summaryrefslogtreecommitdiff
path: root/tactics/eqschemes.ml
diff options
context:
space:
mode:
Diffstat (limited to 'tactics/eqschemes.ml')
-rw-r--r--tactics/eqschemes.ml741
1 files changed, 741 insertions, 0 deletions
diff --git a/tactics/eqschemes.ml b/tactics/eqschemes.ml
new file mode 100644
index 00000000..236eff72
--- /dev/null
+++ b/tactics/eqschemes.ml
@@ -0,0 +1,741 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id$ *)
+
+(* File created by Hugo Herbelin, Nov 2009 *)
+
+(* This file builds schemes related to equality inductive types,
+ especially for dependent rewrite, rewriting on arbitrary equality
+ types and congruence on arbitrary equality types *)
+
+(* However, the choices made lack uniformity, as we have to make a
+ compromise between several constraints and ideal requirements:
+
+ - Having the extended schemes working conservatively over the
+ existing non-dependent schemes eq_rect and eq_rect_r. There is in
+ particular a problem with the dependent rewriting schemes in
+ hypotheses for which the inductive types cannot be in last
+ position of the scheme as it is the general rule in Coq. This has
+ an effect on the order of generated goals (side-conditions of the
+ lemma after or before the main goal). The non-dependent case can be
+ fixed but to the price of a lost of uniformity wrt side-conditions
+ in the dependent and non-dependent cases.
+
+ - Having schemes general enough to support non-symmetric equality
+ type like eq_true.
+
+ - Having schemes that avoid introducing beta-expansions blocked by
+ "match" so as to please the guard condition, but this introduces
+ some tricky things involving involutivity of symmetry that I
+ don't how to avoid. The result below is a compromise with
+ dependent left-to-right rewriting in conclusion (l2r_dep) using
+ the tricky involutivity of symmetry and dependent left-to-right
+ rewriting in hypotheses (r2l_forward_dep), that one wants to be
+ used for non-symmetric equality and that introduces blocked
+ beta-expansions.
+
+ One may wonder whether these extensions are worth to be done
+ regarding the price we have to pay and regarding the rare
+ situations where they are needed. However, I believe it meets a
+ natural expectation of the user.
+*)
+
+open Util
+open Names
+open Term
+open Declarations
+open Environ
+open Inductive
+open Termops
+open Namegen
+open Inductiveops
+open Ind_tables
+open Indrec
+
+let hid = id_of_string "H"
+let xid = id_of_string "X"
+let default_id_of_sort = function InProp | InSet -> hid | InType -> xid
+let fresh env id = next_global_ident_away id []
+
+let build_dependent_inductive ind (mib,mip) =
+ let realargs,_ = list_chop mip.mind_nrealargs_ctxt mip.mind_arity_ctxt in
+ applist
+ (mkInd ind,
+ extended_rel_list mip.mind_nrealargs_ctxt mib.mind_params_ctxt
+ @ extended_rel_list 0 realargs)
+
+let my_it_mkLambda_or_LetIn s c = it_mkLambda_or_LetIn ~init:c s
+let my_it_mkProd_or_LetIn s c = it_mkProd_or_LetIn ~init:c s
+let my_it_mkLambda_or_LetIn_name s c =
+ it_mkLambda_or_LetIn_name (Global.env()) c s
+
+let get_coq_eq () =
+ try
+ let eq = Libnames.destIndRef Coqlib.glob_eq in
+ let _ = Global.lookup_inductive eq in
+ (* Do not force the lazy if they are not defined *)
+ mkInd eq, Coqlib.build_coq_eq_refl ()
+ with Not_found ->
+ error "eq not found."
