diff options
Diffstat (limited to 'test-suite/success/CasesDep.v')
-rw-r--r-- | test-suite/success/CasesDep.v | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/test-suite/success/CasesDep.v b/test-suite/success/CasesDep.v new file mode 100644 index 00000000..0256280c --- /dev/null +++ b/test-suite/success/CasesDep.v @@ -0,0 +1,405 @@ +(* Check forward dependencies *) + +Check [P:nat->Prop][Q][A:(P O)->Q][B:(n:nat)(P (S n))->Q][x] + <[_]Q>Cases x of + | (exist O H) => (A H) + | (exist (S n) H) => (B n H) + end. + +(* Check dependencies in anonymous arguments (from FTA/listn.v) *) + +Inductive listn [A:Set] : nat->Set := + niln: (listn A O) +| consn: (a:A)(n:nat)(listn A n)->(listn A (S n)). + +Section Folding. +Variables B, C : Set. +Variable g : B -> C -> C. +Variable c : C. + +Fixpoint foldrn [n:nat; bs:(listn B n)] : C := + Cases bs of niln => c + | (consn b _ tl) => (g b (foldrn ? tl)) + end. +End Folding. + +(* -------------------------------------------------------------------- *) +(* Example to test patterns matching on dependent families *) +(* This exemple extracted from the developement done by Nacira Chabane *) +(* (equipe Paris 6) *) +(* -------------------------------------------------------------------- *) + + +Require Prelude. +Require Logic_Type. + +Section Orderings. + Variable U: Type. + + Definition Relation := U -> U -> Prop. + + Variable R: Relation. + + Definition Reflexive : Prop := (x: U) (R x x). + + Definition Transitive : Prop := (x,y,z: U) (R x y) -> (R y z) -> (R x z). + + Definition Symmetric : Prop := (x,y: U) (R x y) -> (R y x). + + Definition Antisymmetric : Prop := + (x,y: U) (R x y) -> (R y x) -> x==y. + + Definition contains : Relation -> Relation -> Prop := + [R,R': Relation] (x,y: U) (R' x y) -> (R x y). + Definition same_relation : Relation -> Relation -> Prop := + [R,R': Relation] (contains R R') /\ (contains R' R). +Inductive Equivalence : Prop := + Build_Equivalence: + Reflexive -> Transitive -> Symmetric -> Equivalence. + + Inductive PER : Prop := + Build_PER: Symmetric -> Transitive -> PER. + +End Orderings. + +(***** Setoid *******) + +Inductive Setoid : Type + := Build_Setoid : (S:Type)(R:(Relation S))(Equivalence ? R) -> Setoid. + +Definition elem := [A:Setoid] let (S,R,e)=A in S. + +Grammar constr constr1 := + elem [ "|" constr0($s) "|"] -> [ (elem $s) ]. + +Definition equal := [A:Setoid] + <[s:Setoid](Relation |s|)>let (S,R,e)=A in R. + +Grammar constr constr1 := + equal [ constr0($c) "=" "%" "S" constr0($c2) ] -> + [ (equal ? $c $c2) ]. + + +Axiom prf_equiv : (A:Setoid)(Equivalence |A| (equal A)). +Axiom prf_refl : (A:Setoid)(Reflexive |A| (equal A)). +Axiom prf_sym : (A:Setoid)(Symmetric |A| (equal A)). +Axiom prf_trans : (A:Setoid)(Transitive |A| (equal A)). + +Section Maps. +Variables A,B: Setoid. + +Definition Map_law := [f:|A| -> |B|] + (x,y:|A|) x =%S y -> (f x) =%S (f y). + +Inductive Map : Type := + Build_Map : (f:|A| -> |B|)(p:(Map_law f))Map. + +Definition explicit_ap := [m:Map] <|A| -> |B|>Match m with + [f:?][p:?]f end. + +Axiom pres : (m:Map)(Map_law (explicit_ap m)). + +Definition ext := [f,g:Map] + (x:|A|) (explicit_ap f x) =%S (explicit_ap g x). + +Axiom Equiv_map_eq : (Equivalence Map ext). + +Definition Map_setoid := (Build_Setoid Map ext Equiv_map_eq). + +End Maps. + +Notation ap := (explicit_ap ? ?). + +Grammar constr constr8 := + map_setoid [ constr7($c1) "=>" constr8($c2) ] + -> [ (Map_setoid $c1 $c2) ]. + + +Definition