summaryrefslogtreecommitdiff
path: root/test-suite/micromega/example.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/micromega/example.v')
-rw-r--r--test-suite/micromega/example.v85
1 files changed, 42 insertions, 43 deletions
diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v
index dc78ace5..751fe91e 100644
--- a/test-suite/micromega/example.v
+++ b/test-suite/micromega/example.v
@@ -7,7 +7,7 @@
(************************************************************************)
Require Import ZArith.
-Require Import Micromegatac.
+Require Import Psatz.
Require Import Ring_normalize.
Open Scope Z_scope.
Require Import ZMicromega.
@@ -19,7 +19,7 @@ Lemma not_so_easy : forall x n : Z,
2*x + 1 <= 2 *n -> x <= n-1.
Proof.
intros.
- zfarkas.
+ lia.
Qed.
@@ -28,14 +28,14 @@ Qed.
Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0.
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
Lemma Zdiscr: forall a b c x,
a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 4.
Qed.
@@ -43,7 +43,7 @@ Lemma plus_minus : forall x y,
0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y.
Proof.
intros.
- zfarkas.
+ lia.
Qed.
@@ -51,13 +51,13 @@ Qed.
Lemma mplus_minus : forall x y,
x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma pol3: forall x y, 0 <= x + y ->
x^3 + 3*x^2*y + 3*x* y^2 + y^3 >= 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 4.
Qed.
@@ -96,7 +96,7 @@ Proof.
generalize (H8 _ _ _ (conj H5 H4)).
generalize (H10 _ _ _ (conj H5 H4)).
generalize rho_ge.
- micromega Z.
+ psatz Z 2.
Qed.
(* Rule of signs *)
@@ -104,55 +104,55 @@ Qed.
Lemma sign_pos_pos: forall x y,
x > 0 -> y > 0 -> x*y > 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_pos_zero: forall x y,
x > 0 -> y = 0 -> x*y = 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_pos_neg: forall x y,
x > 0 -> y < 0 -> x*y < 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_zer_pos: forall x y,
x = 0 -> y > 0 -> x*y = 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_zero_zero: forall x y,
x = 0 -> y = 0 -> x*y = 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_zero_neg: forall x y,
x = 0 -> y < 0 -> x*y = 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_neg_pos: forall x y,
x < 0 -> y > 0 -> x*y < 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_neg_zero: forall x y,
x < 0 -> y = 0 -> x*y = 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma sign_neg_neg: forall x y,
x < 0 -> y < 0 -> x*y > 0.
Proof.
- intros; micromega Z.
+ intros; psatz Z 2.
Qed.
@@ -161,26 +161,26 @@ Qed.
Lemma binomial : forall x y, (x+y)^2 = x^2 + 2*x*y + y^2.
Proof.
intros.
- zfarkas.
+ lia.
Qed.
Lemma product : forall x y, x >= 0 -> y >= 0 -> x * y >= 0.
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
Lemma product_strict : forall x y, x > 0 -> y > 0 -> x * y > 0.
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
Lemma pow_2_pos : forall x, x ^ 2 + 1 = 0 -> False.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
(* Found in Parrilo's talk *)
@@ -188,10 +188,9 @@ Qed.
Lemma parrilo_ex : forall x y, x - y^2 + 3 >= 0 -> y + x^2 + 2 = 0 -> False.
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
-
(* from hol_light/Examples/sos.ml *)
Lemma hol_light1 : forall a1 a2 b1 b2,
@@ -199,26 +198,26 @@ Lemma hol_light1 : forall a1 a2 b1 b2,
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) ->
(a1 * b1 + a2 * b2 = 0) -> a1 * a2 - b1 * b2 >= 0.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 4.
Qed.
Lemma hol_light2 : forall x a,
3 * x + 7 * a < 4 -> 3 < 2 * x -> a < 0.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
Lemma hol_light3 : forall b a c x,
b ^ 2 < 4 * a * c -> (a * x ^2 + b * x + c = 0) -> False.
