summaryrefslogtreecommitdiff
path: root/test-suite/ssr/rewpatterns.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/ssr/rewpatterns.v')
-rw-r--r--test-suite/ssr/rewpatterns.v146
1 files changed, 146 insertions, 0 deletions
diff --git a/test-suite/ssr/rewpatterns.v b/test-suite/ssr/rewpatterns.v
new file mode 100644
index 00000000..f7993f40
--- /dev/null
+++ b/test-suite/ssr/rewpatterns.v
@@ -0,0 +1,146 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
+
+
+Require Import ssreflect.
+Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp.
+
+Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
+by move=> x y f; rewrite [_.+1](addnC x.+1).
+Qed.
+
+Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y).
+by move=> x y f; rewrite {2}[in f _]addnC.
+Qed.
+
+Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)).
+by move=> x y f; rewrite [in f _](addnC y).
+Qed.
+
+Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y).
+by move=> x y f; rewrite {1 3}[in f _](addnC y).
+Qed.
+
+(* patterns catching bound vars not supported *)
+Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)).
+by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *)
+Qed.
+
+Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x).
+by move=> x y f; rewrite [in X in (f _ X)](addnC y).
+Qed.
+
+Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x =
+ x + f (x + y) x + f (y + x) x.
+by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
+Qed.
+
+Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x =
+ x + f (x + y) x + f (y + y) x.
+by move=> x y f E; rewrite {2}[in X in (f X _)]E.
+Qed.
+
+Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x =
+ x + f (fun _ => x + y) x + f (fun _ => y + x) x.
+by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
+Qed.
+
+Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x =
+ x + f (fun _ _ _ => x + y) x.
+by move=> x y f E; rewrite {2}[in X in (f X _)]E.
+Qed.
+
+Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x =
+ x + f (x + y) x + f (y + x) x.
+by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
+Qed.
+
+Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
+ x + f (x + y) x + f (y + y) (x + y).
+by move=> x y f E; rewrite {1}[in X in (f X X)]E.
+Qed.
+
+Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
+ x + f (x + y) x + f (y + y) (y + y).
+by move=> x y f E; rewrite [in X in (f X X)]E.
+Qed.
+
+Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) =
+ x + f (x + y) x + f (y + y) (y + y).
+by move=> x y f E; rewrite -[X in (f X X)]E.
+Qed.
+
+Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x).
+by move=> x y f; rewrite [(x + y) in X in (f X)]addnC.
+Qed.
+
+Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
+by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC.
+Qed.
+
+Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0.
+Proof.
+rewrite [in f _]addSn.
+match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end.
+rewrite -[X in _ = X]addn0.
+match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end.
+rewrite -{2}[in X in _ = X](addn0 0).
+match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end.
+rewrite [_.+1 in X in f _ X](addnC x.+1).
+match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
+rewrite [x.+1 + y as X in f X _]addnC.
+match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
+Admitted.
+
+Goal (exists x : 'I_3, x > 0).
+apply: (ex_intro _ (@Ordinal _ 2 _)).
+Admitted.
+
+Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0).
+move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)).
+ by apply: leq_trans y_lt2 _.
+by move=> y_lt3; apply: leq_trans _ y_gt1.
+Qed.
+
+Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True).
+move=> x y P E.
+have: P x -> P y by suff: x = y by move=> ?; congr (P _).
+Admitted.
+
+Goal forall a : bool, a -> true && a || false && a.
+by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=.
+Qed.
+
+Goal forall a : bool, a -> true && a || false && a.
+by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=.
+Qed.
+
+Variable a : bool.
+Definition f x := x || a.
+Definition g x := f x.
+
+Goal a -> g false.
+by move=> Ha; rewrite [g _]/f orbC Ha.
+Qed.
+
+Goal a -> g false || g false.
+move=> Ha; rewrite {2}[g _]/f orbC Ha.
+match goal with |- (is_true (false || true || g false)) => done end.
+Qed.
+
+Goal a -> (a && a || true && a) && true.
+by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f.
+Qed.
+
+Goal a -> (a || a) && true.
+by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f.
+Qed.