summaryrefslogtreecommitdiff
path: root/tactics/elim.ml
diff options
context:
space:
mode:
Diffstat (limited to 'tactics/elim.ml')
-rw-r--r--tactics/elim.ml195
1 files changed, 195 insertions, 0 deletions
diff --git a/tactics/elim.ml b/tactics/elim.ml
new file mode 100644
index 00000000..5573f9ea
--- /dev/null
+++ b/tactics/elim.ml
@@ -0,0 +1,195 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: elim.ml,v 1.37.2.1 2004/07/16 19:30:53 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Term
+open Termops
+open Environ
+open Libnames
+open Reduction
+open Inductiveops
+open Proof_type
+open Clenv
+open Hipattern
+open Tacmach
+open Tacticals
+open Tactics
+open Hiddentac
+open Genarg
+open Tacexpr
+
+let introElimAssumsThen tac ba =
+ let nassums =
+ List.fold_left
+ (fun acc b -> if b then acc+2 else acc+1)
+ 0 ba.branchsign
+ in
+ let introElimAssums = tclDO nassums intro in
+ (tclTHEN introElimAssums (elim_on_ba tac ba))
+
+let introCaseAssumsThen tac ba =
+ let case_thin_sign =
+ List.flatten
+ (List.map (function b -> if b then [false;true] else [false])
+ ba.branchsign)
+ in
+ let n1 = List.length case_thin_sign in
+ let n2 = List.length ba.branchnames in
+ let (l1,l2),l3 =
+ if n1 < n2 then list_chop n1 ba.branchnames, []
+ else
+ (ba.branchnames, []),
+ if n1 > n2 then snd (list_chop n2 case_thin_sign) else [] in
+ let introCaseAssums = tclTHEN (intros_pattern None l1) (intros_clearing l3)
+ in
+ (tclTHEN introCaseAssums (case_on_ba (tac l2) ba))
+
+(* The following tactic Decompose repeatedly applies the
+ elimination(s) rule(s) of the types satisfying the predicate
+ ``recognizer'' onto a certain hypothesis. For example :
+
+Require Elim.
+Require Le.
+ Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}.
+ Intros y H.
+ Decompose [sig and] H;EAuto.
+ Qed.
+
+Another example :
+
+ Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C.
+ Intros A B C H; Decompose [and or] H; Assumption.
+ Qed.
+*)
+
+let elimHypThen tac id gl =
+ elimination_then tac ([],[]) (mkVar id) gl
+
+let rec general_decompose_on_hyp recognizer =
+ ifOnHyp recognizer (general_decompose recognizer) (fun _ -> tclIDTAC)
+
+and general_decompose recognizer id =
+ elimHypThen
+ (introElimAssumsThen
+ (fun bas ->
+ tclTHEN (clear [id])
+ (tclMAP (general_decompose_on_hyp recognizer)
+ (ids_of_named_context bas.assums))))
+ id
+
+(* Faudrait ajouter un COMPLETE pour que l'hypothèse créée ne reste
+ pas si aucune élimination n'est possible *)
+
+(* Meilleures stratégies mais perte de compatibilité *)
+let tmphyp_name = id_of_string "_TmpHyp"
+let up_to_delta = ref false (* true *)
+
+let general_decompose recognizer c gl =
+ let typc = pf_type_of gl c in
+ tclTHENSV (cut typc)
+ [| tclTHEN (intro_using tmphyp_name)
+ (onLastHyp
+ (ifOnHyp recognizer (general_decompose recognizer)
+ (fun id -> clear [id])));
+ exact_no_check c |] gl
+
+let head_in gls indl t =
+ try
+ let ity,_ =
+ if !up_to_delta
+ then find_mrectype (pf_env gls) (project gls) t
+ else extract_mrectype t
+ in List.mem ity indl
+ with Not_found -> false
+
+let inductive_of = function
+ | IndRef ity -> ity
+ | r ->
+ errorlabstrm "Decompose"
+ (Printer.pr_global r ++ str " is not an inductive type")
+
+let decompose_these c l gls =
+ let indl = (*List.map inductive_of*) l in
+ general_decompose (fun (_,t) -> head_in gls indl t) c gls
+
+let decompose_nonrec c gls =
+ general_decompose
+ (fun (_,t) -> is_non_recursive_type t)
+ c gls
+
+let decompose_and c gls =
+ general_decompose
+ (fun (_,t) -> is_conjunction t)
+ c gls
+
+let decompose_or c gls =
+ general_decompose
+ (fun (_,t) -> is_disjunction t)
+ c gls
+
+let h_decompose l c =
+ Refiner.abstract_tactic (TacDecompose (l,c)) (decompose_these c l)
+
+let h_decompose_or c =
+ Refiner.abstract_tactic (TacDecomposeOr c) (decompose_or c)
+
+let h_decompose_and c =
+ Refiner.abstract_tactic (TacDecomposeAnd c) (decompose_and c)
+
+(* The tactic Double performs a double induction *)
+
+let simple_elimination c gls =
+ simple_elimination_then (fun _ -> tclIDTAC) c gls
+
+let induction_trailer abs_i abs_j bargs =
+ tclTHEN
+ (tclDO (abs_j - abs_i) intro)
+ (onLastHyp
+ (fun id gls ->
+ let idty = pf_type_of gls (mkVar id) in
+ let fvty = global_vars (pf_env gls) idty in
+ let possible_bring_hyps =
+ (List.tl (nLastHyps (abs_j - abs_i) gls)) @ bargs.assums
+ in
+ let (hyps,_) =
+ List.fold_left
+ (fun (bring_ids,leave_ids) (cid,_,cidty as d) ->
+ if not (List.mem cid leave_ids)
+ then (d::bring_ids,leave_ids)
+ else (bring_ids,cid::leave_ids))
+ ([],fvty) possible_bring_hyps
+ in
+ let ids = List.rev (ids_of_named_context hyps) in
+ (tclTHENSEQ
+ [bring_hyps hyps; tclTRY (clear ids);
+ simple_elimination (mkVar id)])
+ gls))
+
+let double_ind h1 h2 gls =
+ let abs_i = depth_of_quantified_hypothesis true h1 gls in
+ let abs_j = depth_of_quantified_hypothesis true h2 gls in
+ let (abs_i,abs_j) =
+ if abs_i < abs_j then (abs_i,abs_j) else
+ if abs_i > abs_j then (abs_j,abs_i) else
+ error "Both hypotheses are the same" in
+ let cl = pf_concl gls in
+ (tclTHEN (tclDO abs_i intro)
+ (onLastHyp
+ (fun id ->
+ elimination_then
+ (introElimAssumsThen (induction_trailer abs_i abs_j))
+ ([],[]) (mkVar id)))) gls
+
+let h_double_induction h1 h2 =
+ Refiner.abstract_tactic (TacDoubleInduction (h1,h2)) (double_ind h1 h2)
+
+