diff options
Diffstat (limited to 'test-suite/success/RecTutorial.v')
-rw-r--r-- | test-suite/success/RecTutorial.v | 69 |
1 files changed, 28 insertions, 41 deletions
diff --git a/test-suite/success/RecTutorial.v b/test-suite/success/RecTutorial.v index 2602c7e3..64048fe2 100644 --- a/test-suite/success/RecTutorial.v +++ b/test-suite/success/RecTutorial.v @@ -1,3 +1,5 @@ +Module Type LocalNat. + Inductive nat : Set := | O : nat | S : nat->nat. @@ -5,7 +7,8 @@ Check nat. Check O. Check S. -Reset nat. +End LocalNat. + Print nat. @@ -477,10 +480,10 @@ Qed. -(* -Check (fun (P:Prop->Prop)(p: ex_Prop P) => +Fail Check (fun (P:Prop->Prop)(p: ex_Prop P) => match p with exP_intro X HX => X end). +(* Error: Incorrect elimination of "p" in the inductive type "ex_Prop", the return type has sort "Type" while it should be @@ -489,12 +492,11 @@ Incorrect elimination of "p" in the inductive type Elimination of an inductive object of sort "Prop" is not allowed on a predicate in sort "Type" because proofs can be eliminated only to build proofs - *) -(* -Check (match prop_inject with (prop_intro P p) => P end). +Fail Check (match prop_inject with (prop_intro p) => p end). +(* Error: Incorrect elimination of "prop_inject" in the inductive type "prop", the return type has sort "Type" while it should be @@ -503,13 +505,12 @@ Incorrect elimination of "prop_inject" in the inductive type Elimination of an inductive object of sort "Prop" is not allowed on a predicate in sort "Type" because proofs can be eliminated only to build proofs - *) Print prop_inject. (* prop_inject = -prop_inject = prop_intro prop (fun H : prop => H) +prop_inject = prop_intro prop : prop *) @@ -520,26 +521,24 @@ Inductive typ : Type := Definition typ_inject: typ. split. exact typ. +Fail Defined. (* -Defined. - Error: Universe Inconsistency. *) Abort. -(* -Inductive aSet : Set := +Fail Inductive aSet : Set := aSet_intro: Set -> aSet. - - +(* User error: Large non-propositional inductive types must be in Type - *) Inductive ex_Set (P : Set -> Prop) : Type := exS_intro : forall X : Set, P X -> ex_Set P. +Module Type Version1. + Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop := c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p). @@ -553,21 +552,15 @@ Goal ~(comes_from_the_left _ _ (or_intror True I)). *) Abort. -Reset comes_from_the_left. - -(* +End Version1. - - - - - - Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop := +Fail Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop := match H with | or_introl p => True | or_intror q => False end. +(* Error: Incorrect elimination of "H" in the inductive type "or", the return type has sort "Type" while it should be @@ -576,7 +569,6 @@ Incorrect elimination of "H" in the inductive type Elimination of an inductive object of sort "Prop" is not allowed on a predicate in sort "Type" because proofs can be eliminated only to build proofs - *) Definition comes_from_the_left_sumbool @@ -737,6 +729,7 @@ Fixpoint plus'' (n p:nat) {struct n} : nat := | S m => plus'' m (S p) end. +Module Type even_test_v1. Fixpoint even_test (n:nat) : bool := match n @@ -745,8 +738,9 @@ Fixpoint even_test (n:nat) : bool := | S (S p) => even_test p end. +End even_test_v1. -Reset even_test. +Module even_test_v2. Fixpoint even_test (n:nat) : bool := match n @@ -761,12 +755,8 @@ with odd_test (n:nat) : bool := | S p => even_test p end. - - Eval simpl in even_test. - - Eval simpl in (fun x : nat => even_test x). Eval simpl in (fun x : nat => plus 5 x). @@ -774,6 +764,8 @@ Eval simpl in (fun x : nat => even_test (plus 5 x)). Eval simpl in (fun x : nat => even_test (plus x 5)). +End even_test_v2. + Section Principle_of_Induction. Variable P : nat -> Prop. @@ -866,14 +858,13 @@ Print Acc. Require Import Minus. -(* -Fixpoint div (x y:nat){struct x}: nat := +Fail Fixpoint div (x y:nat){struct x}: nat := if eq_nat_dec x 0 then 0 else if eq_nat_dec y 0 then x else S (div (x-y) y). - +(* Error: Recursive definition of div is ill-formed. In environment @@ -971,19 +962,15 @@ Proof. intros A v;inversion v. Abort. -(* - Lemma Vector.t0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), - n= 0 -> v = Vnil A. -Toplevel input, characters 40281-40287 -> Lemma Vector.t0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), n= 0 -> v = Vnil A. -> ^^^^^^ +Fail Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:Vector.t A n), + n= 0 -> v = Vector.nil A. +(* Error: In environment A : Set n : nat v : Vector.t A n -e : n = 0 -The term "Vnil A" has type "Vector.t A 0" while it is expected to have type +The term "[]" has type "Vector.t A 0" while it is expected to have type "Vector.t A n" *) Require Import JMeq. |