to 'test-suite/success')
-rw-r--r-- | test-suite/success/Omega0.v | 8 | ||||
-rw-r--r-- | test-suite/success/ROmega.v | 14 | ||||
-rw-r--r-- | test-suite/success/ROmega0.v | 35 | ||||
-rw-r--r-- | test-suite/success/ROmega2.v | 19 |
4 files changed, 46 insertions, 30 deletions
diff --git a/test-suite/success/Omega0.v b/test-suite/success/Omega0.v index 4614c90d..accaec41 100644 --- a/test-suite/success/Omega0.v +++ b/test-suite/success/Omega0.v @@ -8,16 +8,16 @@ Lemma test_romega_0 : 0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'. Proof. intros. -(*omega.*) -Admitted. +omega. +Qed. Lemma test_romega_0b : forall m m', 0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'. Proof. intros m m'. -(*omega.*) -Admitted. +omega. +Qed. Lemma test_romega_1 : forall (z z1 z2 : Z), diff --git a/test-suite/success/ROmega.v b/test-suite/success/ROmega.v index 04b666ed..ff1f57df 100644 --- a/test-suite/success/ROmega.v +++ b/test-suite/success/ROmega.v @@ -7,8 +7,8 @@ Lemma lem1 : forall x y : Z, (-5 < x < 5)%Z -> (-5 < y)%Z -> (-5 < x + y + 5)%Z. Proof. intros x y. - (*romega.*) -Admitted. +romega. +Qed. (* Proposed by Pierre Crégut *) @@ -22,8 +22,8 @@ Qed. Lemma lem3 : forall x y : Z, x = y -> (x + x)%Z = (y + y)%Z. Proof. intros. - (*romega.*) -Admitted. +romega. +Qed. (* Proposed by Jean-Christophe Filliâtre: confusion between an Omega *) (* internal variable and a section variable (June 2001) *) @@ -68,7 +68,7 @@ Variable n : nat. Variable ap_n : n <> 0. Let delta := f n ap_n. Lemma lem7 : n = n. - (*romega.*) (*ROMEGA CANT DEAL WITH NAT*) + (*romega. ---> ROMEGA CANT DEAL WITH NAT*) Admitted. End C. @@ -76,7 +76,7 @@ End C. Require Import Omega. Lemma lem8 : forall H : 0 = 0 -> 0 = 0, H = H -> 0 = 0. intros. -(* romega.*) (*ROMEGA CANT DEAL WITH NAT*) +(* romega. ---> ROMEGA CANT DEAL WITH NAT*) Admitted. (* Bug that what caused by the use of intro_using in Omega *) @@ -84,7 +84,7 @@ Require Import Omega. Lemma lem9 : forall p q : nat, ~ (p <= q /\ p < q \/ q <= p /\ p < q) -> p < p \/ p <= p. intros. -(* romega.*)(*ROMEGA CANT DEAL WITH NAT*) +(* romega. ---> ROMEGA CANT DEAL WITH NAT*) Admitted. (* Check that the interpretation of mult on nat enforces its positivity *) diff --git a/test-suite/success/ROmega0.v b/test-suite/success/ROmega0.v index 0efca1e1..86cf49cb 100644 --- a/test-suite/success/ROmega0.v +++ b/test-suite/success/ROmega0.v @@ -8,16 +8,16 @@ Lemma test_romega_0 : 0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'. Proof. intros. -(*romega.*) -Admitted. +romega. +Qed. Lemma test_romega_0b : forall m m', 0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'. Proof. intros m m'. -(*romega.*) -Admitted. +romega. +Qed. Lemma test_romega_1 : forall (z z1 z2 : Z), @@ -42,8 +42,8 @@ Lemma test_romega_1b : z >= 0. Proof. intros z z1 z2. -(* romega. *) -Admitted. +romega. +Qed. Lemma test_romega_2 : forall a b c:Z, 0<=a-b<=1 -> b-c<=2 -> a-c<=3. @@ -56,8 +56,8 @@ Lemma test_romega_2b : forall a b c:Z, 0<=a-b<=1 -> b-c<=2 -> a-c<=3. Proof. intros a b c. -(*romega.*) -Admitted. +romega. +Qed. Lemma test_romega_3 : forall a b h hl hr ha hb, 0 <= ha - hl <= 1 -> @@ -115,22 +115,22 @@ Qed. Lemma test_romega_6b : forall z, z>=0 -> 0>z+2 -> False. Proof. intros z. -(*romega. *) -Admitted. +romega. +Qed. Lemma test_romega_7 : forall z, 0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1. Proof. intros. -(*romega.*) -Admitted. +romega. +Qed. Lemma test_romega_7b : forall z, 0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1. Proof. intros. -(*romega.*) -Admitted. +romega. +Qed. (* Magaud #240 *) @@ -144,6 +144,9 @@ intros x y. romega. Qed. +(* Besson #1298 *) - - +Lemma test_romega9 : forall z z':Z, z<>z' -> z'=z -> False. +intros. +romega. +Qed. diff --git a/test-suite/success/ROmega2.v b/test-suite/success/ROmega2.v index 9d47c9f6..a3be2898 100644 --- a/test-suite/success/ROmega2.v +++ b/test-suite/success/ROmega2.v @@ -4,6 +4,20 @@ Require Import ZArith ROmega. Open Scope Z_scope. + +(* First a simplified version used during debug of romega on Test46 *) +Lemma Test46_simplified : +forall v1 v2 v5 : Z, +0 = v2 + v5 -> +0 < v5 -> +0 < v2 -> +4*v2 <> 5*v1. +intros. +romega. +Qed. + + +(* The complete problem *) Lemma Test46 : forall v1 v2 v3 v4 v5 : Z, ((2 * v4) + (5)) + (8 * v2) <= ((4 * v4) + (3 * v4)) + (5 * v4) -> @@ -23,6 +37,5 @@ forall v1 v2 v3 v4 v5 : Z, ((7 * v1) + (1 * v3)) + ((2 * v3) + (1 * v3)) >= ((6 * v5) + (4)) + ((1) + (9)) -> False. intros. -(*romega.*) -Admitted. - +romega. +Qed. |