diff options
Diffstat (limited to 'test-suite/success/Inductive.v')
-rw-r--r-- | test-suite/success/Inductive.v | 60 |
1 files changed, 39 insertions, 21 deletions
diff --git a/test-suite/success/Inductive.v b/test-suite/success/Inductive.v index 87431a75..1adcbd39 100644 --- a/test-suite/success/Inductive.v +++ b/test-suite/success/Inductive.v @@ -1,34 +1,52 @@ (* Check local definitions in context of inductive types *) -Inductive A [C,D:Prop; E:=C; F:=D; x,y:E->F] : E -> Set := - I : (z:E)(A C D x y z). +Inductive A (C D : Prop) (E:=C) (F:=D) (x y : E -> F) : E -> Set := + I : forall z : E, A C D x y z. Check - [C,D:Prop; E:=C; F:=D; x,y:(E ->F); - P:((c:C)(A C D x y c) ->Type); - f:((z:C)(P z (I C D x y z))); - y0:C; a:(A C D x y y0)] - <[y1:C; a0:(A C D x y y1)](P y1 a0)>Cases a of (I x0) => (f x0) end. - -Record B [C,D:Set; E:=C; F:=D; x,y:E->F] : Set := { p : C; q : E }. + (fun C D : Prop => + let E := C in + let F := D in + fun (x y : E -> F) (P : forall c : C, A C D x y c -> Type) + (f : forall z : C, P z (I C D x y z)) (y0 : C) + (a : A C D x y y0) => + match a as a0 in (A _ _ _ _ y1) return (P y1 a0) with + | I x0 => f x0 + end). + +Record B (C D : Set) (E:=C) (F:=D) (x y : E -> F) : Set := {p : C; q : E}. Check - [C,D:Set; E:=C; F:=D; x,y:(E ->F); - P:((B C D x y) ->Type); - f:((p0,q0:C)(P (Build_B C D x y p0 q0))); - b:(B C D x y)] - <[b0:(B C D x y)](P b0)>Cases b of (Build_B x0 x1) => (f x0 x1) end. + (fun C D : Set => + let E := C in + let F := D in + fun (x y : E -> F) (P : B C D x y -> Type) + (f : forall p0 q0 : C, P (Build_B C D x y p0 q0)) + (b : B C D x y) => + match b as b0 return (P b0) with + | Build_B x0 x1 => f x0 x1 + end). (* Check implicit parameters of inductive types (submitted by Pierre Casteran and also implicit in #338) *) Set Implicit Arguments. +Unset Strict Implicit. + +CoInductive LList (A : Set) : Set := + | LNil : LList A + | LCons : A -> LList A -> LList A. + +Implicit Arguments LNil [A]. + +Inductive Finite (A : Set) : LList A -> Prop := + | Finite_LNil : Finite LNil + | Finite_LCons : + forall (a : A) (l : LList A), Finite l -> Finite (LCons a l). + +(* Check positivity modulo reduction (cf bug #983) *) -CoInductive LList [A:Set] : Set := - | LNil : (LList A) - | LCons : A -> (LList A) -> (LList A). +Record P:Type := {PA:Set; PB:Set}. -Implicits LNil [1]. +Definition F (p:P) := (PA p) -> (PB p). -Inductive Finite [A:Set] : (LList A) -> Prop := - | Finite_LNil : (Finite LNil) - | Finite_LCons : (a:A) (l:(LList A)) (Finite l) -> (Finite (LCons a l)). +Inductive I_F:Set := c : (F (Build_P nat I_F)) -> I_F. |