summaryrefslogtreecommitdiff
path: root/test-suite/success/CasesDep.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/CasesDep.v')
-rw-r--r--test-suite/success/CasesDep.v405
1 files changed, 405 insertions, 0 deletions
diff --git a/test-suite/success/CasesDep.v b/test-suite/success/CasesDep.v
new file mode 100644
index 00000000..0256280c
--- /dev/null
+++ b/test-suite/success/CasesDep.v
@@ -0,0 +1,405 @@
+(* Check forward dependencies *)
+
+Check [P:nat->Prop][Q][A:(P O)->Q][B:(n:nat)(P (S n))->Q][x]
+ <[_]Q>Cases x of
+ | (exist O H) => (A H)
+ | (exist (S n) H) => (B n H)
+ end.
+
+(* Check dependencies in anonymous arguments (from FTA/listn.v) *)
+
+Inductive listn [A:Set] : nat->Set :=
+ niln: (listn A O)
+| consn: (a:A)(n:nat)(listn A n)->(listn A (S n)).
+
+Section Folding.
+Variables B, C : Set.
+Variable g : B -> C -> C.
+Variable c : C.
+
+Fixpoint foldrn [n:nat; bs:(listn B n)] : C :=
+ Cases bs of niln => c
+ | (consn b _ tl) => (g b (foldrn ? tl))
+ end.
+End Folding.
+
+(* -------------------------------------------------------------------- *)
+(* Example to test patterns matching on dependent families *)
+(* This exemple extracted from the developement done by Nacira Chabane *)
+(* (equipe Paris 6) *)
+(* -------------------------------------------------------------------- *)
+
+
+Require Prelude.
+Require Logic_Type.
+
+Section Orderings.
+ Variable U: Type.
+
+ Definition Relation := U -> U -> Prop.
+
+ Variable R: Relation.
+
+ Definition Reflexive : Prop := (x: U) (R x x).
+
+ Definition Transitive : Prop := (x,y,z: U) (R x y) -> (R y z) -> (R x z).
+
+ Definition Symmetric : Prop := (x,y: U) (R x y) -> (R y x).
+
+ Definition Antisymmetric : Prop :=
+ (x,y: U) (R x y) -> (R y x) -> x==y.
+
+ Definition contains : Relation -> Relation -> Prop :=
+ [R,R': Relation] (x,y: U) (R' x y) -> (R x y).
+ Definition same_relation : Relation -> Relation -> Prop :=
+ [R,R': Relation] (contains R R') /\ (contains R' R).
+Inductive Equivalence : Prop :=
+ Build_Equivalence:
+ Reflexive -> Transitive -> Symmetric -> Equivalence.
+
+ Inductive PER : Prop :=
+ Build_PER: Symmetric -> Transitive -> PER.
+
+End Orderings.
+
+(***** Setoid *******)
+
+Inductive Setoid : Type
+ := Build_Setoid : (S:Type)(R:(Relation S))(Equivalence ? R) -> Setoid.
+
+Definition elem := [A:Setoid] let (S,R,e)=A in S.
+
+Grammar constr constr1 :=
+ elem [ "|" constr0($s) "|"] -> [ (elem $s) ].
+
+Definition equal := [A:Setoid]
+ <[s:Setoid](Relation |s|)>let (S,R,e)=A in R.
+
+Grammar constr constr1 :=
+ equal [ constr0($c) "=" "%" "S" constr0($c2) ] ->
+ [ (equal ? $c $c2) ].
+
+
+Axiom prf_equiv : (A:Setoid)(Equivalence |A| (equal A)).
+Axiom prf_refl : (A:Setoid)(Reflexive |A| (equal A)).
+Axiom prf_sym : (A:Setoid)(Symmetric |A| (equal A)).
+Axiom prf_trans : (A:Setoid)(Transitive |A| (equal A)).
+
+Section Maps.
+Variables A,B: Setoid.
+
+Definition Map_law := [f:|A| -> |B|]
+ (x,y:|A|) x =%S y -> (f x) =%S (f y).
+
+Inductive Map : Type :=
+ Build_Map : (f:|A| -> |B|)(p:(Map_law f))Map.
+
+Definition explicit_ap := [m:Map] <|A| -> |B|>Match m with
+ [f:?][p:?]f end.
+
+Axiom pres : (m:Map)(Map_law (explicit_ap m)).
+
+Definition ext := [f,g:Map]
+ (x:|A|) (explicit_ap f x) =%S (explicit_ap g x).
+
+Axiom Equiv_map_eq : (Equivalence Map ext).
+
+Definition Map_setoid := (Build_Setoid Map ext Equiv_map_eq).
+
+End Maps.
+
+Notation ap := (explicit_ap ? ?).
+
+Grammar constr constr8 :=
+ map_setoid [ constr7($c1) "=>" constr8($c2) ]
+ -> [ (Map_setoid $c1 $c2) ].
