diff options
Diffstat (limited to 'test-suite/success/conv_pbs.v')
-rw-r--r-- | test-suite/success/conv_pbs.v | 223 |
1 files changed, 223 insertions, 0 deletions
diff --git a/test-suite/success/conv_pbs.v b/test-suite/success/conv_pbs.v new file mode 100644 index 00000000..062c3ee5 --- /dev/null +++ b/test-suite/success/conv_pbs.v @@ -0,0 +1,223 @@ +(* A bit complex but realistic example whose last fixpoint definition + used to fail in 8.1 because of wrong environment in conversion + problems (see revision 9664) *) + +Require Import List. +Require Import Arith. + +Parameter predicate : Set. +Parameter function : Set. +Definition variable := nat. +Definition x0 := 0. +Definition var_eq_dec := eq_nat_dec. + +Inductive term : Set := + | App : function -> term -> term + | Var : variable -> term. + +Definition atom := (predicate * term)%type. + +Inductive formula : Set := + | Atom : atom -> formula + | Imply : formula -> formula -> formula + | Forall : variable -> formula -> formula. + +Notation "A --> B" := (Imply A B) (at level 40). + +Definition substitution range := list (variable * range). + +Fixpoint remove_assoc (A:Set)(x:variable)(rho: substitution A){struct rho} + : substitution A := + match rho with + | nil => rho + | (y,t) :: rho => if var_eq_dec x y then remove_assoc A x rho + else (y,t) :: remove_assoc A x rho + end. + +Fixpoint assoc (A:Set)(x:variable)(rho:substitution A){struct rho} + : option A := + match rho with + | nil => None + | (y,t) :: rho => if var_eq_dec x y then Some t + else assoc A x rho + end. + +Fixpoint subst_term (rho:substitution term)(t:term){struct t} : term := + match t with + | Var x => match assoc _ x rho with + | Some a => a + | None => Var x + end + | App f t' => App f (subst_term rho t') + end. + +Fixpoint subst_formula (rho:substitution term)(A:formula){struct A}:formula := + match A with + | Atom (p,t) => Atom (p, subst_term rho t) + | A --> B => subst_formula rho A --> subst_formula rho B + | Forall y A => Forall y (subst_formula (remove_assoc _ y rho) A) + (* assume t closed *) + end. + +Definition subst A x t := subst_formula ((x,t):: nil) A. + +Record Kripke : Type := { + worlds: Set; + wle : worlds -> worlds -> Type; + wle_refl : forall w, wle w w ; + wle_trans : forall w w' w'', wle w w' -> wle w' w'' -> wle w w''; + domain : Set; + vars : variable -> domain; + funs : function -> domain -> domain; + atoms : worlds -> predicate * domain -> Type; + atoms_mon : forall w w', wle w w' -> forall P, atoms w P -> atoms w' P +}. + +Section Sem. + +Variable K : Kripke. + +Fixpoint sem (rho: substitution (domain K))(t:term){struct t} : domain K := + match t with + | Var x => match assoc _ x rho with + | Some a => a + | None => vars K x + end + | App f t' => funs K f (sem rho t') + end. + +End Sem. + +Notation "w <= w'" := (wle _ w w'). + +Set Implicit Arguments. + +Reserved Notation "w ||- A" (at level 70). + +Definition context := list formula. + +Variable fresh : variable -> context -> Prop. + +Variable fresh_out : context -> variable. + +Axiom fresh_out_spec : forall Gamma, fresh (fresh_out Gamma) Gamma. + +Axiom fresh_peel : forall x A Gamma, fresh x (A::Gamma) -> fresh x Gamma. + +Fixpoint force (K:Kripke)(rho: substitution (domain K))(w:worlds K)(A:formula) + {struct A} : Type := + match A with + | Atom (p,t) => atoms K w (p, sem K rho t) + | A --> B => forall w', w <= w' -> force K rho w' A -> force K rho w' B + | Forall x A => forall w', w <= w' -> forall t, force K ((x,t)::remove_assoc _ x rho) w' A + end. + +Notation "w ||- A" := (force _ nil w A). + +Reserved Notation "Gamma |- A" (at level 70). +Reserved Notation "Gamma ; A |- C" (at level 70, A at next level). + +Inductive context_prefix (Gamma:context) : context -> Type := + | CtxPrefixRefl : context_prefix Gamma Gamma + | CtxPrefixTrans : forall A Gamma', context_prefix Gamma Gamma' -> context_prefix Gamma (cons A Gamma'). + +Inductive in_context (A:formula) : list formula -> Prop := + | InAxiom : forall Gamma, in_context A (cons A Gamma) + | OmWeak : forall Gamma B, in_context A Gamma -> in_context A (cons B Gamma). + +Inductive prove : list formula -> formula -> Type := + | ProofImplyR : forall A B Gamma, prove (cons A Gamma) B + -> prove Gamma (A --> B) + | ProofForallR : forall x A Gamma, (forall y, fresh y (A::Gamma) + -> prove Gamma (subst A x (Var y))) -> prove Gamma (Forall x A) + | ProofCont : forall A Gamma Gamma' C, context_prefix (A::Gamma) Gamma' + -> (prove_stoup Gamma' A C) -> (Gamma' |- C) + +where "Gamma |- A" := (prove Gamma A) + + with prove_stoup : list formula -> formula -> formula -> Type := + | ProofAxiom Gamma C: Gamma ; C |- C + | ProofImplyL Gamma C : forall A B, (Gamma |- A) + -> (prove_stoup Gamma B C) -> (prove_stoup Gamma (A --> B) C) + | ProofForallL Gamma C : forall x t A, (prove_stoup Gamma (subst A x t) C) + -> (prove_stoup Gamma (Forall x A) C) + +where " Gamma ; B |- A " := (prove_stoup Gamma B A). + +Axiom context_prefix_trans : + forall Gamma Gamma' Gamma'', + context_prefix Gamma Gamma' + -> context_prefix Gamma' Gamma'' + -> context_prefix Gamma Gamma''. + +Axiom Weakening : + forall Gamma Gamma' A, + context_prefix Gamma Gamma' -> Gamma |- A -> Gamma' |- A. + +Axiom universal_weakening : + forall Gamma Gamma', context_prefix Gamma Gamma' + -> forall P, Gamma |- Atom P -> Gamma' |- Atom P. + +Canonical Structure Universal := Build_Kripke + context + context_prefix + CtxPrefixRefl + context_prefix_trans + term + Var + App + (fun Gamma P => Gamma |- Atom P) + universal_weakening. + +Axiom subst_commute : + forall A rho x t, + subst_formula ((x,t)::rho) A = subst (subst_formula rho A) x t. + +Axiom subst_formula_atom : + forall rho p t, + Atom (p, sem _ rho t) = subst_formula rho (Atom (p,t)). + +Fixpoint universal_completeness (Gamma:context)(A:formula){struct A} + : forall rho:substitution term, + force _ rho Gamma A -> Gamma |- subst_formula rho A + := + match A + return forall rho, force _ rho Gamma A + -> Gamma |- subst_formula rho A + with + | Atom (p,t) => fun rho H => eq_rect _ (fun A => Gamma |- A) H _ (subst_formula_atom rho p t) + | A --> B => fun rho HImplyAB => + let A' := subst_formula rho A in + ProofImplyR (universal_completeness (A'::Gamma) B rho + (HImplyAB (A'::Gamma)(CtxPrefixTrans A' (CtxPrefixRefl Gamma)) + (universal_completeness_stoup A rho (fun C Gamma' Hle p + => ProofCont Hle p)))) + | Forall x A => fun rho HForallA + => ProofForallR x (fun y Hfresh + => eq_rect _ _ (universal_completeness Gamma A _ + (HForallA Gamma (CtxPrefixRefl Gamma)(Var y))) _ (subst_commute _ _ _ _ )) + end +with universal_completeness_stoup (Gamma:context)(A:formula){struct A} + : forall rho, (forall C Gamma', context_prefix Gamma Gamma' + -> Gamma' ; subst_formula rho A |- C -> Gamma' |- C) + -> force _ rho Gamma A + := + match A return forall rho, + (forall C Gamma', context_prefix Gamma Gamma' + -> Gamma' ; subst_formula rho A |- C + -> Gamma' |- C) + -> force _ rho Gamma A + with + | Atom (p,t) as C => fun rho H + => H _ Gamma (CtxPrefixRefl Gamma)(ProofAxiom _ _) + | A --> B => fun rho H => fun Gamma' Hle HA + => universal_completeness_stoup B rho (fun C Gamma'' Hle' p + => H C Gamma'' (context_prefix_trans Hle Hle') + (ProofImplyL (Weakening Hle' (universal_completeness Gamma' A rho HA)) p)) + | Forall x A => fun rho H => fun Gamma' Hle t + => (universal_completeness_stoup A ((x,t)::remove_assoc _ x rho) + (fun C Gamma'' Hle' p => + H C Gamma'' (context_prefix_trans Hle Hle') + (ProofForallL x t (subst_formula (remove_assoc _ x rho) A) + (eq_rect _ (fun D => Gamma'' ; D |- C) p _ (subst_commute _ _ _ _))))) + end. |