diff options
Diffstat (limited to 'test-suite/success/RecTutorial.v8')
-rw-r--r-- | test-suite/success/RecTutorial.v8 | 1229 |
1 files changed, 1229 insertions, 0 deletions
diff --git a/test-suite/success/RecTutorial.v8 b/test-suite/success/RecTutorial.v8 new file mode 100644 index 00000000..1cef3f2f --- /dev/null +++ b/test-suite/success/RecTutorial.v8 @@ -0,0 +1,1229 @@ +Inductive nat : Set := + | O : nat + | S : nat->nat. +Check nat. +Check O. +Check S. + +Reset nat. +Print nat. + + +Print le. + +Theorem zero_leq_three: 0 <= 3. + +Proof. + constructor 2. + constructor 2. + constructor 2. + constructor 1. + +Qed. + +Print zero_leq_three. + + +Lemma zero_leq_three': 0 <= 3. + repeat constructor. +Qed. + + +Lemma zero_lt_three : 0 < 3. +Proof. + unfold lt. + repeat constructor. +Qed. + + +Require Import List. + +Print list. + +Check list. + +Check (nil (A:=nat)). + +Check (nil (A:= nat -> nat)). + +Check (fun A: Set => (cons (A:=A))). + +Check (cons 3 (cons 2 nil)). + + + + +Require Import Bvector. + +Print vector. + +Check (Vnil nat). + +Check (fun (A:Set)(a:A)=> Vcons _ a _ (Vnil _)). + +Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))). + + + + + + + + + + + + + +Lemma eq_3_3 : 2 + 1 = 3. +Proof. + reflexivity. +Qed. +Print eq_3_3. + +Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4). +Proof. + reflexivity. +Qed. +Print eq_proof_proof. + +Lemma eq_lt_le : ( 2 < 4) = (3 <= 4). +Proof. + reflexivity. +Qed. + +Lemma eq_nat_nat : nat = nat. +Proof. + reflexivity. +Qed. + +Lemma eq_Set_Set : Set = Set. +Proof. + reflexivity. +Qed. + +Lemma eq_Type_Type : Type = Type. +Proof. + reflexivity. +Qed. + + +Check (2 + 1 = 3). + + +Check (Type = Type). + +Goal Type = Type. +reflexivity. +Qed. + + +Print or. + +Print and. + + +Print sumbool. + +Print ex. + +Require Import ZArith. +Require Import Compare_dec. + +Check le_lt_dec. + +Definition max (n p :nat) := match le_lt_dec n p with + | left _ => p + | right _ => n + end. + +Theorem le_max : forall n p, n <= p -> max n p = p. +Proof. + intros n p ; unfold max ; case (le_lt_dec n p); simpl. + trivial. + intros; absurd (p < p); eauto with arith. +Qed. + +Extraction max. + + + + + + +Inductive tree(A:Set) : Set := + node : A -> forest A -> tree A +with + forest (A: Set) : Set := + nochild : forest A | + addchild : tree A -> forest A -> forest A. + + + + + +Inductive + even : nat->Prop := + evenO : even O | + evenS : forall n, odd n -> even (S n) +with + odd : nat->Prop := + oddS : forall n, even n -> odd (S n). + +Lemma odd_49 : odd (7 * 7). + simpl; repeat constructor. +Qed. + + + +Definition nat_case := + fun (Q : Type)(g0 : Q)(g1 : nat -> Q)(n:nat) => + match n return Q with + | 0 => g0 + | S p => g1 p + end. + +Eval simpl in (nat_case nat 0 (fun p => p) 34). + +Eval simpl in (fun g0 g1 => nat_case nat g0 g1 34). + +Eval simpl in (fun g0 g1 => nat_case nat g0 g1 0). + + +Definition pred (n:nat) := match n with O => O | S m => m end. + +Eval simpl in pred 56. + +Eval simpl in pred 0. + +Eval simpl in fun p => pred (S p). + + +Definition xorb (b1 b2:bool) := +match b1, b2 with + | false, true => true + | true, false => true + | _ , _ => false +end. + + + Definition pred_spec (n:nat) := {m:nat | n=0 /\ m=0 \/ n = S m}. + + + Definition predecessor : forall n:nat, pred_spec n. + intro n;case n. + unfold pred_spec;exists 0;auto. + unfold pred_spec; intro n0;exists n0; auto. + Defined. + +Print predecessor. + +Extraction predecessor. + +Theorem nat_expand : + forall