summaryrefslogtreecommitdiff
path: root/test-suite/bugs/opened/shouldnotfail/1596.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/bugs/opened/shouldnotfail/1596.v')
-rw-r--r--test-suite/bugs/opened/shouldnotfail/1596.v242
1 files changed, 242 insertions, 0 deletions
diff --git a/test-suite/bugs/opened/shouldnotfail/1596.v b/test-suite/bugs/opened/shouldnotfail/1596.v
new file mode 100644
index 00000000..766bf524
--- /dev/null
+++ b/test-suite/bugs/opened/shouldnotfail/1596.v
@@ -0,0 +1,242 @@
+
+Require Import Relations.
+Require Import FSets.
+Require Import Arith.
+
+Lemma Bool_elim_bool : forall (b:bool),b=true \/ b=false.
+ destruct b;try tauto.
+Qed.
+
+Module OrderedPair (X:OrderedType) (Y:OrderedType) <: OrderedType with
+Definition t := (X.t * Y.t)%type.
+ Definition t := (X.t * Y.t)%type.
+
+ Definition eq (xy1:t) (xy2:t) :=
+ let (x1,y1) := xy1 in
+ let (x2,y2) := xy2 in
+ (X.eq x1 x2) /\ (Y.eq y1 y2).
+
+ Definition lt (xy1:t) (xy2:t) :=
+ let (x1,y1) := xy1 in
+ let (x2,y2) := xy2 in
+ (X.lt x1 x2) \/ ((X.eq x1 x2) /\ (Y.lt y1 y2)).
+
+ Lemma eq_refl : forall (x:t),(eq x x).
+ destruct x.
+ unfold eq.
+ split;[apply X.eq_refl | apply Y.eq_refl].
+ Qed.
+
+ Lemma eq_sym : forall (x y:t),(eq x y)->(eq y x).
+ destruct x;destruct y;unfold eq;intro.
+ elim H;clear H;intros.
+ split;[apply X.eq_sym | apply Y.eq_sym];trivial.
+ Qed.
+
+ Lemma eq_trans : forall (x y z:t),(eq x y)->(eq y z)->(eq x z).
+ unfold eq;destruct x;destruct y;destruct z;intros.
+ elim H;clear H;intros.
+ elim H0;clear H0;intros.
+ split;[eapply X.eq_trans | eapply Y.eq_trans];eauto.
+ Qed.
+
+ Lemma lt_trans : forall (x y z:t),(lt x y)->(lt y z)->(lt x z).
+ unfold lt;destruct x;destruct y;destruct z;intros.
+ case H;clear H;intro.
+ case H0;clear H0;intro.
+ left.
+ eapply X.lt_trans;eauto.
+ elim H0;clear H0;intros.
+ left.
+ case (X.compare t0 t4);trivial;intros.
+ generalize (X.eq_sym H0);intro.
+ generalize (X.eq_trans e H2);intro.
+ elim (X.lt_not_eq H H3).
+ generalize (X.lt_trans l H);intro.
+ generalize (X.eq_sym H0);intro.
+ elim (X.lt_not_eq H2 H3).
+ elim H;clear H;intros.
+ case H0;clear H0;intro.
+ left.
+ case (X.compare t0 t4);trivial;intros.
+ generalize (X.eq_sym H);intro.
+ generalize (X.eq_trans H2 e);intro.
+ elim (X.lt_not_eq H0 H3).
+ generalize (X.lt_trans H0 l);intro.
+ generalize (X.eq_sym H);intro.
+ elim (X.lt_not_eq H2 H3).
+ elim H0;clear H0;intros.
+ right.
+ split.
+ eauto.
+ eauto.
+ Qed.
+
+ Lemma lt_not_eq : forall (x y:t),(lt x y)->~(eq x y).
+ unfold lt, eq;destruct x;destruct y;intro;intro.
+ elim H0;clear H0;intros.
+ case H.
+ intro.
+ apply (X.lt_not_eq H2 H0).
+ intro.
+ elim H2;clear H2;intros.
+ apply (Y.lt_not_eq H3 H1).
+ Qed.
+
+ Definition compare : forall (x y:t),(Compare lt eq x y).
+ destruct x;destruct y.
+ case (X.compare t0 t2);intro.
+ apply LT.
+ left;trivial.
+ case (Y.compare t1 t3);intro.
+ apply LT.
+ right.
+ tauto.
+ apply EQ.
+ split;trivial.
+ apply GT.
+ right;auto.
+ apply GT.
+ left;trivial.
+ Defined.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.
+End OrderedPair.
+
+Module MessageSpi.
+ Inductive message : Set :=
+ | MNam : nat -> message.
+
+ Definition t := message.
+
+ Fixpoint message_lt (m n:message) {struct m} : Prop :=
+ match (m,n) with
+ | (MNam n1,MNam n2) => n1 < n2
+ end.
+
+ Module Ord <: OrderedType with Definition t := message with Definition eq :=
+@eq message.
+ Definition t := message.
+ Definition eq := @eq message.