Proof.
-intros ; micromega Z.
+intros ; psatz Z 4.
Qed.
Lemma hol_light4 : forall a c b x,
a * x ^ 2 + b * x + c = 0 -> b ^ 2 >= 4 * a * c.
Proof.
-intros ; micromega Z.
+intros ; psatz Z 4.
Qed.
Lemma hol_light5 : forall x y,
@@ -228,7 +227,7 @@ Lemma hol_light5 : forall x y,
x ^ 2 + (y - 1) ^ 2 < 1 \/
(x - 1) ^ 2 + (y - 1) ^ 2 < 1.
Proof.
-intros; micromega Z.
+intros; psatz Z 3.
Qed.
@@ -237,32 +236,32 @@ Lemma hol_light7 : forall x y z,
0<= x /\ 0 <= y /\ 0 <= z /\ x + y + z <= 3
-> x * y + x * z + y * z >= 3 * x * y * z.
Proof.
-intros ; micromega Z.
+intros ; psatz Z 3.
Qed.
Lemma hol_light8 : forall x y z,
x ^ 2 + y ^ 2 + z ^ 2 = 1 -> (x + y + z) ^ 2 <= 3.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
Lemma hol_light9 : forall w x y z,
w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = 1
-> (w + x + y + z) ^ 2 <= 4.
Proof.
- intros;micromega Z.
+ intros; psatz Z 2.
Qed.
Lemma hol_light10 : forall x y,
x >= 1 /\ y >= 1 -> x * y >= x + y - 1.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
Lemma hol_light11 : forall x y,
x > 1 /\ y > 1 -> x * y > x + y - 1.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
@@ -274,14 +273,14 @@ Lemma hol_light12: forall x y z,
Proof.
intros x y z ; set (e:= (125841 / 50000)).
compute in e.
- unfold e ; intros ; micromega Z.
+ unfold e ; intros ; psatz Z 2.
Qed.
Lemma hol_light14 : forall x y z,
2 <= x /\ x <= 4 /\ 2 <= y /\ y <= 4 /\ 2 <= z /\ z <= 4
-> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z).
Proof.
- intros ;micromega Z.
+ intros ;psatz Z 2.
Qed.
(* ------------------------------------------------------------------------- *)
@@ -292,20 +291,20 @@ Lemma hol_light16 : forall x y,
0 <= x /\ 0 <= y /\ (x * y = 1)
-> x + y <= x ^ 2 + y ^ 2.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 2.
Qed.
Lemma hol_light17 : forall x y,
0 <= x /\ 0 <= y /\ (x * y = 1)
-> x * y * (x + y) <= x ^ 2 + y ^ 2.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 3.
Qed.
Lemma hol_light18 : forall x y,
0 <= x /\ 0 <= y -> x * y * (x + y) ^ 2 <= (x ^ 2 + y ^ 2) ^ 2.
Proof.
- intros ; micromega Z.
+ intros ; psatz Z 4.
Qed.
(* ------------------------------------------------------------------------- *)
@@ -314,13 +313,13 @@ Qed.
Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m.
Proof.
- intros ; zfarkas.
+ intros ; lia.
Qed.
Lemma hol_light22 : forall n, n >= 0 -> n <= n * n.
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
@@ -329,12 +328,12 @@ Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0
-> (x1 + y1 = x2 + y2).
Proof.
intros.
- micromega Z.
+ psatz Z 2.
Qed.
Lemma motzkin' : forall x y, (x^2+y^2+1)*(x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0.
Proof.
- intros ; sos Z.
+ intros ; psatz Z.
Qed.
@@ -343,5 +342,5 @@ Lemma motzkin : forall x y, (x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0.
Proof.
intros.
generalize (motzkin' x y).
- micromega Z.
+ psatz Z 8.
Qed.