+
+(**********************************************************************)
+(* Check if an inductive type [ind] has the form *)
+(* *)
+(* I q1..qm,p1..pn a1..an with one constructor *)
+(* C : I q1..qm,p1..pn p1..pn *)
+(* *)
+(* in which case, a symmetry lemma is definable *)
+(**********************************************************************)
+
+let get_sym_eq_data env ind =
+ let (mib,mip as specif) = lookup_mind_specif env ind in
+ if Array.length mib.mind_packets <> 1 or Array.length mip.mind_nf_lc <> 1 then
+ error "Not an inductive type with a single constructor.";
+ let realsign,_ = list_chop mip.mind_nrealargs_ctxt mip.mind_arity_ctxt in
+ if List.exists (fun (_,b,_) -> b <> None) realsign then
+ error "Inductive equalities with local definitions in arity not supported.";
+ let constrsign,ccl = decompose_prod_assum mip.mind_nf_lc.(0) in
+ let _,constrargs = decompose_app ccl in
+ if rel_context_length constrsign<>rel_context_length mib.mind_params_ctxt then
+ error "Constructor must have no arguments"; (* This can be relaxed... *)
+ let params,constrargs = list_chop mib.mind_nparams constrargs in
+ if mip.mind_nrealargs > mib.mind_nparams then
+ error "Constructors arguments must repeat the parameters.";
+ let _,params2 = list_chop (mib.mind_nparams-mip.mind_nrealargs) params in
+ let paramsctxt1,_ =
+ list_chop (mib.mind_nparams-mip.mind_nrealargs) mib.mind_params_ctxt in
+ if params2 <> constrargs then
+ error "Constructors arguments must repeat the parameters.";
+ (* nrealargs_ctxt and nrealargs are the same here *)
+ (specif,mip.mind_nrealargs,realsign,mib.mind_params_ctxt,paramsctxt1)
+
+(**********************************************************************)
+(* Check if an inductive type [ind] has the form *)
+(* *)
+(* I q1..qm a1..an with one constructor *)
+(* C : I q1..qm b1..bn *)
+(* *)
+(* in which case it expresses the equalities ai=bi, but not in a way *)
+(* such that symmetry is a priori definable *)
+(**********************************************************************)
+
+let get_non_sym_eq_data env ind =
+ let (mib,mip as specif) = lookup_mind_specif env ind in
+ if Array.length mib.mind_packets <> 1 or Array.length mip.mind_nf_lc <> 1 then
+ error "Not an inductive type with a single constructor.";
+ let realsign,_ = list_chop mip.mind_nrealargs_ctxt mip.mind_arity_ctxt in
+ if List.exists (fun (_,b,_) -> b <> None) realsign then
+ error "Inductive equalities with local definitions in arity not supported";
+ let constrsign,ccl = decompose_prod_assum mip.mind_nf_lc.(0) in
+ let _,constrargs = decompose_app ccl in
+ if rel_context_length constrsign<>rel_context_length mib.mind_params_ctxt then
+ error "Constructor must have no arguments";
+ let _,constrargs = list_chop mib.mind_nparams constrargs in
+ (specif,constrargs,realsign,mip.mind_nrealargs)
+
+(**********************************************************************)
+(* Build the symmetry lemma associated to an inductive type *)
+(* I q1..qm,p1..pn a1..an with one constructor *)
+(* C : I q1..qm,p1..pn p1..pn *)
+(* *)
+(* sym := fun q1..qn p1..pn a1..an (H:I q1..qm p1..pn a1..an) => *)
+(* match H in I _.._ a1..an return I q1..qm a1..an p1..pn with *)
+(* C => C *)
+(* end *)
+(* : forall q1..qm p1..pn a1..an I q1..qm p1..pn a1..an -> *)
+(* I q1..qm a1..an p1..pn *)
+(* *)
+(**********************************************************************)
+
+let build_sym_scheme env ind =
+ let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 =
+ get_sym_eq_data env ind in
+ let cstr n =
+ mkApp (mkConstruct(ind,1),extended_rel_vect n mib.mind_params_ctxt) in
+ let varH = fresh env (default_id_of_sort (snd (mind_arity mip))) in
+ let applied_ind = build_dependent_inductive ind specif in
+ let realsign_ind =
+ name_context env ((Name varH,None,applied_ind)::realsign) in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ (my_it_mkLambda_or_LetIn mib.mind_params_ctxt
+ (my_it_mkLambda_or_LetIn_name realsign_ind
