diff options
Diffstat (limited to 'test-suite/modules/Przyklad.v')
-rw-r--r-- | test-suite/modules/Przyklad.v | 193 |
1 files changed, 193 insertions, 0 deletions
diff --git a/test-suite/modules/Przyklad.v b/test-suite/modules/Przyklad.v new file mode 100644 index 00000000..4f4c2066 --- /dev/null +++ b/test-suite/modules/Przyklad.v @@ -0,0 +1,193 @@ +Definition ifte := [T:Set][A:Prop][B:Prop][s:(sumbool A B)][th:T][el:T] + if s then [_]th else [_]el. + +Implicits ifte. + +Lemma Reflexivity_provable : + (A:Set)(a:A)(s:{a=a}+{~a=a})(EXT x| s==(left ? ? x)). +Intros. +Elim s. +Intro x. +Split with x; Reflexivity. + +Intro. +Absurd a=a; Auto. + +Save. + +Lemma Disequality_provable : + (A:Set)(a,b:A)(~a=b)->(s:{a=b}+{~a=b})(EXT x| s==(right ? ? x)). +Intros. +Elim s. +Intro. +Absurd a=a; Auto. + +Intro. +Split with b0; Reflexivity. + +Save. + +Module Type ELEM. + Parameter T : Set. + Parameter eq_dec : (a,a':T){a=a'}+{~ a=a'}. +End ELEM. + +Module Type SET[Elt : ELEM]. + Parameter T : Set. + Parameter empty : T. + Parameter add : Elt.T -> T -> T. + Parameter find : Elt.T -> T -> bool. + + (* Axioms *) + + Axiom find_empty_false : + (e:Elt.T) (find e empty) = false. + + Axiom find_add_true : + (s:T) (e:Elt.T) (find e (add e s)) = true. + + Axiom find_add_false : + (s:T) (e:Elt.T) (e':Elt.T) ~(e=e') -> + (find e (add e' s))=(find e s). + +End SET. + +Module FuncDict[E : ELEM]. + Definition T := E.T -> bool. + Definition empty := [e':E.T] false. + Definition find := [e':E.T] [s:T] (s e'). + Definition add := [e:E.T][s:T][e':E.T] + (ifte (E.eq_dec e e') true (find e' s)). + + Lemma find_empty_false : (e:E.T) (find e empty) = false. + Auto. + Qed. + + Lemma find_add_true : + (s:T) (e:E.T) (find e (add e s)) = true. + + Intros. + Unfold find add. + Elim (Reflexivity_provable ? ? (E.eq_dec e e)). + Intros. + Rewrite H. + Auto. + + Qed. + + Lemma find_add_false : + (s:T) (e:E.T) (e':E.T) ~(e=e') -> + (find e (add e' s))=(find e s). + Intros. + Unfold add find. + Cut (EXT x:? | (E.eq_dec e' e)==(right ? ? x)). + Intros. + Elim H0. + Intros. + Rewrite H1. + Unfold ifte. + Reflexivity. + + Apply Disequality_provable. + Auto. + + Qed. + +End FuncDict. + +Module F : SET := FuncDict. + + +Module Nat. + Definition T:=nat. + Lemma eq_dec : (a,a':T){a=a'}+{~ a=a'}. + Decide Equality. + Qed. +End Nat. + + +Module SetNat:=F Nat. + + +Lemma no_zero_in_empty:(SetNat.find O SetNat.empty)=false. +Apply SetNat.find_empty_false. +Save. + +(***************************************************************************) +Module Lemmas[G:SET][E:ELEM]. + + Module ESet:=G E. + + Lemma commute : (S:ESet.T)(a1,a2:E.T) + let S1 = (ESet.add a1 (ESet.add a2 S)) in + let S2 = (ESet.add a2 (ESet.add a1 S)) in + (a:E.T)(ESet.find a S1)=(ESet.find a S2). + + Intros. + Unfold S1 S2. + Elim (E.eq_dec a a1); Elim (E.eq_dec a a2); Intros H1 H2; + Try Rewrite <- H1; Try Rewrite <- H2; + Repeat + (Try (Rewrite ESet.find_add_true; Auto); + Try (Rewrite ESet.find_add_false; Auto); + Auto). + Save. +End Lemmas. + + +Inductive list [A:Set] : Set := nil : (list A) + | cons : A -> (list A) -> (list A). + +Module ListDict[E : ELEM]. + Definition T := (list E.T). + Definition elt := E.T. + + Definition empty := (nil elt). + Definition add := [e:elt][s:T] (cons elt e s). + Fixpoint find [e:elt; s:T] : bool := + Cases s of + nil => false + | (cons e' s') => (ifte (E.eq_dec e e') + true + (find e s')) + end. + + Definition find_empty_false := [e:elt] (refl_equal bool false). + + Lemma find_add_true : + (s:T) (e:E.T) (find e (add e s)) = true. + Intros. + Simpl. + Elim (Reflexivity_provable ? ? (E.eq_dec e e)). + Intros. + Rewrite H. + Auto. + + Qed. + + + Lemma find_add_false : + (s:T) (e:E.T) (e':E.T) ~(e=e') -> + (find e (add e' s))=(find e s). + Intros. + Simpl. + Elim (Disequality_provable ? ? ? H (E.eq_dec e e')). + Intros. + Rewrite H0. + Simpl. + Reflexivity. + Save. + + +End ListDict. + + +Module L : SET := ListDict. + + + + + + + + |