+ Definition lt := message_lt.
+
+ Lemma eq_refl : forall (x:t),eq x x.
+ unfold eq;auto.
+ Qed.
+
+ Lemma eq_sym : forall (x y:t),(eq x y )->(eq y x).
+ unfold eq;auto.
+ Qed.
+
+ Lemma eq_trans : forall (x y z:t),(eq x y)->(eq y z)->(eq x z).
+ unfold eq;auto;intros;congruence.
+ Qed.
+
+ Lemma lt_trans : forall (x y z:t),(lt x y)->(lt y z)->(lt x z).
+ unfold lt.
+ induction x;destruct y;simpl;try tauto;destruct z;try tauto;intros.
+ omega.
+ Qed.
+
+ Lemma lt_not_eq : forall (x y:t),(lt x y)->~(eq x y).
+ unfold eq;unfold lt.
+ induction x;destruct y;simpl;try tauto;intro;red;intro;try (discriminate
+H0);injection H0;intros.
+ elim (lt_irrefl n);try omega.
+ Qed.
+
+ Definition compare : forall (x y:t),(Compare lt eq x y).
+ unfold lt, eq.
+ induction x;destruct y;intros;try (apply LT;simpl;trivial;fail);try
+(apply
+GT;simpl;trivial;fail).
+ case (lt_eq_lt_dec n n0);intros;try (case s;clear s;intros).
+ apply LT;trivial.
+ apply EQ;trivial.
+ rewrite e;trivial.
+ apply GT;trivial.
+ Defined.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.
+ End Ord.
+
+ Theorem eq_dec : forall (m n:message),{m=n}+{~(m=n)}.
+ intros.
+ case (Ord.compare m n);intro;[right | left | right];try (red;intro).
+ elim (Ord.lt_not_eq m n);auto.
+ rewrite e;auto.
+ elim (Ord.lt_not_eq n m);auto.
+ Defined.
+End MessageSpi.
+
+Module MessagePair := OrderedPair MessageSpi.Ord MessageSpi.Ord.
+
+Module Type Hedge := FSetInterface.S with Module E := MessagePair.
+
+Module A (H:Hedge).
+ Definition hedge := H.t.
+
+ Definition message_relation := relation MessageSpi.message.
+
+ Definition relation_of_hedge (h:hedge) (m n:MessageSpi.message) := H.In (m,n)
+h.
+
+ Inductive hedge_synthesis_relation (h:message_relation) : message_relation :=
+ | SynInc : forall (m n:MessageSpi.message),(h m
+n)->(hedge_synthesis_relation h m n).
+
+ Fixpoint hedge_in_synthesis (h:hedge) (m:MessageSpi.message)
+(n:MessageSpi.message) {struct m} : bool :=
+ if H.mem (m,n) h
+ then true
+ else false.
+
+ Definition hedge_synthesis_spec (h:hedge) := hedge_synthesis_relation
+(relation_of_hedge h).
+
+ Lemma hedge_in_synthesis_impl_hedge_synthesis_spec : forall (h:hedge),forall
+(m n:MessageSpi.message),(hedge_in_synthesis h m n)=true->(hedge_synthesis_spec
+h m n).
+ unfold hedge_synthesis_spec;unfold relation_of_hedge.
+ induction m;simpl;intro.
+ elim (Bool_elim_bool (H.mem (MessageSpi.MNam n,n0) h));intros.
+ apply SynInc;apply H.mem_2;trivial.
+ rewrite H in H0. (* !! possible here !! *)
+ discriminate H0.
+ Qed.
+End A.
+
+Module B (H:Hedge).
+ Definition hedge := H.t.
+
+ Definition message_relation := relation MessageSpi.t.
+
+ Definition relation_of_hedge (h:hedge) (m n:MessageSpi.t) := H.In (m,n) h.
+
+ Inductive hedge_synthesis_relation (h:message_relation) : message_relation :=
+ | SynInc : forall (m n:MessageSpi.t),(h m n)->(hedge_synthesis_relation h m
+n).
+
+ Fixpoint hedge_in_synthesis (h:hedge) (m:MessageSpi.t) (n:MessageSpi.t)
+{struct m} : bool :=
+ if H.mem (m,n) h
+ then true
+ else false.
+
+ Definition hedge_synthesis_spec (h:hedge) := hedge_synthesis_relation
+(relation_of_hedge h).
+
+ Lemma hedge_in_synthesis_impl_hedge_synthesis_spec : forall (h:hedge),forall
+(m n:MessageSpi.t),(hedge_in_synthesis h m n)=true->(hedge_synthesis_spec h m
+n).
+ unfold hedge_synthesis_spec;unfold relation_of_hedge.
+ induction m;simpl;intro.
+ elim (Bool_elim_bool (H.mem (MessageSpi.MNam n,n0) h));intros.
+ apply SynInc;apply H.mem_2;trivial.
+
+ rewrite H in H0. (* !! impossible here !! *)
+ discriminate H0.
+ Qed.
+End B. \ No newline at end of file