+ (mkCase (ci,
+ my_it_mkLambda_or_LetIn_name
+ (lift_rel_context (nrealargs+1) realsign_ind)
+ (mkApp (mkInd ind,Array.concat
+ [extended_rel_vect (3*nrealargs+2) paramsctxt1;
+ rel_vect 1 nrealargs;
+ rel_vect (2*nrealargs+2) nrealargs])),
+ mkRel 1 (* varH *),
+ [|cstr (nrealargs+1)|]))))
+
+let sym_scheme_kind =
+ declare_individual_scheme_object "_sym"
+ (fun ind -> build_sym_scheme (Global.env() (* side-effect! *)) ind)
+
+(**********************************************************************)
+(* Build the involutivity of symmetry for an inductive type *)
+(* I q1..qm,p1..pn a1..an with one constructor *)
+(* C : I q1..qm,p1..pn p1..pn *)
+(* *)
+(* inv := fun q1..qn p1..pn a1..an (H:I q1..qm p1..pn a1..an) => *)
+(* match H in I _.._ a1..an return *)
+(* sym q1..qm p1..pn a1..an (sym q1..qm a1..an p1..pn H) = H *)
+(* with *)
+(* C => refl_equal C *)
+(* end *)
+(* : forall q1..qm p1..pn a1..an (H:I q1..qm a1..an p1..pn), *)
+(* sym q1..qm p1..pn a1..an (sym q1..qm a1..an p1..pn H) = H *)
+(* *)
+(**********************************************************************)
+
+let build_sym_involutive_scheme env ind =
+ let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 =
+ get_sym_eq_data env ind in
+ let sym = mkConst (find_scheme sym_scheme_kind ind) in
+ let (eq,eqrefl) = get_coq_eq () in
+ let cstr n = mkApp (mkConstruct(ind,1),extended_rel_vect n paramsctxt) in
+ let varH = fresh env (default_id_of_sort (snd (mind_arity mip))) in
+ let applied_ind = build_dependent_inductive ind specif in
+ let applied_ind_C =
+ mkApp
+ (mkInd ind, Array.append
+ (extended_rel_vect (nrealargs+1) mib.mind_params_ctxt)
+ (rel_vect (nrealargs+1) nrealargs)) in
+ let realsign_ind =
+ name_context env ((Name varH,None,applied_ind)::realsign) in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ (my_it_mkLambda_or_LetIn paramsctxt
+ (my_it_mkLambda_or_LetIn_name realsign_ind
+ (mkCase (ci,
+ my_it_mkLambda_or_LetIn_name
+ (lift_rel_context (nrealargs+1) realsign_ind)
+ (mkApp (eq,[|
+ mkApp
+ (mkInd ind, Array.concat
+ [extended_rel_vect (3*nrealargs+2) paramsctxt1;
+ rel_vect (2*nrealargs+2) nrealargs;
+ rel_vect 1 nrealargs]);
+ mkApp (sym,Array.concat
+ [extended_rel_vect (3*nrealargs+2) paramsctxt1;
+ rel_vect 1 nrealargs;
+ rel_vect (2*nrealargs+2) nrealargs;
+ [|mkApp (sym,Array.concat
+ [extended_rel_vect (3*nrealargs+2) paramsctxt1;
+ rel_vect (2*nrealargs+2) nrealargs;
+ rel_vect 1 nrealargs;
+ [|mkRel 1|]])|]]);
+ mkRel 1|])),
+ mkRel 1 (* varH *),
+ [|mkApp(eqrefl,[|applied_ind_C;cstr (nrealargs+1)|])|]))))
+
+let sym_involutive_scheme_kind =
+ declare_individual_scheme_object "_sym_involutive"
+ (fun ind -> build_sym_involutive_scheme (Global.env() (* side-effect! *)) ind)
+
+(**********************************************************************)
+(* Build the left-to-right rewriting lemma for conclusion associated *)
+(* to an inductive type I q1..qm,p1..pn a1..an with one constructor *)
+(* C : I q1..qm,p1..pn p1..pn *)
+(* (symmetric equality in non-dependent and dependent cases) *)
+(* *)
+(* We could have defined the scheme in one match over a generalized *)
+(* type but this behaves badly wrt the guard condition, so we use *)
+(* symmetry instead; with commutative-cuts-aware guard condition a *)
+(* proof in the style of l2r_forward is also possible (see below) *)
+(* *)
+(* rew := fun q1..qm p1..pn a1..an *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *)
+(* (HC:P a1..an C) *)
+(* (H:I q1..qm p1..pn a1..an) => *)
+(* match sym_involutive q1..qm p1..pn a1..an H as Heq *)
+(* in _ = H return P p1..pn H *)
+(* with *)
+(* refl => *)
+(* match sym q1..qm p1..pn a1..an H as H *)
+(* in I _.._ p1..pn *)
+(* return P p1..pn (sym q1..qm a1..an p1..pn H) *)
+(* with *)
+(* C => HC *)
+(* end *)
+(* end *)
+(* : forall q1..qn p1..pn a1..an *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind), *)
+(* P a1..an C -> *)
+(* forall (H:I q1..qm p1..pn a1..an), P p1..pn H *)