+
+
+Definition ap2 := [A,B,C:Setoid][f:|(A=>(B=>C))|][a:|A|] (ap (ap f a)).
+
+
+(***** posint ******)
+
+Inductive posint : Type
+ := Z : posint | Suc : posint -> posint.
+
+Axiom f_equal : (A,B:Type)(f:A->B)(x,y:A) x==y -> (f x)==(f y).
+Axiom eq_Suc : (n,m:posint) n==m -> (Suc n)==(Suc m).
+
+(* The predecessor function *)
+
+Definition pred : posint->posint
+ := [n:posint](<posint>Case n of (* Z *) Z
+ (* Suc u *) [u:posint]u end).
+
+Axiom pred_Sucn : (m:posint) m==(pred (Suc m)).
+Axiom eq_add_Suc : (n,m:posint) (Suc n)==(Suc m) -> n==m.
+Axiom not_eq_Suc : (n,m:posint) ~(n==m) -> ~((Suc n)==(Suc m)).
+
+
+Definition IsSuc : posint->Prop
+ := [n:posint](<Prop>Case n of (* Z *) False
+ (* Suc p *) [p:posint]True end).
+Definition IsZero :posint->Prop :=
+ [n:posint]<Prop>Match n with
+ True
+ [p:posint][H:Prop]False end.
+
+Axiom Z_Suc : (n:posint) ~(Z==(Suc n)).
+Axiom Suc_Z: (n:posint) ~(Suc n)==Z.
+Axiom n_Sucn : (n:posint) ~(n==(Suc n)).
+Axiom Sucn_n : (n:posint) ~(Suc n)==n.
+Axiom eqT_symt : (a,b:posint) ~(a==b)->~(b==a).
+
+
+(******* Dsetoid *****)
+
+Definition Decidable :=[A:Type][R:(Relation A)]
+ (x,y:A)(R x y) \/ ~(R x y).
+
+
+Record DSetoid : Type :=
+{Set_of : Setoid;
+ prf_decid : (Decidable |Set_of| (equal Set_of))}.
+
+(* example de Dsetoide d'entiers *)
+
+
+Axiom eqT_equiv : (Equivalence posint (eqT posint)).
+Axiom Eq_posint_deci : (Decidable posint (eqT posint)).
+
+(* Dsetoide des posint*)
+
+Definition Set_of_posint := (Build_Setoid posint (eqT posint) eqT_equiv).
+
+Definition Dposint := (Build_DSetoid Set_of_posint Eq_posint_deci).
+
+
+
+(**************************************)
+
+
+(* Definition des signatures *)
+(* une signature est un ensemble d'operateurs muni
+ de l'arite de chaque operateur *)
+
+
+Section Sig.
+
+Record Signature :Type :=
+{Sigma : DSetoid;
+ Arity : (Map (Set_of Sigma) (Set_of Dposint))}.
+
+Variable S:Signature.
+
+
+
+Variable Var : DSetoid.
+
+Mutual Inductive TERM : Type :=
+ var : |(Set_of Var)| -> TERM
+ | oper : (op: |(Set_of (Sigma S))| ) (LTERM (ap (Arity S) op)) -> TERM
+with
+ LTERM : posint -> Type :=
+ nil : (LTERM Z)
+ | cons : TERM -> (n:posint)(LTERM n) -> (LTERM (Suc n)).
+
+
+
+(* -------------------------------------------------------------------- *)
+(* Examples *)
+(* -------------------------------------------------------------------- *)
+
+
+Parameter t1,t2: TERM.
+
+Type
+ Cases t1 t2 of
+ | (var v1) (var v2) => True
+ | (oper op1 l1) (oper op2 l2) => False
+ | _ _ => False
+ end.
+
+
+
+Parameter n2:posint.
+Parameter l1, l2:(LTERM n2).
+
+Type
+ Cases l1 l2 of
+ nil nil => True
+ | (cons v m y) nil => False
+ | _ _ => False
+end.
+
+
+Type Cases l1 l2 of
+ nil nil => True
+ | (cons u n x) (cons v m y) =>False
+ | _ _ => False
+end.
+
+
+
+Definition equalT [t1:TERM]:TERM->Prop :=
+[t2:TERM]
+ Cases t1 t2 of
+ (var v1) (var v2) => True
+ | (oper op1 l1) (oper op2 l2) => False
+ | _ _ => False
+ end.
+
+Definition EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
+[n2:posint][l2:(LTERM n2)]
+ Cases l1 l2 of
+ nil nil => True
+ | (cons t1 n1' l1') (cons t2 n2' l2') => False
+ | _ _ => False
+end.
+
+
+Reset equalT.
