summaryrefslogtreecommitdiff
path: root/proofs/clenv.ml
diff options
context:
space:
mode:
Diffstat (limited to 'proofs/clenv.ml')
-rw-r--r--proofs/clenv.ml1175
1 files changed, 0 insertions, 1175 deletions
diff --git a/proofs/clenv.ml b/proofs/clenv.ml
deleted file mode 100644
index 999bb651..00000000
--- a/proofs/clenv.ml
+++ /dev/null
@@ -1,1175 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: clenv.ml,v 1.97.2.4 2004/12/06 12:59:11 herbelin Exp $ *)
-
-open Pp
-open Util
-open Names
-open Nameops
-open Term
-open Termops
-open Sign
-open Instantiate
-open Environ
-open Evd
-open Proof_type
-open Refiner
-open Proof_trees
-open Logic
-open Reductionops
-open Tacmach
-open Evar_refiner
-open Rawterm
-open Pattern
-open Tacexpr
-
-(* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms,
- gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *)
-
-let abstract_scheme env c l lname_typ =
- List.fold_left2
- (fun t (locc,a) (na,_,ta) ->
- let na = match kind_of_term a with Var id -> Name id | _ -> na in
- if occur_meta ta then error "cannot find a type for the generalisation"
- else if occur_meta a then lambda_name env (na,ta,t)
- else lambda_name env (na,ta,subst_term_occ locc a t))
- c
- (List.rev l)
- lname_typ
-
-let abstract_list_all env sigma typ c l =
- let ctxt,_ = decomp_n_prod env sigma (List.length l) typ in
- let p = abstract_scheme env c (List.map (function a -> [],a) l) ctxt in
- try
- if is_conv_leq env sigma (Typing.type_of env sigma p) typ then p
- else error "abstract_list_all"
- with UserError _ ->
- raise (RefinerError (CannotGeneralize typ))
-
-(* Generator of metavariables *)
-let new_meta =
- let meta_ctr = ref 0 in
- fun () -> incr meta_ctr; !meta_ctr
-
-(* replaces a mapping of existentials into a mapping of metas.
- Problem if an evar appears in the type of another one (pops anomaly) *)
-let exist_to_meta sigma (emap, c) =
- let metamap = ref [] in
- let change_exist evar =
- let ty = nf_betaiota (nf_evar emap (existential_type emap evar)) in
- let n = new_meta() in
- metamap := (n, ty) :: !metamap;
- mkCast (mkMeta n, ty) in
- let rec replace c =
- match kind_of_term c with
- Evar (k,_ as ev) when not (Evd.in_dom sigma k) -> change_exist ev
- | _ -> map_constr replace c in
- (!metamap, replace c)
-
-module Metaset = Intset
-
-module Metamap = Intmap
-
-let meta_exists p s = Metaset.fold (fun x b -> (p x) || b) s false
-
-let metamap_in_dom x m =
- try let _ = Metamap.find x m in true with Not_found -> false
-
-let metamap_to_list m =
- Metamap.fold (fun n v l -> (n,v)::l) m []
-
-let metamap_inv m b =
- Metamap.fold (fun n v l -> if v = b then n::l else l) m []
-
-type 'a freelisted = {
- rebus : 'a;
- freemetas : Metaset.t }
-
-(* collects all metavar occurences, in left-to-right order, preserving
- * repetitions and all. *)
-
-let collect_metas c =
- let rec collrec acc c =
- match kind_of_term c with
- | Meta mv -> mv::acc
- | _ -> fold_constr collrec acc c
- in
- List.rev (collrec [] c)
-
-let metavars_of c =
- let rec collrec acc c =
- match kind_of_term c with
- | Meta mv -> Metaset.add mv acc
- | _ -> fold_constr collrec acc c
- in
- collrec Metaset.empty c
-
-let mk_freelisted c =
- { rebus = c; freemetas = metavars_of c }