+(* *)
+(* where A1..An are the common types of p1..pn and a1..an *)
+(* *)
+(* Note: the symmetry is needed in the dependent case since the *)
+(* dependency is on the inner arguments (the indices in C) and these *)
+(* inner arguments need to be visible as parameters to be able to *)
+(* abstract over them in P. *)
+(**********************************************************************)
+
+(**********************************************************************)
+(* For information, the alternative proof of dependent l2r_rew scheme *)
+(* that would use commutative cuts is the following *)
+(* *)
+(* rew := fun q1..qm p1..pn a1..an *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *)
+(* (HC:P a1..an C) *)
+(* (H:I q1..qm p1..pn a1..an) => *)
+(* match H in I .._.. a1..an return *)
+(* forall p1..pn, I q1..qm p1..pn a1..an -> kind), *)
+(* P a1..an C -> P p1..pn H *)
+(* with *)
+(* C => fun P HC => HC *)
+(* end P HC *)
+(* : forall q1..qn p1..pn a1..an *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind), *)
+(* P a1..an C -> *)
+(* forall (H:I q1..qm p1..pn a1..an), P p1..pn H *)
+(* *)
+(**********************************************************************)
+
+let build_l2r_rew_scheme dep env ind kind =
+ let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 =
+ get_sym_eq_data env ind in
+ let sym = mkConst (find_scheme sym_scheme_kind ind) in
+ let sym_involutive = mkConst (find_scheme sym_involutive_scheme_kind ind) in
+ let (eq,eqrefl) = get_coq_eq () in
+ let cstr n p =
+ mkApp (mkConstruct(ind,1),
+ Array.concat [extended_rel_vect n paramsctxt1;
+ rel_vect p nrealargs]) in
+ let varH = fresh env (default_id_of_sort (snd (mind_arity mip))) in
+ let varHC = fresh env (id_of_string "HC") in
+ let varP = fresh env (id_of_string "P") in
+ let applied_ind = build_dependent_inductive ind specif in
+ let applied_ind_P =
+ mkApp (mkInd ind, Array.concat
+ [extended_rel_vect (3*nrealargs) paramsctxt1;
+ rel_vect 0 nrealargs;
+ rel_vect nrealargs nrealargs]) in
+ let applied_ind_G =
+ mkApp (mkInd ind, Array.concat
+ [extended_rel_vect (3*nrealargs+3) paramsctxt1;
+ rel_vect (nrealargs+3) nrealargs;
+ rel_vect 0 nrealargs]) in
+ let realsign_P = lift_rel_context nrealargs realsign in
+ let realsign_ind_P =
+ name_context env ((Name varH,None,applied_ind_P)::realsign_P) in
+ let realsign_ind_G =
+ name_context env ((Name varH,None,applied_ind_G)::
+ lift_rel_context (nrealargs+3) realsign) in
+ let applied_sym_C n =
+ mkApp(sym,
+ Array.append (extended_rel_vect n mip.mind_arity_ctxt) [|mkVar varH|]) in
+ let applied_sym_G =
+ mkApp(sym,
+ Array.concat [extended_rel_vect (nrealargs*3+4) paramsctxt1;
+ rel_vect (nrealargs+4) nrealargs;
+ rel_vect 1 nrealargs;
+ [|mkRel 1|]]) in
+ let s = mkSort (new_sort_in_family kind) in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ let cieq = make_case_info (Global.env()) (destInd eq) RegularStyle in
+ let applied_PC =
+ mkApp (mkVar varP,Array.append (extended_rel_vect 1 realsign)
+ (if dep then [|cstr (2*nrealargs+1) 1|] else [||])) in
+ let applied_PG =
+ mkApp (mkVar varP,Array.append (rel_vect 1 nrealargs)
+ (if dep then [|applied_sym_G|] else [||])) in
+ let applied_PR =
+ mkApp (mkVar varP,Array.append (rel_vect (nrealargs+5) nrealargs)
+ (if dep then [|mkRel 2|] else [||])) in
+ let applied_sym_sym =
+ mkApp (sym,Array.concat
+ [extended_rel_vect (2*nrealargs+4) paramsctxt1;
+ rel_vect 4 nrealargs;
+ rel_vect (nrealargs+4) nrealargs;
+ [|mkApp (sym,Array.concat
+ [extended_rel_vect (2*nrealargs+4) paramsctxt1;
+ rel_vect (nrealargs+4) nrealargs;
+ rel_vect 4 nrealargs;
+ [|mkRel 2|]])|]]) in
+ let main_body =
+ mkCase (ci,
+ my_it_mkLambda_or_LetIn_name realsign_ind_G applied_PG,
+ applied_sym_C 3,
+ [|mkVar varHC|]) in
+ (my_it_mkLambda_or_LetIn mib.mind_params_ctxt
+ (my_it_mkLambda_or_LetIn_name realsign
+ (mkNamedLambda varP
+ (my_it_mkProd_or_LetIn (if dep then realsign_ind_P else realsign_P) s)