n:nat, n = match n with 0 => 0 | S p => S p end. + intro n;case n;simpl;auto. +Qed. + +Check (fun p:False => match p return 2=3 with end). + +Theorem fromFalse : False -> 0=1. + intro absurd. + contradiction. +Qed. + +Section equality_elimination. + Variables (A: Type) + (a b : A) + (p : a = b) + (Q : A -> Type). + Check (fun H : Q a => + match p in (eq _ y) return Q y with + refl_equal => H + end). + +End equality_elimination. + + +Theorem trans : forall n m p:nat, n=m -> m=p -> n=p. +Proof. + intros n m p eqnm. + case eqnm. + trivial. +Qed. + +Lemma Rw : forall x y: nat, y = y * x -> y * x * x = y. + intros x y e; do 2 rewrite <- e. + reflexivity. +Qed. + + +Require Import Arith. + +Check mult_1_l. +(* +mult_1_l + : forall n : nat, 1 * n = n +*) + +Check mult_plus_distr_r. +(* +mult_plus_distr_r + : forall n m p : nat, (n + m) * p = n * p + m * p + +*) + +Lemma mult_distr_S : forall n p : nat, n * p + p = (S n)* p. + simpl;auto with arith. +Qed. + +Lemma four_n : forall n:nat, n+n+n+n = 4*n. + intro n;rewrite <- (mult_1_l n). + + Undo. + intro n; pattern n at 1. + + + rewrite <- mult_1_l. + repeat rewrite mult_distr_S. + trivial. +Qed. + + +Section Le_case_analysis. + Variables (n p : nat) + (H : n <= p) + (Q : nat -> Prop) + (H0 : Q n) + (HS : forall m, n <= m -> Q (S m)). + Check ( + match H in (_ <= q) return (Q q) with + | le_n => H0 + | le_S m Hm => HS m Hm + end + ). + + +End Le_case_analysis. + + +Lemma predecessor_of_positive : forall n, 1 <= n -> exists p:nat, n = S p. +Proof. + intros n H; case H. + exists 0; trivial. + intros m Hm; exists m;trivial. +Qed. + +Definition Vtail_total + (A : Set) (n : nat) (v : vector A n) : vector A (pred n):= +match v in (vector _ n0) return (vector A (pred n0)) with +| Vnil => Vnil A +| Vcons _ n0 v0 => v0 +end. + +Definition Vtail' (A:Set)(n:nat)(v:vector A n) : vector A (pred n). + intros A n v; case v. + simpl. + exact (Vnil A). + simpl. + auto. +Defined. + +(* +Inductive Lambda : Set := + lambda : (Lambda -> False) -> Lambda. + + +Error: Non strictly positive occurrence of "Lambda" in + "(Lambda -> False) -> Lambda" + +*) + +Section Paradox. + Variable Lambda : Set. + Variable lambda : (Lambda -> False) ->Lambda. + + Variable matchL : Lambda -> forall Q:Prop, ((Lambda ->False) -> Q) -> Q. + (* + understand matchL Q l (fun h : Lambda -> False => t) + + as match l return Q with lambda h => t end + *) + + Definition application (f x: Lambda) :False := + matchL f False (fun h => h x). + + Definition Delta : Lambda := lambda (fun x : Lambda => application x x). + + Definition loop : False := application Delta Delta. + + Theorem two_is_three : 2 = 3. + Proof. + elim loop. + Qed. + +End Paradox. + + +Require Import ZArith. + + + +Inductive itree : Set := +| ileaf : itree +| inode : Z-> (nat -> itree) -> itree. + +Definition isingle l := inode l (fun i => ileaf). + +Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))). + +Definition t2 := inode 0 + (fun n : nat => + inode (Z_of_nat n) + (fun p => isingle (Z_of_nat (n*p)))). + + +Inductive itree_le : itree-> itree -> Prop := + | le_leaf : forall t, itree_le ileaf t + | le_node : forall l l' s s', + Zle l l' -> + (forall i, exists j:nat, itree_le (s i) (s' j)) -> + itree_le (inode l s) (inode l' s'). + + +Theorem itree_le_trans : + forall t t', itree_le t t' -> + forall t'', itree_le t' t'' -> itree_le t t''. + induction t. + constructor 1. + + intros t'; case t'. + inversion 1. + intros z0 i0 H0. + intro t'';case t''. + inversion 