summaryrefslogtreecommitdiff
path: root/test-suite/micromega/square.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/micromega/square.v')
-rw-r--r--test-suite/micromega/square.v61
1 files changed, 61 insertions, 0 deletions
diff --git a/test-suite/micromega/square.v b/test-suite/micromega/square.v
new file mode 100644
index 00000000..30c72e8c
--- /dev/null
+++ b/test-suite/micromega/square.v
@@ -0,0 +1,61 @@
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* *)
+(************************************************************************)
+
+Require Import ZArith Zwf Micromegatac QArith.
+Open Scope Z_scope.
+
+Lemma Zabs_square : forall x, (Zabs x)^2 = x^2.
+Proof.
+ intros ; case (Zabs_dec x) ; intros ; micromega Z.
+Qed.
+Hint Resolve Zabs_pos Zabs_square.
+
+Lemma integer_statement : ~exists n, exists p, n^2 = 2*p^2 /\ n <> 0.
+Proof.
+intros [n [p [Heq Hnz]]]; pose (n' := Zabs n); pose (p':=Zabs p).
+assert (facts : 0 <= Zabs n /\ 0 <= Zabs p /\ Zabs n^2=n^2
+ /\ Zabs p^2 = p^2) by auto.
+assert (H : (0 < n' /\ 0 <= p' /\ n' ^2 = 2* p' ^2)) by
+ (destruct facts as [Hf1 [Hf2 [Hf3 Hf4]]]; unfold n', p' ; micromega Z).
+generalize p' H; elim n' using (well_founded_ind (Zwf_well_founded 0)); clear.
+intros n IHn p [Hn [Hp Heq]].
+assert (Hzwf : Zwf 0 (2*p-n) n) by (unfold Zwf; micromega Z).
+assert (Hdecr : 0 < 2*p-n /\ 0 <= n-p /\ (2*p-n)^2=2*(n-p)^2) by micromega Z.
+apply (IHn (2*p-n) Hzwf (n-p) Hdecr).
+Qed.
+
+Open Scope Q_scope.
+
+Lemma QnumZpower : forall x : Q, Qnum (x ^ 2)%Q = ((Qnum x) ^ 2) %Z.
+Proof.
+ intros.
+ destruct x.
+ cbv beta iota zeta delta - [Zmult].
+ ring.
+Qed.
+
+
+Lemma QdenZpower : forall x : Q, ' Qden (x ^ 2)%Q = ('(Qden x) ^ 2) %Z.
+Proof.
+ intros.
+ destruct x.
+ cbv beta iota zeta delta - [Pmult].
+ rewrite Pmult_1_r.
+ reflexivity.
+Qed.
+
+Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1.
+Proof.
+ unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Zmult_1_r.
+ intros HQeq.
+ assert (Heq : (Qnum x ^ 2 = 2 * ' Qden x ^ 2%Q)%Z) by
+ (rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto).
+ assert (Hnx : (Qnum x <> 0)%Z)
+ by (intros Hx; simpl in HQeq; rewrite Hx in HQeq; discriminate HQeq).
+ apply integer_statement; exists (Qnum x); exists (' Qden x); auto.
+Qed.