diff options
Diffstat (limited to 'test-suite/bugs/closed/shouldsucceed/1918.v')
-rw-r--r-- | test-suite/bugs/closed/shouldsucceed/1918.v | 377 |
1 files changed, 377 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/shouldsucceed/1918.v b/test-suite/bugs/closed/shouldsucceed/1918.v new file mode 100644 index 00000000..9d4a3e04 --- /dev/null +++ b/test-suite/bugs/closed/shouldsucceed/1918.v @@ -0,0 +1,377 @@ +(** Occur-check for Meta (up to delta) *) + +(** LNMItPredShort.v Version 2.0 July 2008 *) +(** does not need impredicative Set, runs under V8.2, tested with SVN 11296 *) + +(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse*) + + +Set Implicit Arguments. + +(** the universe of all monotypes *) +Definition k0 := Set. + +(** the type of all type transformations *) +Definition k1 := k0 -> k0. + +(** the type of all rank-2 type transformations *) +Definition k2 := k1 -> k1. + +(** polymorphic identity *) +Definition id : forall (A:Set), A -> A := fun A x => x. + +(** composition *) +Definition comp (A B C:Set)(g:B->C)(f:A->B) : A->C := fun x => g (f x). + +Infix "o" := comp (at level 90). + +Definition sub_k1 (X Y:k1) : Type := + forall A:Set, X A -> Y A. + +Infix "c_k1" := sub_k1 (at level 60). + +(** monotonicity *) +Definition mon (X:k1) : Type := forall (A B:Set), (A -> B) -> X A -> X B. + +(** extensionality *) +Definition ext (X:k1)(h: mon X): Prop := + forall (A B:Set)(f g:A -> B), + (forall a, f a = g a) -> forall r, h _ _ f r = h _ _ g r. + +(** first functor law *) +Definition fct1 (X:k1)(m: mon X) : Prop := + forall (A:Set)(x:X A), m _ _ (id(A:=A)) x = x. + +(** second functor law *) +Definition fct2 (X:k1)(m: mon X) : Prop := + forall (A B C:Set)(f:A -> B)(g:B -> C)(x:X A), + m _ _ (g o f) x = m _ _ g (m _ _ f x). + +(** pack up the good properties of the approximation into + the notion of an extensional functor *) +Record EFct (X:k1) : Type := mkEFct + { m : mon X; + e : ext m; + f1 : fct1 m; + f2 : fct2 m }. + +(** preservation of extensional functors *) +Definition pEFct (F:k2) : Type := + forall (X:k1), EFct X -> EFct (F X). + + +(** we show some closure properties of pEFct, depending on such properties + for EFct *) + +Definition moncomp (X Y:k1)(mX:mon X)(mY:mon Y): mon (fun A => X(Y A)). +Proof. + red. + intros X Y mX mY A B f x. + exact (mX (Y A)(Y B) (mY A B f) x). +Defined. + +(** closure under composition *) +Lemma compEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X(Y A)). +Proof. + intros X Y ef1 ef2. + apply (mkEFct(m:=moncomp (m ef1) (m ef2))); red; intros; unfold moncomp. +(* prove ext *) + apply (e ef1). + intro. + apply (e ef2); trivial. +(* prove fct1 *) + rewrite (e ef1 (m ef2 (id (A:=A))) (id(A:=Y A))). + apply (f1 ef1). + intro. + apply (f1 ef2). +(* prove fct2 *) + rewrite (e ef1 (m ef2 (g o f))((m ef2 g)o(m ef2 f))). + apply (f2 ef1). + intro. + unfold comp at 2. + apply (f2 ef2). +Defined. + +Corollary comppEFct (F G:k2): pEFct F -> pEFct G -> + pEFct (fun X A => F X (G X A)). +Proof. + red. + intros. + apply compEFct; auto. +Defined. + +(** closure under sums *) +Lemma sumEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A + Y A)%type. +Proof. + intros X Y ef1 ef2. + set (m12:=fun (A B:Set)(f:A->B) x => match x with + | inl