1. + intros. + inversion_clear H1. + constructor 2. + inversion_clear H0;eauto with zarith. + inversion_clear H0. + intro i2; case (H4 i2). + intros. + generalize (H i2 _ H0). + intros. + case (H3 x);intros. + generalize (H5 _ H6). + exists x0;auto. +Qed. + + + +Inductive itree_le' : itree-> itree -> Prop := + | le_leaf' : forall t, itree_le' ileaf t + | le_node' : forall l l' s s' g, + Zle l l' -> + (forall i, itree_le' (s i) (s' (g i))) -> + itree_le' (inode l s) (inode l' s'). + + + + + +Lemma t1_le_t2 : itree_le t1 t2. + unfold t1, t2. + constructor. + auto with zarith. + intro i; exists (2 * i). + unfold isingle. + constructor. + auto with zarith. + exists i;constructor. +Qed. + + + +Lemma t1_le'_t2 : itree_le' t1 t2. + unfold t1, t2. + constructor 2 with (fun i : nat => 2 * i). + auto with zarith. + unfold isingle; + intro i ; constructor 2 with (fun i :nat => i). + auto with zarith. + constructor . +Qed. + + +Require Import List. + +Inductive ltree (A:Set) : Set := + lnode : A -> list (ltree A) -> ltree A. + +Inductive prop : Prop := + prop_intro : Prop -> prop. + +Lemma prop_inject: prop. +Proof prop_intro prop. + + +Inductive ex_Prop (P : Prop -> Prop) : Prop := + exP_intro : forall X : Prop, P X -> ex_Prop P. + +Lemma ex_Prop_inhabitant : ex_Prop (fun P => P -> P). +Proof. + exists (ex_Prop (fun P => P -> P)). + trivial. +Qed. + + + + +(* + +Check (fun (P:Prop->Prop)(p: ex_Prop P) => + match p with exP_intro X HX => X end). +Error: +Incorrect elimination of "p" in the inductive type +"ex_Prop", the return type has sort "Type" while it should be +"Prop" + +Elimination of an inductive object of sort "Prop" +is not allowed on a predicate in sort "Type" +because proofs can be eliminated only to build proofs + +*) + +(* +Check (match prop_inject with (prop_intro P p) => P end). + +Error: +Incorrect elimination of "prop_inject" in the inductive type +"prop", the return type has sort "Type" while it should be +"Prop" + +Elimination of an inductive object of sort "Prop" +is not allowed on a predicate in sort "Type" +because proofs can be eliminated only to build proofs + +*) +Print prop_inject. + +(* +prop_inject = +prop_inject = prop_intro prop (fun H : prop => H) + : prop +*) + + +Inductive typ : Type := + typ_intro : Type -> typ. + +Definition typ_inject: typ. +split. +exact typ. +(* +Defined. + +Error: Universe Inconsistency. +*) +Abort. +(* + +Inductive aSet : Set := + aSet_intro: Set -> aSet. + + +User error: Large non-propositional inductive types must be in Type + +*) + +Inductive ex_Set (P : Set -> Prop) : Type := + exS_intro : forall X : Set, P X -> ex_Set P. + + +Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop := + c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p). + +Goal (comes_from_the_left _ _ (or_introl True I)). +split. +Qed. + +Goal ~(comes_from_the_left _ _ (or_intror True I)). + red;inversion 1. + (* discriminate H0. + *) +Abort. + +Reset comes_from_the_left. + +(* + + + + + + + Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop := + match H with + | or_introl p => True + | or_intror q => False + end. + +Error: +Incorrect elimination of "H" in the inductive type +"or", the return type has sort "Type" while it should be +"Prop" + +Elimination of an inductive object of sort "Prop" +is not allowed on a predicate in sort "Type" +because proofs can be eliminated only to build proofs + +*) + +Definition comes_from_the_left_sumbool + (P Q:Prop)(x:{P}+{Q}): Prop := + match x with + | left p => True + | right q => False + end. + + + + +Close Scope Z_scope. + + + + + +Theorem S_is_not_O : forall n, S n <> 0. + +Definition Is_zero (x:nat):= match x with + | 0 => True + | _ => False + end. + Lemma O_is_zero : forall m, m = 0 -> Is_zero m. + Proof. + intros m H; subst m. + (* + ============================ + Is_zero 0 + *) + simpl;trivial. + Qed. + + red; intros n Hn. + apply O_is_zero with (m := S n). + assumption. +Qed. + +Theorem disc2 : forall n, S (S n) <> 1. +Proof. + intros n Hn; discriminate. +Qed. + + +Theorem disc3 : forall n, S (S n) = 0 -> forall Q:Prop, Q. +Proof. + intros n Hn Q. + discriminate. +Qed. + + + +Theorem inj_succ : forall n m, S n = S m -> n = m. +Proof. + + +Lemma inj_pred : forall n m, n = m -> pred n = pred m. +Proof. + intros n m eq_n_m. + rewrite eq_n_m. + trivial. +Qed. + + intros n m eq_Sn_Sm. + apply inj_pred with (n:= S n) (m := S m); assumption. +Qed. + +Lemma list_inject : forall (A:Set)(a b :A)(l l':list A), + a :: b :: l = b :: a :: l' -> a = b /\ l = l'. +Proof. + intros A a b l l' e. + injection e. + auto. +Qed. + + +Theorem not_le_Sn_0 : forall n:nat, ~ (S n <= 0). +Proof. + red; intros n H. + case H. +Undo. + +Lemma not_le_Sn_0_with_constraints : + forall n p , S n <= p -> p = 0 -> False. +Proof. + intros n p H; case H ; + intros; discriminate. +Qed. + +eapply not_le_Sn_0_with_constraints; eauto. +Qed. + + +Theorem not_le_Sn_0' : forall n:nat, ~ (S n <= 0). +Proof. + red; intros n H ; inversion H. +Qed. + +Derive Inversion le_Sn_0_inv with (forall n :nat, S n <= 0). +Check le_Sn_0_inv. + +Theorem le_Sn_0'' : forall n p : nat, ~ S n <= 0 . +Proof. + intros n p H; + inversion H using le_Sn_0_inv. +Qed. + +Derive Inversion_clear le_Sn_0_inv' with (forall n :nat, S n <= 0). +Check le_Sn_0_inv'. + + +Theorem le_reverse_rules : + forall n m:nat, n <= m -> + n = m \/ + exists p, n <= p /\ m = S p. +Proof. + intros n m H; inversion H. + left;trivial. + right; exists m0; split; trivial. +Restart. + intros n m H; inversion_clear H. + left;trivial. + right; exists m0; split; trivial. +Qed. + +Inductive ArithExp : Set := + Zero : ArithExp + | Succ : ArithExp -> ArithExp + | Plus : ArithExp -> ArithExp -> ArithExp. + +Inductive RewriteRel : ArithExp -> ArithExp -> Prop := + RewSucc : forall e1 e2 :ArithExp, + RewriteRel e1 e2 -> RewriteRel (Succ e1) (Succ e2) + | RewPlus0 : forall e:ArithExp, + RewriteRel (Plus Zero e) e + | RewPlusS : forall e1 e2:ArithExp, + RewriteRel e1 e2 -> + RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)). + + + +Fixpoint plus (n p:nat) {struct n} : nat := + match n with + | 0 => p + | S m => S (plus m p) + end. + +Fixpoint plus' (n p:nat) {struct p} : nat := + match p with + | 0 => n + | S q => S (plus' n q) + end. + +Fixpoint plus'' (n p:nat) {struct n} : nat := + match n with + | 0 => p + | S m => plus'' m (S p) + end. + + +Fixpoint even_test (n:nat) : bool := + match n + with 0 => true + | 1 => false + | S (S p) => even_test p + end. + + +Reset even_test. + +Fixpoint even_test (n:nat) : bool := + match n + with + | 0 => true + | S p => odd_test p + end +with odd_test (n:nat) : bool := + match n + with + | 0 => false + | S p => even_test p + end. + + + +Eval simpl in even_test. + + + +Eval simpl in (fun x : nat => even_test x). + + +Eval simpl in (fun x : nat => even_test (plus 5 x)). + +Eval simpl in (fun x : nat => even_test (plus x 5)). + + +Section Principle_of_Induction. +Variable P : nat -> Prop. +Hypothesis base_case : P 