+ (mkNamedLambda varHC applied_PC
+ (mkNamedLambda varH (lift 2 applied_ind)
+ (if dep then (* we need a coercion *)
+ mkCase (cieq,
+ mkLambda (Name varH,lift 3 applied_ind,
+ mkLambda (Anonymous,
+ mkApp (eq,[|lift 4 applied_ind;applied_sym_sym;mkRel 1|]),
+ applied_PR)),
+ mkApp (sym_involutive,
+ Array.append (extended_rel_vect 3 mip.mind_arity_ctxt) [|mkVar varH|]),
+ [|main_body|])
+ else
+ main_body))))))
+
+(**********************************************************************)
+(* Build the left-to-right rewriting lemma for hypotheses associated *)
+(* to an inductive type I q1..qm,p1..pn a1..an with one constructor *)
+(* C : I q1..qm,p1..pn p1..pn *)
+(* (symmetric equality in non dependent and dependent cases) *)
+(* *)
+(* rew := fun q1..qm p1..pn a1..an (H:I q1..qm p1..pn a1..an) *)
+(* match H in I _.._ a1..an *)
+(* return forall *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *)
+(* (HC:P p1..pn H) => *)
+(* P a1..an C *)
+(* with *)
+(* C => fun P HC => HC *)
+(* end *)
+(* : forall q1..qm p1..pn a1..an *)
+(* (H:I q1..qm p1..pn a1..an) *)
+(* (P:forall p1..pn, I q1..qm p1..pn a1..an ->kind), *)
+(* P p1..pn H -> P a1..an C *)
+(* *)
+(* Note: the symmetry is needed in the dependent case since the *)
+(* dependency is on the inner arguments (the indices in C) and these *)
+(* inner arguments need to be visible as parameters to be able to *)
+(* abstract over them in P. *)
+(**********************************************************************)
+
+let build_l2r_forward_rew_scheme dep env ind kind =
+ let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 =
+ get_sym_eq_data env ind in
+ let cstr n p =
+ mkApp (mkConstruct(ind,1),
+ Array.concat [extended_rel_vect n paramsctxt1;
+ rel_vect p nrealargs]) in
+ let varH = fresh env (default_id_of_sort (snd (mind_arity mip))) in
+ let varHC = fresh env (id_of_string "HC") in
+ let varP = fresh env (id_of_string "P") in
+ let applied_ind = build_dependent_inductive ind specif in
+ let applied_ind_P =
+ mkApp (mkInd ind, Array.concat
+ [extended_rel_vect (4*nrealargs+2) paramsctxt1;
+ rel_vect 0 nrealargs;
+ rel_vect (nrealargs+1) nrealargs]) in
+ let applied_ind_P' =
+ mkApp (mkInd ind, Array.concat
+ [extended_rel_vect (3*nrealargs+1) paramsctxt1;
+ rel_vect 0 nrealargs;
+ rel_vect (2*nrealargs+1) nrealargs]) in
+ let realsign_P n = lift_rel_context (nrealargs*n+n) realsign in
+ let realsign_ind =
+ name_context env ((Name varH,None,applied_ind)::realsign) in
+ let realsign_ind_P n aP =
+ name_context env ((Name varH,None,aP)::realsign_P n) in
+ let s = mkSort (new_sort_in_family kind) in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ let applied_PC =
+ mkApp (mkVar varP,Array.append
+ (rel_vect (nrealargs*2+3) nrealargs)
+ (if dep then [|mkRel 2|] else [||])) in
+ let applied_PC' =
+ mkApp (mkVar varP,Array.append
+ (rel_vect (nrealargs+2) nrealargs)
+ (if dep then [|cstr (2*nrealargs+2) (nrealargs+2)|]
+ else [||])) in
+ let applied_PG =
+ mkApp (mkVar varP,Array.append (rel_vect 3 nrealargs)
+ (if dep then [|cstr (3*nrealargs+4) 3|] else [||])) in
+ (my_it_mkLambda_or_LetIn mib.mind_params_ctxt
+ (my_it_mkLambda_or_LetIn_name realsign
+ (mkNamedLambda varH applied_ind
+ (mkCase (ci,
+ my_it_mkLambda_or_LetIn_name
+ (lift_rel_context (nrealargs+1) realsign_ind)
+ (mkNamedProd varP
+ (my_it_mkProd_or_LetIn
+ (if dep then realsign_ind_P 2 applied_ind_P else realsign_P 2) s)
+ (mkNamedProd varHC applied_PC applied_PG)),
+ (mkVar varH),
+ [|mkNamedLambda varP
+ (my_it_mkProd_or_LetIn
+ (if dep then realsign_ind_P 1 applied_ind_P' else realsign_P 2) s)
+ (mkNamedLambda varHC applied_PC'
+ (mkVar varHC))|])))))
+
+(**********************************************************************)
+(* Build the right-to-left rewriting lemma for hypotheses associated *)
+(* to an inductive type I q1..qm a1..an with one constructor *)
+(* C : I q1..qm b1..bn *)
+(* (arbitrary equality in non-dependent and dependent cases) *)