y => inl _ (m ef1 f y) + | inr y => inr _ (m ef2 f y) + end). + apply (mkEFct(m:=m12)); red; intros. +(* prove ext *) + destruct r. + simpl. + apply (f_equal (fun x=>inl (A:=X B) (Y B) x)). + apply (e ef1); trivial. + simpl. + apply (f_equal (fun x=>inr (X B) (B:=Y B) x)). + apply (e ef2); trivial. +(* prove fct1 *) + destruct x. + simpl. + apply (f_equal (fun x=>inl (A:=X A) (Y A) x)). + apply (f1 ef1). + simpl. + apply (f_equal (fun x=>inr (X A) (B:=Y A) x)). + apply (f1 ef2). +(* prove fct2 *) + destruct x. + simpl. + rewrite (f2 ef1); reflexivity. + simpl. + rewrite (f2 ef2); reflexivity. +Defined. + +Corollary sumpEFct (F G:k2): pEFct F -> pEFct G -> + pEFct (fun X A => F X A + G X A)%type. +Proof. + red. + intros. + apply sumEFct; auto. +Defined. + +(** closure under products *) +Lemma prodEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A * Y A)%type. +Proof. + intros X Y ef1 ef2. + set (m12:=fun (A B:Set)(f:A->B) x => match x with + (x1,x2) => (m ef1 f x1, m ef2 f x2) end). + apply (mkEFct(m:=m12)); red; intros. +(* prove ext *) + destruct r as [x1 x2]. + simpl. + apply injective_projections; simpl. + apply (e ef1); trivial. + apply (e ef2); trivial. +(* prove fct1 *) + destruct x as [x1 x2]. + simpl. + apply injective_projections; simpl. + apply (f1 ef1). + apply (f1 ef2). +(* prove fct2 *) + destruct x as [x1 x2]. + simpl. + apply injective_projections; simpl. + apply (f2 ef1). + apply (f2 ef2). +Defined. + +Corollary prodpEFct (F G:k2): pEFct F -> pEFct G -> + pEFct (fun X A => F X A * G X A)%type. +Proof. + red. + intros. + apply prodEFct; auto. +Defined. + +(** the identity in k2 preserves extensional functors *) +Lemma idpEFct: pEFct (fun X => X). +Proof. + red. + intros. + assumption. +Defined. + +(** a variant for the eta-expanded identity *) +Lemma idpEFct_eta: pEFct (fun X A => X A). +Proof. + red. + intros X ef. + destruct ef as [m0 e0 f01 f02]. + change (mon X) with (mon (fun A => X A)) in m0. + apply (mkEFct (m:=m0) e0 f01 f02). +Defined. + +(** the identity in k1 "is" an extensional functor *) +Lemma idEFct: EFct (fun A => A). +Proof. + set (mId:=fun A B (f:A->B)(x:A) => f x). + apply (mkEFct(m:=mId)). + red. + intros. + unfold mId. + apply H. + red. + reflexivity. + red. + reflexivity. +Defined. + +(** constants in k2 *) +Lemma constpEFct (X:k1): EFct X -> pEFct (fun _ => X). +Proof. + red. + intros. + assumption. +Defined. + +(** constants in k1 *) +Lemma constEFct (C:Set): EFct (fun _ => C). +Proof. + intro. + set (mC:=fun A B (f:A->B)(x:C) => x). + apply (mkEFct(m:=mC)); red; intros; unfold mC; reflexivity. +Defined. + + +(** the option type *) +Lemma optionEFct: EFct (fun (A:Set) => option A). + apply (mkEFct (X:=fun (A:Set) => option A)(m:=option_map)); red; intros. + destruct r. + simpl. + rewrite H. + reflexivity. + reflexivity. + destruct x; reflexivity. + destruct x; reflexivity. +Defined. + + +(** natural transformations from (X,mX) to (Y,mY) *) +Definition NAT(X Y:k1)(j:X c_k1 Y)(mX:mon X)(mY:mon Y) : Prop := + forall (A B:Set)(f:A->B)(t:X A), j B (mX A B f t) = mY _ _ f (j A t). + + +Module Type LNMIt_Type. + +Parameter F:k2. +Parameter FpEFct: pEFct F. +Parameter mu20: k1. +Definition mu2: k1:= fun A => mu20 A. +Parameter mapmu2: mon