diff options
Diffstat (limited to 'test-suite/ssr/rewpatterns.v')
-rw-r--r-- | test-suite/ssr/rewpatterns.v | 146 |
1 files changed, 146 insertions, 0 deletions
diff --git a/test-suite/ssr/rewpatterns.v b/test-suite/ssr/rewpatterns.v new file mode 100644 index 00000000..f7993f40 --- /dev/null +++ b/test-suite/ssr/rewpatterns.v @@ -0,0 +1,146 @@ +(************************************************************************) +(* * The Coq Proof Assistant / The Coq Development Team *) +(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) +(* <O___,, * (see CREDITS file for the list of authors) *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(* * (see LICENSE file for the text of the license) *) +(************************************************************************) + +(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) + + +Require Import ssreflect. +Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp. + +Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1). +by move=> x y f; rewrite [_.+1](addnC x.+1). +Qed. + +Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y). +by move=> x y f; rewrite {2}[in f _]addnC. +Qed. + +Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)). +by move=> x y f; rewrite [in f _](addnC y). +Qed. + +Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y). +by move=> x y f; rewrite {1 3}[in f _](addnC y). +Qed. + +(* patterns catching bound vars not supported *) +Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)). +by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *) +Qed. + +Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x). +by move=> x y f; rewrite [in X in (f _ X)](addnC y). +Qed. + +Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x = + x + f (x + y) x + f (y + x) x. +by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. +Qed. + +Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x = + x + f (x + y) x + f (y + y) x. +by move=> x y f E; rewrite {2}[in X in (f X _)]E. +Qed. + +Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x = + x + f (fun _ => x + y) x + f (fun _ => y + x) x. +by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. +Qed. + +Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x = + x + f (fun _ _ _ => x + y) x. +by move=> x y f E; rewrite {2}[in X in (f X _)]E. +Qed. + +Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x = + x + f (x + y) x + f (y + x) x. +by move=> x y f E; rewrite {1}[X in (f X _)]addnC. +Qed. + +Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (x + y). +by move=> x y f E; rewrite {1}[in X in (f X X)]E. +Qed. + +Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (y + y). +by move=> x y f E; rewrite [in X in (f X X)]E. +Qed. + +Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) = + x + f (x + y) x + f (y + y) (y + y). +by move=> x y f E; rewrite -[X in (f X X)]E. +Qed. + +Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x). +by move=> x y f; rewrite [(x + y) in X in (f X)]addnC. +Qed. + +Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1). +by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC. +Qed. + +Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0. +Proof. +rewrite [in f _]addSn. +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end. +rewrite -[X in _ = X]addn0. +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end. +rewrite -{2}[in X in _ = X](addn0 0). +match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end. +rewrite [_.+1 in X in f _ X](addnC x.+1). +match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. +rewrite [x.+1 + y as X in f X _]addnC. +match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. +Admitted. + +Goal (exists x : 'I_3, x > 0). +apply: (ex_intro _ (@Ordinal _ 2 _)). +Admitted. + +Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0). +move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)). + by apply: leq_trans y_lt2 _. +by move=> y_lt3; apply: leq_trans _ y_gt1. +Qed. + +Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True). +move=> x y P E. +have: P x -> P y by suff: x = y by move=> ?; congr (P _). +Admitted. + +Goal forall a : bool, a -> true && a || false && a. +by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=. +Qed. + +Goal forall a : bool, a -> true && a || false && a. +by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=. +Qed. + +Variable a : bool. +Definition f x := x || a. +Definition g x := f x. + +Goal a -> g false. +by move=> Ha; rewrite [g _]/f orbC Ha. +Qed. + +Goal a -> g false || g false. +move=> Ha; rewrite {2}[g _]/f orbC Ha. +match goal with |- (is_true (false || true || g false)) => done end. +Qed. + +Goal a -> (a && a || true && a) && true. +by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f. +Qed. + +Goal a -> (a || a) && true. +by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f. +Qed. |