+(* *)
+(* rew := fun q1..qm a1..an (H:I q1..qm a1..an) *)
+(* (P:forall a1..an, I q1..qm a1..an -> kind) *)
+(* (HC:P a1..an H) => *)
+(* match H in I _.._ a1..an return P a1..an H -> P b1..bn C *)
+(* with *)
+(* C => fun x => x *)
+(* end HC *)
+(* : forall q1..pm a1..an (H:I q1..qm a1..an) *)
+(* (P:forall a1..an, I q1..qm a1..an -> kind), *)
+(* P a1..an H -> P b1..bn C *)
+(* *)
+(* Note that the dependent elimination here is not a dependency *)
+(* in the conclusion of the scheme but a dependency in the premise of *)
+(* the scheme. This is unfortunately incompatible with the standard *)
+(* pattern for schemes in Coq which expects that the eliminated *)
+(* object is the last premise of the scheme. We then have no choice *)
+(* than following the more liberal pattern of having the eliminated *)
+(* object coming before the premises. *)
+(* *)
+(* Note that in the non-dependent case, this scheme (up to the order *)
+(* of premises) generalizes the (backward) l2r scheme above: same *)
+(* statement but no need for symmetry of the equality. *)
+(**********************************************************************)
+
+let build_r2l_forward_rew_scheme dep env ind kind =
+ let ((mib,mip as specif),constrargs,realsign,nrealargs) =
+ get_non_sym_eq_data env ind in
+ let cstr n =
+ mkApp (mkConstruct(ind,1),extended_rel_vect n mib.mind_params_ctxt) in
+ let constrargs_cstr = constrargs@[cstr 0] in
+ let varH = fresh env (default_id_of_sort (snd (mind_arity mip))) in
+ let varHC = fresh env (id_of_string "HC") in
+ let varP = fresh env (id_of_string "P") in
+ let applied_ind = build_dependent_inductive ind specif in
+ let realsign_ind =
+ name_context env ((Name varH,None,applied_ind)::realsign) in
+ let s = mkSort (new_sort_in_family kind) in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ let applied_PC =
+ applist (mkVar varP,if dep then constrargs_cstr else constrargs) in
+ let applied_PG =
+ mkApp (mkVar varP,
+ if dep then extended_rel_vect 0 realsign_ind
+ else extended_rel_vect 1 realsign) in
+ (my_it_mkLambda_or_LetIn mib.mind_params_ctxt
+ (my_it_mkLambda_or_LetIn_name realsign_ind
+ (mkNamedLambda varP
+ (my_it_mkProd_or_LetIn (lift_rel_context (nrealargs+1)
+ (if dep then realsign_ind else realsign)) s)
+ (mkNamedLambda varHC (lift 1 applied_PG)
+ (mkApp
+ (mkCase (ci,
+ my_it_mkLambda_or_LetIn_name
+ (lift_rel_context (nrealargs+3) realsign_ind)
+ (mkArrow applied_PG (lift (2*nrealargs+5) applied_PC)),
+ mkRel 3 (* varH *),
+ [|mkLambda
+ (Name varHC,
+ lift (nrealargs+3) applied_PC,
+ mkRel 1)|]),
+ [|mkVar varHC|]))))))
+
+(**********************************************************************)
+(* This function "repairs" the non-dependent r2l forward rewriting *)
+(* scheme by making it comply with the standard pattern of schemes *)
+(* in Coq. Otherwise said, it turns a scheme of type *)
+(* *)
+(* forall q1..pm a1..an, I q1..qm a1..an -> *)
+(* forall (P: forall a1..an, kind), *)
+(* P a1..an -> P b1..bn *)
+(* *)
+(* into a scheme of type *)
+(* *)
+(* forall q1..pm (P:forall a1..an, kind), *)
+(* P a1..an -> forall a1..an, I q1..qm a1..an -> P b1..bn *)
+(* *)
+(**********************************************************************)
+
+let fix_r2l_forward_rew_scheme c =
+ let t = Retyping.get_type_of (Global.env()) Evd.empty c in
+ let ctx,_ = decompose_prod_assum t in
+ match ctx with
+ | hp :: p :: ind :: indargs ->
+ my_it_mkLambda_or_LetIn indargs
+ (mkLambda_or_LetIn (map_rel_declaration (liftn (-1) 1) p)
+ (mkLambda_or_LetIn (map_rel_declaration (liftn (-1) 2) hp)
+ (mkLambda_or_LetIn (map_rel_declaration (lift 2) ind)
+ (Reductionops.whd_beta Evd.empty
+ (applist (c,
+ extended_rel_list 3 indargs @ [mkRel 1;mkRel 3;mkRel 2]))))))
+ | _ -> anomaly "Ill-formed non-dependent left-to-right rewriting scheme"
+
+(**********************************************************************)
+(* Build the right-to-left rewriting lemma for conclusion associated *)
