diff options
Diffstat (limited to 'test-suite/success/evars.v')
-rw-r--r-- | test-suite/success/evars.v | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/test-suite/success/evars.v b/test-suite/success/evars.v index 2f1ec757..e6088091 100644 --- a/test-suite/success/evars.v +++ b/test-suite/success/evars.v @@ -309,3 +309,73 @@ Definition k6 Definition k7 (e:forall P : nat -> Prop, (exists n : nat, let n' := n in P n') -> nat) (j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b). + +(* An example that uses materialize_evar under binders *) +(* Extracted from bigop.v in the mathematical components library *) + +Section Bigop. + +Variable bigop : forall R I: Type, + R -> (R -> R -> R) -> list I -> (I->Prop) -> (I -> R) -> R. + +Hypothesis eq_bigr : +forall (R : Type) (idx : R) (op : R -> R -> R) + (I : Type) (r : list I) (P : I -> Prop) (F1 F2 : I -> R), + (forall i : I, P i -> F1 i = F2 i) -> + bigop R I idx op r (fun i : I => P i) (fun i : I => F1 i) = idx. + +Hypothesis big_tnth : +forall (R : Type) (idx : R) (op : R -> R -> R) + (I : Type) (r : list I) (P : I -> Prop) (F : I -> R), + bigop R I idx op r (fun i : I => P i) (fun i : I => F i) = idx. + +Hypothesis big_tnth_with_letin : +forall (R : Type) (idx : R) (op : R -> R -> R) + (I : Type) (r : list I) (P : I -> Prop) (F : I -> R), + bigop R I idx op r (fun i : I => let i:=i in P i) (fun i : I => F i) = idx. + +Variable R : Type. +Variable idx : R. +Variable op : R -> R -> R. +Variable I : Type. +Variable J : Type. +Variable rI : list I. +Variable rJ : list J. +Variable xQ : J -> Prop. +Variable P : I -> Prop. +Variable Q : I -> J -> Prop. +Variable F : I -> J -> R. + +(* Check unification under binders *) + +Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth _ _ _ _ rI _ _)) + : (bigop R J idx op rJ + (fun j : J => let k:=j in xQ k) + (fun j : J => let k:=j in + bigop R I idx + op rI + (fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx. + +(* Check also with let-in *) + +Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth_with_letin _ _ _ _ rI _ _)) + : (bigop R J idx op rJ + (fun j : J => let k:=j in xQ k) + (fun j : J => let k:=j in + bigop R I idx + op rI + (fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx. + +End Bigop. + +(* Check the use of (at least) an heuristic to solve problems of the form + "?x[t] = ?y" where ?y occurs in t without easily knowing if ?y can + eventually be erased in t *) + +Section evar_evar_occur. + Variable id : nat -> nat. + Variable f : forall x, id x = 0 -> id x = 0 -> x = 1 /\ x = 2. + Variable g : forall y, id y = 0 /\ id y = 0. + (* Still evars in the resulting type, but constraints should be solved *) + Check match g _ with conj a b => f _ a b end. +End evar_evar_occur. |