ap2 := [A,B,C:Setoid][f:|(A=>(B=>C))|][a:|A|] (ap (ap f a)). + + +(***** posint ******) + +Inductive posint : Type + := Z : posint | Suc : posint -> posint. + +Axiom f_equal : (A,B:Type)(f:A->B)(x,y:A) x==y -> (f x)==(f y). +Axiom eq_Suc : (n,m:posint) n==m -> (Suc n)==(Suc m). + +(* The predecessor function *) + +Definition pred : posint->posint + := [n:posint](<posint>Case n of (* Z *) Z + (* Suc u *) [u:posint]u end). + +Axiom pred_Sucn : (m:posint) m==(pred (Suc m)). +Axiom eq_add_Suc : (n,m:posint) (Suc n)==(Suc m) -> n==m. +Axiom not_eq_Suc : (n,m:posint) ~(n==m) -> ~((Suc n)==(Suc m)). + + +Definition IsSuc : posint->Prop + := [n:posint](<Prop>Case n of (* Z *) False + (* Suc p *) [p:posint]True end). +Definition IsZero :posint->Prop := + [n:posint]<Prop>Match n with + True + [p:posint][H:Prop]False end. + +Axiom Z_Suc : (n:posint) ~(Z==(Suc n)). +Axiom Suc_Z: (n:posint) ~(Suc n)==Z. +Axiom n_Sucn : (n:posint) ~(n==(Suc n)). +Axiom Sucn_n : (n:posint) ~(Suc n)==n. +Axiom eqT_symt : (a,b:posint) ~(a==b)->~(b==a). + + +(******* Dsetoid *****) + +Definition Decidable :=[A:Type][R:(Relation A)] + (x,y:A)(R x y) \/ ~(R x y). + + +Record DSetoid : Type := +{Set_of : Setoid; + prf_decid : (Decidable |Set_of| (equal Set_of))}. + +(* example de Dsetoide d'entiers *) + + +Axiom eqT_equiv : (Equivalence posint (eqT posint)). +Axiom Eq_posint_deci : (Decidable posint (eqT posint)). + +(* Dsetoide des posint*) + +Definition Set_of_posint := (Build_Setoid posint (eqT posint) eqT_equiv). + +Definition Dposint := (Build_DSetoid Set_of_posint Eq_posint_deci). + + + +(**************************************) + + +(* Definition des signatures *) +(* une signature est un ensemble d'operateurs muni + de l'arite de chaque operateur *) + + +Section Sig. + +Record Signature :Type := +{Sigma : DSetoid; + Arity : (Map (Set_of Sigma) (Set_of Dposint))}. + +Variable S:Signature. + + + +Variable Var : DSetoid. + +Mutual Inductive TERM : Type := + var : |(Set_of Var)| -> TERM + | oper : (op: |(Set_of (Sigma S))| ) (LTERM (ap (Arity S) op)) -> TERM +with + LTERM : posint -> Type := + nil : (LTERM Z) + | cons : TERM -> (n:posint)(LTERM n) -> (LTERM (Suc n)). + + + +(* -------------------------------------------------------------------- *) +(* Examples *) +(* -------------------------------------------------------------------- *) + + +Parameter t1,t2: TERM. + +Type + Cases t1 t2 of + | (var v1) (var v2) => True + | (oper op1 l1) (oper op2 l2) => False + | _ _ => False + end. + + + +Parameter n2:posint. +Parameter l1, l2:(LTERM n2). + +Type + Cases l1 l2 of + nil nil => True + | (cons v m y) nil => False + | _ _ => False +end. + + +Type Cases l1 l2 of + nil nil => True + | (cons u n x) (cons v m y) =>False + | _ _ => False +end. + + + +Definition equalT [t1:TERM]:TERM->Prop := +[t2:TERM] + Cases t1 t2 of + (var v1) (var v2) => True + | (oper op1 l1) (oper op2 l2) => False + | _ _ => False + end. + +Definition EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop := +[n2:posint][l2:(LTERM n2)] + Cases l1 l2 of + nil nil => True + | (cons t1 n1' l1') (cons t2 n2' l2') => False + | _ _ => False +end. + + +Reset equalT. +(* ------------------------------------------------------------------*) +(* Initial exemple (without patterns) *) +(*-------------------------------------------------------------------*) + +Fixpoint equalT [t1:TERM]:TERM->Prop := +<TERM->Prop>Case t1 of + (*var*) [v1:|(Set_of Var)|][t2:TERM] + <Prop>Case