0. +Hypothesis inductive_hyp : forall n:nat, P n -> P (S n). +Fixpoint nat_ind (n:nat) : (P n) := + match n return P n with + | 0 => base_case + | S m => inductive_hyp m (nat_ind m) + end. + +End Principle_of_Induction. + +Scheme Even_induction := Minimality for even Sort Prop +with Odd_induction := Minimality for odd Sort Prop. + +Theorem even_plus_four : forall n:nat, even n -> even (4+n). +Proof. + intros n H. + elim H using Even_induction with (P0 := fun n => odd (4+n)); + simpl;repeat constructor;assumption. +Qed. + + +Section Principle_of_Double_Induction. +Variable P : nat -> nat ->Prop. +Hypothesis base_case1 : forall x:nat, P 0 x. +Hypothesis base_case2 : forall x:nat, P (S x) 0. +Hypothesis inductive_hyp : forall n m:nat, P n m -> P (S n) (S m). +Fixpoint nat_double_ind (n m:nat){struct n} : P n m := + match n, m return P n m with + | 0 , x => base_case1 x + | (S x), 0 => base_case2 x + | (S x), (S y) => inductive_hyp x y (nat_double_ind x y) + end. +End Principle_of_Double_Induction. + +Section Principle_of_Double_Recursion. +Variable P : nat -> nat -> Set. +Hypothesis base_case1 : forall x:nat, P 0 x. +Hypothesis base_case2 : forall x:nat, P (S x) 0. +Hypothesis inductive_hyp : forall n m:nat, P n m -> P (S n) (S m). +Fixpoint nat_double_rec (n m:nat){struct n} : P n m := + match n, m return P n m with + | 0 , x => base_case1 x + | (S x), 0 => base_case2 x + | (S x), (S y) => inductive_hyp x y (nat_double_rec x y) + end. +End Principle_of_Double_Recursion. + +Definition min : nat -> nat -> nat := + nat_double_rec (fun (x y:nat) => nat) + (fun (x:nat) => 0) + (fun (y:nat) => 0) + (fun (x y r:nat) => S r). + +Eval compute in (min 5 8). +Eval compute in (min 8 5). + + + +Lemma not_circular : forall n:nat, n <> S n. +Proof. + intro n. + apply nat_ind with (P:= fun n => n <> S n). + discriminate. + red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial. +Qed. + +Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}. +Proof. + intros n p. + apply nat_double_rec with (P:= fun (n q:nat) => {q=p}+{q <> p}). +Undo. + pattern p,n. + elim n using nat_double_rec. + destruct x; auto. + destruct x; auto. + intros n0 m H; case H. + intro eq; rewrite eq ; auto. + intro neg; right; red ; injection 1; auto. +Defined. + +Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}. + decide equality. +Defined. + +Print Acc. + + +Require Import Minus. + +(* +Fixpoint div (x y:nat){struct x}: nat := + if eq_nat_dec x 0 + then 0 + else if eq_nat_dec y 0 + then x + else S (div (x-y) y). + +Error: +Recursive definition of div is ill-formed. +In environment +div : nat -> nat -> nat +x : nat +y : nat +_ : x <> 0 +_ : y <> 0 + +Recursive call to div has principal argument equal to +"x - y" +instead of a subterm of x + +*) + +Lemma minus_smaller_S: forall x y:nat, x - y < S x. +Proof. + intros x y; pattern y, x; + elim x using nat_double_ind. + destruct x0; auto with arith. + simpl; auto with arith. + simpl; auto with arith. +Qed. + +Lemma minus_smaller_positive : forall x y:nat, x <>0 -> y <> 0 -> + x - y < x. +Proof. + destruct x; destruct y; + ( simpl;intros; apply minus_smaller_S || + intros; absurd (0=0); auto). +Qed. + +Definition minus_decrease : forall x y:nat, Acc lt x -> + x <> 0 -> + y <> 0 -> + Acc lt (x-y). +Proof. + intros x y H; case H. + intros z Hz posz posy. + apply Hz; apply minus_smaller_positive; assumption. +Defined. + +Print minus_decrease. + + + +Definition div_aux (x y:nat)(H: Acc lt x):nat. + fix 3. + intros. + refine (if eq_nat_dec x 0 + then 0 + else if eq_nat_dec y 0 + then y + else div_aux (x-y) y _). + apply (minus_decrease x y H);assumption. +Defined. + + +Print div_aux. +(* +div_aux = +(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat := + match eq_nat_dec x 0 with + | left _ => 0 + | right _ => + match eq_nat_dec y 0 with + | left _ => y + | right _0 => div_aux (x - y) y (minus_decrease x y H _ _0) + end + end) + : forall x : nat, nat -> Acc lt x -> nat +*) + +Require Import Wf_nat. +Definition div x y := div_aux x y (lt_wf x). + +Extraction div. +(* +let div x y = + div_aux x y +*) + +Extraction div_aux. + +(* +let rec div_aux x y = + match eq_nat_dec x O with + | Left -> O + | Right -> + (match eq_nat_dec y O with + | Left -> y + | Right -> div_aux (minus x y) y) +*) + +Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A. +Proof. + intros A v;inversion v. +Abort. + +(* + Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), + n= 0 -> v = Vnil A. + +Toplevel input, characters 40281-40287 +> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A. +> ^^^^^^ +Error: In environment +A : Set +n : nat +v : vector A n +e : n = 0 +The term "Vnil A" has type "vector A 0" while it is expected to have type + "vector A n" +*) + Require Import JMeq. + +Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), + n= 0 -> JMeq v (Vnil A). +Proof. + destruct v. + auto. + intro; discriminate. +Qed. + +Lemma vector0_is_vnil : forall (A:Set)(v:vector A 0), v = Vnil A. +Proof. + intros a v;apply JMeq_eq. + apply vector0_is_vnil_aux. + trivial. +Qed. + + +Implicit Arguments Vcons [A n]. +Implicit Arguments Vnil [A]. +Implicit Arguments Vhead [A n]. +Implicit Arguments Vtail [A n]. + +Definition Vid : forall (A : Set)(n:nat), vector A n -> vector A n. +Proof. + destruct n; intro v. + exact Vnil. + exact (Vcons (Vhead v) (Vtail v)). +Defined. + +Eval simpl in (fun (A:Set)(v:vector A 0) => (Vid _ _ v)). + +Eval simpl in (fun (A:Set)(v:vector A 0) => v). + + + +Lemma Vid_eq : forall (n:nat) (A:Set)(v:vector A n), v=(Vid _ n v). +Proof. + destruct v. + reflexivity. + reflexivity. +Defined. + +Theorem zero_nil : forall A (v:vector A 0), v = Vnil. +Proof. + intros. + change (Vnil (A:=A)) with (Vid _ 0 v). + apply Vid_eq. +Defined. + + +Theorem decomp : + forall (A : Set) (n : nat) (v : vector A (S n)), + v = Vcons (Vhead v) (Vtail v). +Proof. + intros. + change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v). + apply Vid_eq. +Defined. + + + +Definition vector_double_rect : + forall (A:Set) (P: forall (n:nat),(vector A n)->(vector A n) -> Type), + P 0 Vnil Vnil -> + (forall n (v1 v2 : vector A n) a b, P n v1 v2 -> + P (S n) (Vcons a v1) (Vcons b v2)) -> + forall n (v1 v2 : vector A n), P n v1 v2. + induction n. + intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2). + auto. + intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2). + apply X0; auto. +Defined. + +Require Import Bool. + +Definition bitwise_or n v1 v2 : vector bool n := + vector_double_rect bool (fun n v1 v2 => vector bool n) + Vnil + (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2. + + +Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:vector A p){struct v} + : option A := + match n,v with + _ , Vnil => None + | 0 , Vcons b _ _ => Some b + | S n', Vcons _ p' v' => vector_nth A n' p' v' + end. + +Implicit Arguments vector_nth [A p]. + + +Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b, + vector_nth i v1 = Some a -> + vector_nth i v2 = Some b -> + vector_nth i (bitwise_or _ v1 v2) = Some (orb a b). +Proof. + intros n v1 v2; pattern n,v1,v2. + apply vector_double_rect. + simpl. + destruct i; discriminate 1. + destruct i; simpl;auto. + injection 1; injection 2;intros; subst a; subst b; auto. +Qed. + + Set Implicit Arguments. + + CoInductive Stream (A:Set) : Set := + | Cons : A -> Stream A -> Stream A. + + CoInductive LList (A: Set) : Set := + | LNil : LList A + | LCons : A -> LList A -> LList A. + + + + + + Definition head (A:Set)(s : Stream A) := match s with Cons a s' => a end. + + Definition tail (A : Set)(s : Stream A) := + match s with Cons a s' => s' end. + + CoFixpoint repeat (A:Set)(a:A) : Stream A := Cons a (repeat a). + + CoFixpoint iterate (A: Set)(f: A -> A)(a : A) : Stream A:= + Cons a (iterate f (f a)). + + CoFixpoint map (A B:Set)(f: A -> B)(s : Stream A) : Stream B:= + match s with Cons a tl => Cons (f a) (map f tl) end. + +Eval simpl in (fun (A:Set)(a:A) => repeat a). + +Eval simpl in (fun (A:Set)(a:A) => head (repeat a)). + + +CoInductive EqSt (A: Set) : Stream A -> Stream A -> Prop := + eqst : forall s1 s2: Stream A, + head s1 = head s2 -> + EqSt (tail s1) (tail s2) -> + EqSt s1 s2. + + +Section Parks_Principle. +Variable A : Set. +Variable R : Stream A -> Stream A -> Prop. +Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 -> + head s1 = head s2. +Hypothesis bisim2 : forall s1 s2:Stream A, R s1 s2 -> + R (tail s1) (tail s2). + +CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 -> + EqSt s1 s2 := + fun s1 s2 (p : R s1 s2) => + eqst s1 s2 (bisim1 p) + (park_ppl (bisim2 p)). +End Parks_Principle. + + +Theorem map_iterate : forall (A:Set)(f:A->A)(x:A), + EqSt (iterate f (f x)) (map f (iterate f x)). +Proof. + intros A f x. + apply park_ppl with + (R:= fun s1 s2 => exists x: A, + s1 = iterate f (f x) /\ s2 = map f (iterate f x)). + + intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity. + intros s1 s2 (x0,(eqs1,eqs2)). + exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity. + exists x;split; reflexivity. +Qed. + +Ltac infiniteproof f := + cofix f; constructor; [clear f| simpl; try (apply f; clear f)]. + + +Theorem map_iterate' : forall (A:Set)(f:A->A)(x:A), + EqSt (iterate f (f x)) (map f (iterate f x)). +infiniteproof map_iterate'. + reflexivity. +Qed. + + +Implicit Arguments LNil [A]. + +Lemma Lnil_not_Lcons : forall (A:Set)(a:A)(l:LList A), + LNil <> (LCons a l). + intros;discriminate. +Qed. + +Lemma injection_demo : forall (A:Set)(a b : A)(l l': LList A), + LCons a (LCons b l) = LCons b (LCons a l') -> + a = b /\ l = l'. +Proof. + intros A a b l l' e; injection e; auto. +Qed. + + +Inductive Finite (A:Set) : LList A -> Prop := +| Lnil_fin : Finite (LNil (A:=A)) +| Lcons_fin : forall a l, Finite l -> Finite (LCons a l). + +CoInductive Infinite (A:Set) : LList A -> Prop := +| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l). + +Lemma LNil_not_Infinite : forall (A:Set), ~ Infinite (LNil (A:=A)). +Proof. + intros A H;inversion H. +Qed. + +Lemma Finite_not_Infinite : forall (A:Set)(l:LList A), + Finite l -> ~ Infinite l. +Proof. + intros A l H; elim H. + apply LNil_not_Infinite. + intros a l0 F0 I0' I1. + case I0'; inversion_clear I1. + trivial. +Qed. + +Lemma Not_Finite_Infinite : forall (A:Set)(l:LList A), + ~ Finite l -> Infinite l. +Proof. + cofix H. + destruct l. + intro; absurd (Finite (LNil (A:=A)));[auto|constructor]. + constructor. + apply H. + red; intro H1;case H0. + constructor. + trivial. +Qed. + + + + |