-
-
-(* Clausal environments *)
-
-type clbinding =
- | Cltyp of constr freelisted
- | Clval of constr freelisted * constr freelisted
-
-type 'a clausenv = {
- templval : constr freelisted;
- templtyp : constr freelisted;
- namenv : identifier Metamap.t;
- env : clbinding Metamap.t;
- hook : 'a }
-
-type wc = named_context sigma
-
-
-(* [mentions clenv mv0 mv1] is true if mv1 is defined and mentions
- * mv0, or if one of the free vars on mv1's freelist mentions
- * mv0 *)
-
-let mentions clenv mv0 =
- let rec menrec mv1 =
- try
- (match Metamap.find mv1 clenv.env with
- | Clval (b,_) ->
- Metaset.mem mv0 b.freemetas || meta_exists menrec b.freemetas
- | Cltyp _ -> false)
- with Not_found ->
- false
- in
- menrec
-
-(* Creates a new clause-environment, whose template has a given
- * type, CTY. This is not all that useful, since not very often
- * does one know the type of the clause - one usually only has
- * a clause which one wants to backchain thru. *)
-
-let mk_clenv wc cty =
- let mv = new_meta () in
- let cty_fls = mk_freelisted cty in
- { templval = mk_freelisted (mkMeta mv);
- templtyp = cty_fls;
- namenv = Metamap.empty;
- env = Metamap.add mv (Cltyp cty_fls) Metamap.empty ;
- hook = wc }
-
-let clenv_environments bound c =
- let rec clrec (ne,e,metas) n c =
- match n, kind_of_term c with
- | (Some 0, _) -> (ne, e, List.rev metas, c)
- | (n, Cast (c,_)) -> clrec (ne,e,metas) n c
- | (n, Prod (na,c1,c2)) ->
- let mv = new_meta () in
- let dep = dependent (mkRel 1) c2 in
- let ne' =
- if dep then
- match na with
- | Anonymous -> ne
- | Name id ->
- if metamap_in_dom mv ne then begin
- warning ("Cannot put metavar "^(string_of_meta mv)^
- " in name-environment twice");
- ne
- end else
- Metamap.add mv id ne
- else
- ne
- in
- let e' = Metamap.add mv (Cltyp (mk_freelisted c1)) e in
- clrec (ne',e', (mkMeta mv)::metas) (option_app ((+) (-1)) n)
- (if dep then (subst1 (mkMeta mv) c2) else c2)
- | (n, LetIn (na,b,_,c)) ->
- clrec (ne,e,metas) (option_app ((+) (-1)) n) (subst1 b c)
- | (n, _) -> (ne, e, List.rev metas, c)
- in
- clrec (Metamap.empty,Metamap.empty,[]) bound c
-
-let mk_clenv_from_n wc n (c,cty) =
- let (namenv,env,args,concl) = clenv_environments n cty in
- { templval = mk_freelisted (match args with [] -> c | _ -> applist (c,args));
- templtyp = mk_freelisted concl;
- namenv = namenv;
- env = env;
- hook = wc }
-
-let mk_clenv_from wc = mk_clenv_from_n wc None
-
-let map_fl f cfl = { cfl with rebus=f cfl.rebus }
-
-let map_clb f = function
- | Cltyp cfl -> Cltyp (map_fl f cfl)
- | Clval (cfl1,cfl2) -> Clval (map_fl f cfl1,map_fl f cfl2)
-
-let subst_clenv f sub clenv =
- { templval = map_fl (subst_mps sub) clenv.templval;
- templtyp = map_fl (subst_mps sub) clenv.templtyp;
- namenv = clenv.namenv;
- env = Metamap.map (map_clb (subst_mps sub)) clenv.env;
- hook = f sub clenv.hook }
-
-let connect_clenv wc clenv = { clenv with hook = wc }
-
-(* Was used in wcclausenv.ml
-(* Changes the head of a clenv with (templ,templty) *)
-let clenv_change_head (templ,templty) clenv =
- { templval = mk_freelisted templ;
- templtyp = mk_freelisted templty;
- namenv = clenv.namenv;
- env = clenv.env;
- hook = clenv.hook }
-*)
-
