diff options
Diffstat (limited to 'test-suite/bugs/closed/3427.v')
-rw-r--r-- | test-suite/bugs/closed/3427.v | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/3427.v b/test-suite/bugs/closed/3427.v new file mode 100644 index 00000000..8483a4ec --- /dev/null +++ b/test-suite/bugs/closed/3427.v @@ -0,0 +1,195 @@ +(* -*- mode: coq; coq-prog-args: ("-emacs" "-indices-matter") -*- *) +(* File reduced by coq-bug-finder from original input, then from 0 lines to 7171 lines, then from 7184 lines to 558 lines, then from 556 lines to 209 lines *) +Generalizable All Variables. +Set Universe Polymorphism. +Notation Type0 := Set. +Notation idmap := (fun x => x). +Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x). +Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope. +Open Scope function_scope. +Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a where "x = y" := (@paths _ x y) : type_scope. +Arguments idpath {A a} , [A] a. +Delimit Scope path_scope with path. +Local Open Scope path_scope. +Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. +Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end. +Notation "1" := idpath : path_scope. +Notation "p @ q" := (concat p q) (at level 20) : path_scope. +Notation "p ^" := (inverse p) (at level 3) : path_scope. +Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end. +Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope. +Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end. +Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) := forall x:A, f x = g x. +Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope. +Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g) : forall x, f x = g x := fun x => match h with idpath => idpath end. +Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x. +Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { + equiv_inv : B -> A ; + eisretr : Sect equiv_inv f; + eissect : Sect f equiv_inv; + eisadj : forall x : A, eisretr (f x) = ap f (eissect x) + }. +Record Equiv A B := BuildEquiv { + equiv_fun :> A -> B ; + equiv_isequiv :> IsEquiv equiv_fun + }. + +Delimit Scope equiv_scope with equiv. + +Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope. + +Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope. + +Class Contr_internal (A : Type) := BuildContr { + center : A ; + contr : (forall y : A, center = y) + }. + +Inductive trunc_index : Type := +| minus_two : trunc_index +| trunc_S : trunc_index -> trunc_index. + +Fixpoint nat_to_trunc_index (n : nat) : trunc_index + := match n with + | 0 => trunc_S (trunc_S minus_two) + | S n' => trunc_S (nat_to_trunc_index n') + end. + +Coercion nat_to_trunc_index : nat >-> trunc_index. + +Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type := + match n with + | minus_two => Contr_internal A + | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y) + end. + +Notation minus_one:=(trunc_S minus_two). + +Class IsTrunc (n : trunc_index) (A : Type) : Type := + Trunc_is_trunc : IsTrunc_internal n A. + +Notation Contr := (IsTrunc minus_two). +Notation IsHProp := (IsTrunc minus_one). +Notation IsHSet := (IsTrunc 0). + +Class Funext := + { isequiv_apD10 :> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }. + +Definition concat_pV {A : Type} {x y : A} (p : x = y) : + p @ p^ = 1 + := + match p with idpath => 1 end. + +Definition concat_Vp {A : Type} {x y : A} (p : x = y) : + p^ @ p = 1 + := + match p with idpath => 1 end. + +Definition transport_pp {A : Type} (P : A -> Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) : + p @ q # u = q # p # u := + match q with idpath => + match p with idpath => 1 end + end. + +Definition transport2 {A : Type} (P : A -> Type) {x y : A} {p q : x = y} + (r : p = q) (z : P x) +: p # z = q # z + := ap (fun p' => p' # z) r. + +Inductive Unit : Type0 := + tt : Unit. + +Instance contr_unit : Contr Unit | 0 := let x := {| + center := tt; + contr := fun t : Unit => match t with tt => 1 end + |} in x. + +Instance trunc_succ `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000. +admit. +Defined. + +Record hProp := hp { hproptype :> Type ; isp : IsHProp hproptype}. +Definition Unit_hp:hProp:=(hp Unit _). + +Global Instance isequiv_ap_hproptype `{Funext} X Y : IsEquiv (@ap _ _ hproptype X Y). +admit. +Defined. + +Definition path_hprop `{Funext} X Y := (@ap _ _ hproptype X Y)^-1%equiv. + +Record hSet := BuildhSet {setT:> Type; iss :> IsHSet setT}. +Local Open Scope equiv_scope. + +Instance isequiv_path {A B : Type} (p : A = B) +: IsEquiv (transport (fun X:Type => X) p) | 0 + := BuildIsEquiv _ _ _ (transport (fun X:Type => X) p^) + (fun b => ((transport_pp idmap p^ p b)^ @ transport2 idmap (concat_Vp p) b)) + (fun a => ((transport_pp idmap p p^ a)^ @ transport2 idmap (concat_pV p) a)) + (fun a => match p in _ = C return + (transport_pp idmap p^ p (transport idmap p a))^ @ + transport2 idmap (concat_Vp p) (transport idmap p a) = + ap (transport idmap p) ((transport_pp idmap p p^ a) ^ @ + transport2 idmap (concat_pV p) a) with idpath => 1 end). + +Definition equiv_path (A B : Type) (p : A = B) : A <~> B + := BuildEquiv _ _ (transport (fun X:Type => X) p) _. + +Class Univalence := { + isequiv_equiv_path :> forall (A B : Type), IsEquiv (equiv_path A B) + }. + +Section Univalence. + Context `{Univalence}. + + Definition path_universe_uncurried {A B : Type} (f : A <~> B) : A = B + := (equiv_path A B)^-1 f. +End Univalence. + +Local Inductive minus1Trunc (A :Type) : Type := + min1 : A -> minus1Trunc A. + +Instance minus1Trunc_is_prop {A : Type} : IsHProp (minus1Trunc A) | 0. +admit. +Defined. + +Definition hexists {X} (P:X->Type):Type:= minus1Trunc (sigT P). + +Section AssumingUA. + + Definition isepi {X Y} `(f:X->Y) := forall Z: hSet, + forall g h: Y -> Z, g o f = h o f -> g = h. + Context {X Y : hSet} (f : X -> Y) (Hisepi : isepi f). + + Goal forall (X Y : hSet) (f : forall _ : setT X, setT Y), + let fib := + fun y : setT Y => + hp (@hexists (setT X) (fun x : setT X => @paths (setT Y) (f x) y)) + (@minus1Trunc_is_prop + (@sigT (setT X) (fun x : setT X => @paths (setT Y) (f x) y))) in + forall (x : setT X) (_ : Univalence) (_ : Funext), + @paths hProp (fib (f x)) Unit_hp. + intros. + + apply path_hprop. + simpl. + Set Printing Universes. + Set Printing All. + refine (path_universe_uncurried _). + Undo. + apply path_universe_uncurried. (* Toplevel input, characters 21-44: +Error: Refiner was given an argument + "@path_universe_uncurried (* Top.425 Top.426 Top.427 Top.428 Top.429 *) X1 + (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0) + (fun x0 : setT (* Top.405 *) X0 => + @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit + ?63" of type + "@paths (* Top.428 *) Type (* Top.425 *) + (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0) + (fun x0 : setT (* Top.405 *) X0 => + @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit" +instead of + "@paths (* Top.413 *) Type (* Set *) + (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0) + (fun x0 : setT (* Top.405 *) X0 => + @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit". + *) |