+(* ------------------------------------------------------------------*)
+(* Initial exemple (without patterns) *)
+(*-------------------------------------------------------------------*)
+
+Fixpoint equalT [t1:TERM]:TERM->Prop :=
+<TERM->Prop>Case t1 of
+ (*var*) [v1:|(Set_of Var)|][t2:TERM]
+ <Prop>Case t2 of
+ (*var*)[v2:|(Set_of Var)|] (v1 =%S v2)
+ (*oper*)[op2:|(Set_of (Sigma S))|][_:(LTERM (ap (Arity S) op2))]False
+ end
+ (*oper*)[op1:|(Set_of (Sigma S))|]
+ [l1:(LTERM (ap (Arity S) op1))][t2:TERM]
+ <Prop>Case t2 of
+ (*var*)[v2:|(Set_of Var)|]False
+ (*oper*)[op2:|(Set_of (Sigma S))|]
+ [l2:(LTERM (ap (Arity S) op2))]
+ ((op1=%S op2)/\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2))
+ end
+end
+with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
+<[_:posint](n2:posint)(LTERM n2)->Prop>Case l1 of
+ (*nil*) [n2:posint][l2:(LTERM n2)]
+ <[_:posint]Prop>Case l2 of
+ (*nil*)True
+ (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]False
+ end
+ (*cons*)[t1:TERM][n1':posint][l1':(LTERM n1')]
+ [n2:posint][l2:(LTERM n2)]
+ <[_:posint]Prop>Case l2 of
+ (*nil*) False
+ (*cons*)[t2:TERM][n2':posint][l2':(LTERM n2')]
+ ((equalT t1 t2) /\ (EqListT n1' l1' n2' l2'))
+ end
+end.
+
+
+(* ---------------------------------------------------------------- *)
+(* Version with simple patterns *)
+(* ---------------------------------------------------------------- *)
+Reset equalT.
+
+Fixpoint equalT [t1:TERM]:TERM->Prop :=
+Cases t1 of
+ (var v1) => [t2:TERM]
+ Cases t2 of
+ (var v2) => (v1 =%S v2)
+ | (oper op2 _) =>False
+ end
+| (oper op1 l1) => [t2:TERM]
+ Cases t2 of
+ (var _) => False
+ | (oper op2 l2) => (op1=%S op2)
+ /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
+ end
+end
+with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
+<[_:posint](n2:posint)(LTERM n2)->Prop>Cases l1 of
+ nil => [n2:posint][l2:(LTERM n2)]
+ Cases l2 of
+ nil => True
+ | _ => False
+ end
+| (cons t1 n1' l1') => [n2:posint][l2:(LTERM n2)]
+ Cases l2 of
+ nil =>False
+ | (cons t2 n2' l2') => (equalT t1 t2)
+ /\ (EqListT n1' l1' n2' l2')
+ end
+end.
+
+
+Reset equalT.
+
+Fixpoint equalT [t1:TERM]:TERM->Prop :=
+Cases t1 of
+ (var v1) => [t2:TERM]
+ Cases t2 of
+ (var v2) => (v1 =%S v2)
+ | (oper op2 _) =>False
+ end
+| (oper op1 l1) => [t2:TERM]
+ Cases t2 of
+ (var _) => False
+ | (oper op2 l2) => (op1=%S op2)
+ /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
+ end
+end
+with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
+[n2:posint][l2:(LTERM n2)]
+Cases l1 of
+ nil =>
+ Cases l2 of
+ nil => True
+ | _ => False
+ end
+| (cons t1 n1' l1') => Cases l2 of
+ nil =>False
+ | (cons t2 n2' l2') => (equalT t1 t2)
+ /\ (EqListT n1' l1' n2' l2')
+ end
+end.
+
+(* ---------------------------------------------------------------- *)
+(* Version with multiple patterns *)
+(* ---------------------------------------------------------------- *)
+Reset equalT.
+
+Fixpoint equalT [t1:TERM]:TERM->Prop :=
+[t2:TERM]
+ Cases t1 t2 of
+ (var v1) (var v2) => (v1 =%S v2)
+
+ | (oper op1 l1) (oper op2 l2) =>
+ (op1=%S op2) /\ (EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2)
+
+ | _ _ => False
+ end
+
+with EqListT [n1:posint;l1:(LTERM n1)]: (n2:posint)(LTERM n2)->Prop :=
+[n2:posint][l2:(LTERM n2)]
+ Cases l1 l2 of
+ nil nil => True
+ | (cons t1 n1' l1') (cons t2 n2' l2') => (equalT t1 t2)
+ /\ (EqListT n1' l1' n2' l2')
+ | _ _ => False
+end.
+
+
+(* ------------------------------------------------------------------ *)
+
+End Sig.
+
+(* Exemple soumis par Bruno *)
+
+Definition bProp [b:bool] : Prop :=
+ if b then True else False.
+
+Definition f0 [F:False;ty:bool]: (bProp ty) :=
+ <[_:bool][ty:bool](bProp ty)>Cases ty ty of
+ true true => I
+ | _ false => F
+ | _ true => I
+ end.