diff options
Diffstat (limited to 'test-suite/success/Reg.v')
-rw-r--r-- | test-suite/success/Reg.v | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/test-suite/success/Reg.v b/test-suite/success/Reg.v new file mode 100644 index 00000000..eaa0690c --- /dev/null +++ b/test-suite/success/Reg.v @@ -0,0 +1,136 @@ +Require Reals. + +Axiom y : R->R. +Axiom d_y : (derivable y). +Axiom n_y : (x:R)``(y x)<>0``. +Axiom dy_0 : (derive_pt y R0 (d_y R0)) == R1. + +Lemma essai0 : (continuity_pt [x:R]``(x+2)/(y x)+x/(y x)`` R0). +Assert H := d_y. +Assert H0 := n_y. +Reg. +Qed. + +Lemma essai1 : (derivable_pt [x:R]``/2*(sin x)`` ``1``). +Reg. +Qed. + +Lemma essai2 : (continuity [x:R]``(Rsqr x)*(cos (x*x))+x``). +Reg. +Qed. + +Lemma essai3 : (derivable_pt [x:R]``x*((Rsqr x)+3)`` R0). +Reg. +Qed. + +Lemma essai4 : (derivable [x:R]``(x+x)*(sin x)``). +Reg. +Qed. + +Lemma essai5 : (derivable [x:R]``1+(sin (2*x+3))*(cos (cos x))``). +Reg. +Qed. + +Lemma essai6 : (derivable [x:R]``(cos (x+3))``). +Reg. +Qed. + +Lemma essai7 : (derivable_pt [x:R]``(cos (/(sqrt x)))*(Rsqr ((sin x)+1))`` R1). +Reg. +Apply Rlt_R0_R1. +Red; Intro; Rewrite sqrt_1 in H; Assert H0 := R1_neq_R0; Elim H0; Assumption. +Qed. + +Lemma essai8 : (derivable_pt [x:R]``(sqrt ((Rsqr x)+(sin x)+1))`` R0). +Reg. +Rewrite sin_0. +Rewrite Rsqr_O. +Replace ``0+0+1`` with ``1``; [Apply Rlt_R0_R1 | Ring]. +Qed. + +Lemma essai9 : (derivable_pt (plus_fct id sin) R1). +Reg. +Qed. + +Lemma essai10 : (derivable_pt [x:R]``x+2`` R0). +Reg. +Qed. + +Lemma essai11 : (derive_pt [x:R]``x+2`` R0 essai10)==R1. +Reg. +Qed. + +Lemma essai12 : (derivable [x:R]``x+(Rsqr (x+2))``). +Reg. +Qed. + +Lemma essai13 : (derive_pt [x:R]``x+(Rsqr (x+2))`` R0 (essai12 R0)) == ``5``. +Reg. +Qed. + +Lemma essai14 : (derivable_pt [x:R]``2*x+x`` ``2``). +Reg. +Qed. + +Lemma essai15 : (derive_pt [x:R]``2*x+x`` ``2`` essai14) == ``3``. +Reg. +Qed. + +Lemma essai16 : (derivable_pt [x:R]``x+(sin x)`` R0). +Reg. +Qed. + +Lemma essai17 : (derive_pt [x:R]``x+(sin x)`` R0 essai16)==``2``. +Reg. +Rewrite cos_0. +Reflexivity. +Qed. + +Lemma essai18 : (derivable_pt [x:R]``x+(y x)`` ``0``). +Assert H := d_y. +Reg. +Qed. + +Lemma essai19 : (derive_pt [x:R]``x+(y x)`` ``0`` essai18) == ``2``. +Assert H := dy_0. +Assert H0 := d_y. +Reg. +Qed. + +Axiom z:R->R. +Axiom d_z: (derivable z). + +Lemma essai20 : (derivable_pt [x:R]``(z (y x))`` R0). +Reg. +Apply d_y. +Apply d_z. +Qed. + +Lemma essai21 : (derive_pt [x:R]``(z (y x))`` R0 essai20) == R1. +Assert H := dy_0. +Reg. +Abort. + +Lemma essai22 : (derivable [x:R]``(sin (z x))+(Rsqr (z x))/(y x)``). +Assert H := d_y. +Reg. +Apply n_y. +Apply d_z. +Qed. + +(* Pour tester la continuite de sqrt en 0 *) +Lemma essai23 : (continuity_pt [x:R]``(sin (sqrt (x-1)))+(exp (Rsqr ((sqrt x)+3)))`` R1). +Reg. +Left; Apply Rlt_R0_R1. +Right; Unfold Rminus; Rewrite Rplus_Ropp_r; Reflexivity. +Qed. + +Lemma essai24 : (derivable [x:R]``(sqrt (x*x+2*x+2))+(Rabsolu (x*x+1))``). +Reg. +Replace ``x*x+2*x+2`` with ``(Rsqr (x+1))+1``. +Apply ge0_plus_gt0_is_gt0; [Apply pos_Rsqr | Apply Rlt_R0_R1]. +Unfold Rsqr; Ring. +Red; Intro; Cut ``0<x*x+1``. +Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0). +Apply ge0_plus_gt0_is_gt0; [Replace ``x*x`` with (Rsqr x); [Apply pos_Rsqr | Reflexivity] | Apply Rlt_R0_R1]. +Qed. |