summaryrefslogtreecommitdiff
path: root/test-suite/success/eauto.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/eauto.v')
-rw-r--r--test-suite/success/eauto.v79
1 files changed, 45 insertions, 34 deletions
diff --git a/test-suite/success/eauto.v b/test-suite/success/eauto.v
index 97f7ccf0..26339d51 100644
--- a/test-suite/success/eauto.v
+++ b/test-suite/success/eauto.v
@@ -5,45 +5,56 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require PolyList.
+Require Import List.
-Parameter in_list : (list nat*nat)->nat->Prop.
-Definition not_in_list : (list nat*nat)->nat->Prop
- := [l,n]~(in_list l n).
+Parameter in_list : list (nat * nat) -> nat -> Prop.
+Definition not_in_list (l : list (nat * nat)) (n : nat) : Prop :=
+ ~ in_list l n.
(* Hints Unfold not_in_list. *)
-Axiom lem1 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list (app l1 l2) n)->(not_in_list l1 n).
-
-Axiom lem2 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list (app l1 l2) n)->(not_in_list l2 n).
-
-Axiom lem3 : (l:(list nat*nat))(n,p,q:nat)
- (not_in_list (cons (p,q) l) n)->(not_in_list l n).
-
-Axiom lem4 : (l1,l2:(list nat*nat))(n:nat)
- (not_in_list l1 n)->(not_in_list l2 n)->(not_in_list (app l1 l2) n).
-
-Hints Resolve lem1 lem2 lem3 lem4: essai.
-
-Goal (l:(list nat*nat))(n,p,q:nat)
- (not_in_list (cons (p,q) l) n)->(not_in_list l n).
-Intros.
-EAuto with essai.
-Save.
+Axiom
+ lem1 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list (l1 ++ l2) n -> not_in_list l1 n.
+
+Axiom
+ lem2 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list (l1 ++ l2) n -> not_in_list l2 n.
+
+Axiom
+ lem3 :
+ forall (l : list (nat * nat)) (n p q : nat),
+ not_in_list ((p, q) :: l) n -> not_in_list l n.
+
+Axiom
+ lem4 :
+ forall (l1 l2 : list (nat * nat)) (n : nat),
+ not_in_list l1 n -> not_in_list l2 n -> not_in_list (l1 ++ l2) n.
+
+Hint Resolve lem1 lem2 lem3 lem4: essai.
+
+Goal
+forall (l : list (nat * nat)) (n p q : nat),
+not_in_list ((p, q) :: l) n -> not_in_list l n.
+intros.
+ eauto with essai.
+Qed.
(* Example from Nicolas Magaud on coq-club - Jul 2000 *)
-Definition Nat: Set := nat.
-Parameter S':Nat ->Nat.
-Parameter plus':Nat -> Nat ->Nat.
-
-Lemma simpl_plus_l_rr1:
- ((n0:Nat) ((m, p:Nat) (plus' n0 m)=(plus' n0 p) ->m=p) ->
- (m, p:Nat) (S' (plus' n0 m))=(S' (plus' n0 p)) ->m=p) ->
- (n:Nat) ((m, p:Nat) (plus' n m)=(plus' n p) ->m=p) ->
- (m, p:Nat) (S' (plus' n m))=(S' (plus' n p)) ->m=p.
-Intros.
-EAuto. (* does EApply H *)
+Definition Nat : Set := nat.
+Parameter S' : Nat -> Nat.
+Parameter plus' : Nat -> Nat -> Nat.
+
+Lemma simpl_plus_l_rr1 :
+ (forall n0 : Nat,
+ (forall m p : Nat, plus' n0 m = plus' n0 p -> m = p) ->
+ forall m p : Nat, S' (plus' n0 m) = S' (plus' n0 p) -> m = p) ->
+ forall n : Nat,
+ (forall m p : Nat, plus' n m = plus' n p -> m = p) ->
+ forall m p : Nat, S' (plus' n m) = S' (plus' n p) -> m = p.
+intros.
+ eauto. (* does EApply H *)
Qed.