-let mk_clenv_hnf_constr_type_of wc t =
- mk_clenv_from wc (t,w_hnf_constr wc (w_type_of wc t))
-
-let mk_clenv_rename_from wc (c,t) =
- mk_clenv_from wc (c,rename_bound_var (w_env wc) [] t)
-
-let mk_clenv_rename_from_n wc n (c,t) =
- mk_clenv_from_n wc n (c,rename_bound_var (w_env wc) [] t)
-
-let mk_clenv_rename_type_of wc t =
- mk_clenv_from wc (t,rename_bound_var (w_env wc) [] (w_type_of wc t))
-
-let mk_clenv_rename_hnf_constr_type_of wc t =
- mk_clenv_from wc
- (t,rename_bound_var (w_env wc) [] (w_hnf_constr wc (w_type_of wc t)))
-
-let mk_clenv_type_of wc t = mk_clenv_from wc (t,w_type_of wc t)
-
-let clenv_assign mv rhs clenv =
- let rhs_fls = mk_freelisted rhs in
- if meta_exists (mentions clenv mv) rhs_fls.freemetas then
- error "clenv__assign: circularity in unification";
- try
- (match Metamap.find mv clenv.env with
- | Clval (fls,ty) ->
- if not (eq_constr fls.rebus rhs) then
- try
- (* Streams are lazy, force evaluation of id to catch Not_found*)
- let id = Metamap.find mv clenv.namenv in
- errorlabstrm "clenv_assign"
- (str "An incompatible instantiation has already been found for " ++
- pr_id id)
- with Not_found ->
- anomaly "clenv_assign: non dependent metavar already assigned"
- else
- clenv
- | Cltyp bty ->
- { templval = clenv.templval;
- templtyp = clenv.templtyp;
- namenv = clenv.namenv;
- env = Metamap.add mv (Clval (rhs_fls,bty)) clenv.env;
- hook = clenv.hook })
- with Not_found ->
- error "clenv_assign"
-
-let clenv_val_of clenv mv =
- let rec valrec mv =
- try
- (match Metamap.find mv clenv.env with
- | Cltyp _ -> mkMeta mv
- | Clval(b,_) ->
- instance (List.map (fun mv' -> (mv',valrec mv'))
- (Metaset.elements b.freemetas)) b.rebus)
- with Not_found ->
- mkMeta mv
- in
- valrec mv
-
-let clenv_instance clenv b =
- let c_sigma =
- List.map
- (fun mv -> (mv,clenv_val_of clenv mv)) (Metaset.elements b.freemetas)
- in
- instance c_sigma b.rebus
-
-let clenv_instance_term clenv c =
- clenv_instance clenv (mk_freelisted c)
-
-
-(* This function put casts around metavariables whose type could not be
- * infered by the refiner, that is head of applications, predicates and
- * subject of Cases.
- * Does check that the casted type is closed. Anyway, the refiner would
- * fail in this case... *)
-
-let clenv_cast_meta clenv =
- let rec crec u =
- match kind_of_term u with
- | App _ | Case _ -> crec_hd u
- | Cast (c,_) when isMeta c -> u
- | _ -> map_constr crec u
-
- and crec_hd u =
- match kind_of_term (strip_outer_cast u) with
- | Meta mv ->
- (try
- match Metamap.find mv clenv.env with
- | Cltyp b ->
- let b' = clenv_instance clenv b in
- if occur_meta b' then u else mkCast (mkMeta mv, b')
- | Clval(_) -> u
- with Not_found ->
- u)
- | App(f,args) -> mkApp (crec_hd f, Array.map crec args)
- | Case(ci,p,c,br) ->
- mkCase (ci, crec_hd p, crec_hd c, Array.map crec br)
- | _ -> u
- in
- crec
-
-
-(* [clenv_pose (na,mv,cty) clenv]
- * returns a new clausenv which has added to it the metavar MV,
- * with type CTY. the name NA, if it is not ANONYMOUS, will
- * be entered into the name-map, as a way of accessing the new
- * metavar. *)
-
-let clenv_pose (na,mv,cty) clenv =
- { templval = clenv.templval;
- templtyp = clenv.templtyp;