t2 of + (*var*)[v2:|(Set_of Var)|] (v1 =%S v2) + (*oper*)[op2:|(Set_of (Sigma S))|][_:(LTERM (ap (Arity S) op2))]False + end + (*oper*)[op1:|(Set_of (Sigma S))|] + [l1:(LTERM (ap (Arity S) op1))][t2:TERM] + <Prop>Case t2 of + (*var*)[v2:|(Set_of Var)|]False + (*oper*)[op2:|(Set_of (Sigma S))|] + [l2:(LTERM (ap (Arity S) op2))] + ((op1=%S op2)/\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)) + end +end +with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop := +<[_:posint](n2:posint)(LTERM n2)->Prop>Case l1 of + (*nil*) [n2:posint][l2:(LTERM n2)] + <[_:posint]Prop>Case l2 of + (*nil*)True + (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]False + end + (*cons*)[t1:TERM][n1':posint][l1':(LTERM n1')] + [n2:posint][l2:(LTERM n2)] + <[_:posint]Prop>Case l2 of + (*nil*) False + (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')] + ((equalT t1 t2) /\ (EqListT n1' l1' n2' l2')) + end +end. + + +(* ---------------------------------------------------------------- *) +(* Version with simple patterns *) +(* ---------------------------------------------------------------- *) +Reset equalT. + +Fixpoint equalT [t1:TERM]:TERM->Prop := +Cases t1 of + (var v1) => [t2:TERM] + Cases t2 of + (var v2) => (v1 =%S v2) + | (oper op2 _) =>False + end +| (oper op1 l1) => [t2:TERM] + Cases t2 of + (var _) => False + | (oper op2 l2) => (op1=%S op2) + /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2) + end +end +with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop := +<[_:posint](n2:posint)(LTERM n2)->Prop>Cases l1 of + nil => [n2:posint][l2:(LTERM n2)] + Cases l2 of + nil => True + | _ => False + end +| (cons t1 n1' l1') => [n2:posint][l2:(LTERM n2)] + Cases l2 of + nil =>False + | (cons t2 n2' l2') => (equalT t1 t2) + /\ (EqListT n1' l1' n2' l2') + end +end. + + +Reset equalT. + +Fixpoint equalT [t1:TERM]:TERM->Prop := +Cases t1 of + (var v1) => [t2:TERM] + Cases t2 of + (var v2) => (v1 =%S v2) + | (oper op2 _) =>False + end +| (oper op1 l1) => [t2:TERM] + Cases t2 of + (var _) => False + | (oper op2 l2) => (op1=%S op2) + /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2) + end +end +with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop := +[n2:posint][l2:(LTERM n2)] +Cases l1 of + nil => + Cases l2 of + nil => True + | _ => False + end +| (cons t1 n1' l1') => Cases l2 of + nil =>False + | (cons t2 n2' l2') => (equalT t1 t2) + /\ (EqListT n1' l1' n2' l2') + end +end. + +(* ---------------------------------------------------------------- *) +(* Version with multiple patterns *) +(* ---------------------------------------------------------------- *) +Reset equalT. + +Fixpoint equalT [t1:TERM]:TERM->Prop := +[t2:TERM] + Cases t1 t2 of + (var v1) (var v2) => (v1 =%S v2) + + | (oper op1 l1) (oper op2 l2) => + (op1=%S op2) /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2) + + | _ _ => False + end + +with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop := +[n2:posint][l2:(LTERM n2)] + Cases l1 l2 of + nil nil => True + | (cons t1 n1' l1') (cons t2 n2' l2') => (equalT t1 t2) + /\ (EqListT n1' l1' n2' l2') + | _ _ => False +end. + + +(* ------------------------------------------------------------------ *) + +End Sig. + +(* Exemple soumis par Bruno *) + +Definition bProp [b:bool] : Prop := + if b then True else False. + +Definition f0 [F:False;ty:bool]: (bProp ty) := + <[_:bool][ty:bool](bProp ty)>Cases ty ty of + true true => I + | _ false => F + | _ true => I + end. |