mu2. +Definition MItType: Type := + forall G : k1, (forall X : k1, X c_k1 G -> F X c_k1 G) -> mu2 c_k1 G. +Parameter MIt0 : MItType. +Definition MIt : MItType:= fun G s A t => MIt0 s t. +Definition InType : Type := + forall (X:k1)(ef:EFct X)(j: X c_k1 mu2), + NAT j (m ef) mapmu2 -> F X c_k1 mu2. +Parameter In : InType. +Axiom mapmu2Red : forall (A:Set)(X:k1)(ef:EFct X)(j: X c_k1 mu2) + (n: NAT j (m ef) mapmu2)(t: F X A)(B:Set)(f:A->B), + mapmu2 f (In ef n t) = In ef n (m (FpEFct ef) f t). +Axiom MItRed : forall (G : k1) + (s : forall X : k1, X c_k1 G -> F X c_k1 G)(X : k1)(ef:EFct X)(j: X c_k1 mu2) + (n: NAT j (m ef) mapmu2)(A:Set)(t:F X A), + MIt s (In ef n t) = s X (fun A => (MIt s (A:=A)) o (j A)) A t. +Definition mu2IndType : Prop := + forall (P : (forall A : Set, mu2 A -> Prop)), + (forall (X : k1)(ef:EFct X)(j : X c_k1 mu2)(n: NAT j (m ef) mapmu2), + (forall (A : Set) (x : X A), P A (j A x)) -> + forall (A:Set)(t : F X A), P A (In ef n t)) -> + forall (A : Set) (r : mu2 A), P A r. +Axiom mu2Ind : mu2IndType. + +End LNMIt_Type. + +(** BushDepPredShort.v Version 0.2 July 2008 *) +(** does not need impredicative Set, produces stack overflow under V8.2, tested +with SVN 11296 *) + +(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse *) + +Set Implicit Arguments. + +Require Import List. + +Definition listk1 (A:Set) : Set := list A. +Open Scope type_scope. + +Definition BushF(X:k1)(A:Set) := unit + A * X (X A). + +Definition bushpEFct : pEFct BushF. +Proof. + unfold BushF. + apply sumpEFct. + apply constpEFct. + apply constEFct. + apply prodpEFct. + apply constpEFct. + apply idEFct. + apply comppEFct. + apply idpEFct. + apply idpEFct_eta. +Defined. + +Module Type BUSH := LNMIt_Type with Definition F:=BushF + with Definition FpEFct := +bushpEFct. + +Module Bush (BushBase:BUSH). + +Definition Bush : k1 := BushBase.mu2. + +Definition bush : mon Bush := BushBase.mapmu2. + +End Bush. + + +Definition Id : k1 := fun X => X. + +Fixpoint Pow (X:k1)(k:nat){struct k}:k1:= + match k with 0 => Id + | S k' => fun A => X (Pow X k' A) + end. + +Fixpoint POW (k:nat)(X:k1)(m:mon X){struct k} : mon (Pow X k) := + match k return mon (Pow X k) + with 0 => fun _ _ f => f + | S k' => fun _ _ f => m _ _ (POW k' m f) + end. + +Module Type BushkToList_Type. + +Declare Module Import BP: BUSH. +Definition F:=BushF. +Definition FpEFct:= bushpEFct. +Definition mu20 := mu20. +Definition mu2 := mu2. +Definition mapmu2 := mapmu2. +Definition MItType:= MItType. +Definition MIt0 := MIt0. +Definition MIt := MIt. +Definition InType := InType. +Definition In := In. +Definition mapmu2Red:=mapmu2Red. +Definition MItRed:=MItRed. +Definition mu2IndType:=mu2IndType. +Definition mu2Ind:=mu2Ind. + +Definition Bush:= mu2. +Module BushM := Bush BP. + +Parameter BushkToList: forall(k:nat)(A:k0)(t:Pow Bush k A), list A. +Axiom BushkToList0: forall(A:k0)(t:Pow Bush 0 A), BushkToList 0 A t = t::nil. + +End BushkToList_Type. + +Module BushDep (BushkToListM:BushkToList_Type). + +Module Bush := Bush BushkToListM. + +Import Bush. +Import BushkToListM. + + +Lemma BushkToList0NAT: NAT(Y:=listk1) (BushkToList 0) (POW 0 bush) map. +Proof. + red. + intros. + simpl. + rewrite BushkToList0. +(* stack overflow for coqc and coqtop *) + + +Abort. |