+(* to an inductive type I q1..qm a1..an with one constructor *)
+(* C : I q1..qm b1..bn *)
+(* (arbitrary equality in non-dependent and dependent case) *)
+(* *)
+(* This is actually the standard case analysis scheme *)
+(* *)
+(* rew := fun q1..qm a1..an *)
+(* (P:forall a1..an, I q1..qm a1..an -> kind) *)
+(* (H:I q1..qm a1..an) *)
+(* (HC:P b1..bn C) => *)
+(* match H in I _.._ a1..an return P a1..an H with *)
+(* C => HC *)
+(* end *)
+(* : forall q1..pm a1..an *)
+(* (P:forall a1..an, I q1..qm a1..an -> kind) *)
+(* (H:I q1..qm a1..an), *)
+(* P b1..bn C -> P a1..an H *)
+(**********************************************************************)
+
+let build_r2l_rew_scheme dep env ind k =
+ build_case_analysis_scheme env Evd.empty ind dep k
+
+(**********************************************************************)
+(* Register the rewriting schemes *)
+(**********************************************************************)
+
+(**********************************************************************)
+(* Dependent rewrite from left-to-right in conclusion *)
+(* (symmetrical equality type only) *)
+(* Gamma |- P p1..pn H ==> Gamma |- P a1..an C *)
+(* with H:I p1..pn a1..an in Gamma *)
+(**********************************************************************)
+let rew_l2r_dep_scheme_kind =
+ declare_individual_scheme_object "_rew_r_dep"
+ (fun ind -> build_l2r_rew_scheme true (Global.env()) ind InType)
+
+(**********************************************************************)
+(* Dependent rewrite from right-to-left in conclusion *)
+(* Gamma |- P a1..an H ==> Gamma |- P b1..bn C *)
+(* with H:I a1..an in Gamma (non symmetric case) *)
+(* or H:I b1..bn a1..an in Gamma (symmetric case) *)
+(**********************************************************************)
+let rew_r2l_dep_scheme_kind =
+ declare_individual_scheme_object "_rew_dep"
+ (fun ind -> build_r2l_rew_scheme true (Global.env()) ind InType)
+
+(**********************************************************************)
+(* Dependent rewrite from right-to-left in hypotheses *)
+(* Gamma, P a1..an H |- D ==> Gamma, P b1..bn C |- D *)
+(* with H:I a1..an in Gamma (non symmetric case) *)
+(* or H:I b1..bn a1..an in Gamma (symmetric case) *)
+(**********************************************************************)
+let rew_r2l_forward_dep_scheme_kind =
+ declare_individual_scheme_object "_rew_fwd_dep"
+ (fun ind -> build_r2l_forward_rew_scheme true (Global.env()) ind InType)
+
+(**********************************************************************)
+(* Dependent rewrite from left-to-right in hypotheses *)
+(* (symmetrical equality type only) *)
+(* Gamma, P p1..pn H |- D ==> Gamma, P a1..an C |- D *)
+(* with H:I p1..pn a1..an in Gamma *)
+(**********************************************************************)
+let rew_l2r_forward_dep_scheme_kind =
+ declare_individual_scheme_object "_rew_fwd_r_dep"
+ (fun ind -> build_l2r_forward_rew_scheme true (Global.env()) ind InType)
+
+(**********************************************************************)
+(* Non-dependent rewrite from either left-to-right in conclusion or *)
+(* right-to-left in hypotheses: both l2r_rew and r2l_forward_rew are *)
+(* potential candidates. However r2l_forward_rew introduces a blocked *)
+(* beta-expansion that blocks in turn the guard condition if this *)
+(* one does not support commutative cuts while l2r_rew does not *)
+(* support non symmetrical equalities, so... *)
+(**********************************************************************)
+
+(**********************************************************************)
+(* ... we use l2r_rew for the symmetrical case: *)
+(**********************************************************************)
+let rew_l2r_scheme_kind =
+ declare_individual_scheme_object "_rew_r"
+ (fun ind -> build_l2r_rew_scheme false (Global.env()) ind InType)
+
+(**********************************************************************)
+(* ... and r2l_forward_rew for the non-symmetrical case, even though *)
+(* it may break the guard condition. Moreover, its standard form *)
+(* needs the inductive hypothesis not in last position what breaks *)
+(* the order of goals and need a fix: *)
+(**********************************************************************)
+let rew_asym_scheme_kind =
+ declare_individual_scheme_object "_rew_r_asym"
+ (fun ind -> fix_r2l_forward_rew_scheme
+ (build_r2l_forward_rew_scheme false (Global.env()) ind InType))
+
+(**********************************************************************)
+(* Non-dependent rewrite from either right-to-left in conclusion or *)
+(* left-to-right in hypotheses: both r2l_rew and l2r_forward_rew but *)
+(* since r2l_rew works in the non-symmetric case as well as without *)
+(* introducing commutative cuts, we adopt it *)
+(**********************************************************************)
+let rew_r2l_scheme_kind =
+ declare_individual_scheme_object "_rew"
+ (fun ind -> build_r2l_rew_scheme false (Global.env()) ind InType)
+
+(* End of rewriting schemes *)
+
+(**********************************************************************)
+(* Build the congruence lemma associated to an inductive type *)
+(* I p1..pn a with one constructor C : I q1..qn b *)
+(* *)
+(* congr := fun p1..pn (B:Type) (f:A->B) a (H:I p1..pn a) => *)
+(* match H in I _.._ a' return f b = f a' with *)
+(* C => eq_refl (f b) *)
+(* end *)
+(* : forall p1..pn (B:Type) (f:A->B) a, I p1..pn a -> f b = f a *)
+(* *)
+(* where A is the common type of a and b *)
+(**********************************************************************)
+
+(* TODO: extend it to types with more than one index *)
+
+let build_congr env (eq,refl) ind =
+ let (mib,mip) = lookup_mind_specif env ind in
+ if Array.length mib.mind_packets <> 1 or Array.length mip.mind_nf_lc <> 1 then
+ error "Not an inductive type with a single constructor.";
+ if mip.mind_nrealargs <> 1 then
+ error "Expect an inductive type with one predicate parameter.";
+ let i = 1 in
+ let realsign,_ = list_chop mip.mind_nrealargs_ctxt mip.mind_arity_ctxt in
+ if List.exists (fun (_,b,_) -> b <> None) realsign then
+ error "Inductive equalities with local definitions in arity not supported.";
+ let env_with_arity = push_rel_context mip.mind_arity_ctxt env in
+ let (_,_,ty) = lookup_rel (mip.mind_nrealargs - i + 1) env_with_arity in
+ let constrsign,ccl = decompose_prod_assum mip.mind_nf_lc.(0) in
+ let _,constrargs = decompose_app ccl in
+ if rel_context_length constrsign<>rel_context_length mib.mind_params_ctxt then
+ error "Constructor must have no arguments";
+ let b = List.nth constrargs (i + mib.mind_nparams - 1) in
+ let varB = fresh env (id_of_string "B") in
+ let varH = fresh env (id_of_string "H") in
+ let varf = fresh env (id_of_string "f") in
+ let ci = make_case_info (Global.env()) ind RegularStyle in
+ my_it_mkLambda_or_LetIn mib.mind_params_ctxt
+ (mkNamedLambda varB (new_Type ())
+ (mkNamedLambda varf (mkArrow (lift 1 ty) (mkVar varB))
+ (my_it_mkLambda_or_LetIn_name (lift_rel_context 2 realsign)
+ (mkNamedLambda varH
+ (applist
+ (mkInd ind,
+ extended_rel_list (mip.mind_nrealargs+2) mib.mind_params_ctxt @
+ extended_rel_list 0 realsign))
+ (mkCase (ci,
+ my_it_mkLambda_or_LetIn_name
+ (lift_rel_context (mip.mind_nrealargs+3) realsign)
+ (mkLambda
+ (Anonymous,
+ applist
+ (mkInd ind,
+ extended_rel_list (2*mip.mind_nrealargs_ctxt+3)
+ mib.mind_params_ctxt
+ @ extended_rel_list 0 realsign),
+ mkApp (eq,
+ [|mkVar varB;
+ mkApp (mkVar varf, [|lift (2*mip.mind_nrealargs_ctxt+4) b|]);
+ mkApp (mkVar varf, [|mkRel (mip.mind_nrealargs - i + 2)|])|]))),
+ mkVar varH,
+ [|mkApp (refl,
+ [|mkVar varB;
+ mkApp (mkVar varf, [|lift (mip.mind_nrealargs+3) b|])|])|]))))))
+
+let congr_scheme_kind = declare_individual_scheme_object "_congr"
+ (fun ind ->
+ (* May fail if equality is not defined *)
+ build_congr (Global.env()) (get_coq_eq ()) ind)