- env = Metamap.add mv (Cltyp (mk_freelisted cty)) clenv.env;
- namenv = (match na with
- | Anonymous -> clenv.namenv
- | Name id -> Metamap.add mv id clenv.namenv);
- hook = clenv.hook }
-
-let clenv_defined clenv mv =
- match Metamap.find mv clenv.env with
- | Clval _ -> true
- | Cltyp _ -> false
-
-let clenv_value clenv mv =
- match Metamap.find mv clenv.env with
- | Clval(b,_) -> b
- | Cltyp _ -> failwith "clenv_value"
-
-let clenv_type clenv mv =
- match Metamap.find mv clenv.env with
- | Cltyp b -> b
- | Clval(_,b) -> b
-
-let clenv_template clenv = clenv.templval
-
-let clenv_template_type clenv = clenv.templtyp
-
-let clenv_instance_value clenv mv =
- clenv_instance clenv (clenv_value clenv mv)
-
-let clenv_instance_type clenv mv =
- clenv_instance clenv (clenv_type clenv mv)
-
-let clenv_instance_template clenv =
- clenv_instance clenv (clenv_template clenv)
-
-let clenv_instance_template_type clenv =
- clenv_instance clenv (clenv_template_type clenv)
-
-let clenv_wtactic wt clenv =
- { templval = clenv.templval;
- templtyp = clenv.templtyp;
- namenv = clenv.namenv;
- env = clenv.env;
- hook = wt clenv.hook }
-
-let clenv_type_of ce c =
- let metamap =
- List.map
- (function
- | (n,Clval(_,typ)) -> (n,typ.rebus)
- | (n,Cltyp typ) -> (n,typ.rebus))
- (metamap_to_list ce.env)
- in
- Retyping.get_type_of_with_meta (w_env ce.hook) (w_Underlying ce.hook) metamap c
-
-let clenv_instance_type_of ce c =
- clenv_instance ce (mk_freelisted (clenv_type_of ce c))
-
-
-
-(* Unification à l'ordre 0 de m et n: [unify_0 mc wc m n] renvoie deux listes:
-
- metasubst:(int*constr)list récolte les instances des (Meta k)
- evarsubst:(constr*constr)list récolte les instances des (Const "?k")
-
- Attention : pas d'unification entre les différences instances d'une
- même meta ou evar, il peut rester des doublons *)
-
-(* Unification order: *)
-(* Left to right: unifies first argument and then the other arguments *)
-(*let unify_l2r x = List.rev x
-(* Right to left: unifies last argument and then the other arguments *)
-let unify_r2l x = x
-
-let sort_eqns = unify_r2l
-*)
-
-let unify_0 cv_pb wc m n =
- let env = w_env wc
- and sigma = w_Underlying wc in
- let trivial_unify pb substn m n =
- if (not(occur_meta m)) & is_fconv pb env sigma m n then substn
- else error_cannot_unify (m,n) in
- let rec unirec_rec pb ((metasubst,evarsubst) as substn) m n =
- let cM = Evarutil.whd_castappevar sigma m
- and cN = Evarutil.whd_castappevar sigma n in
- match (kind_of_term cM,kind_of_term cN) with
- | Meta k1, Meta k2 ->
- if k1 < k2 then (k1,cN)::metasubst,evarsubst
- else if k1 = k2 then substn
- else (k2,cM)::metasubst,evarsubst
- | Meta k, _ -> (k,cN)::metasubst,evarsubst
- | _, Meta k -> (k,cM)::metasubst,evarsubst
- | Evar _, _ -> metasubst,((cM,cN)::evarsubst)
- | _, Evar _ -> metasubst,((cN,cM)::evarsubst)
-
- | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
- unirec_rec CONV (unirec_rec CONV substn t1 t2) c1 c2
- | Prod (_,t1,c1), Prod (_,t2,c2) ->
- unirec_rec pb (unirec_rec CONV substn t1 t2) c1 c2
- | LetIn (_,b,_,c), _ -> unirec_rec pb substn (subst1 b c) cN
- | _, LetIn (_,b,_,c) -> unirec_rec pb substn cM (subst1 b c)
-
- | App (f1,l1), App (f2,l2) ->
- let len1 = Array.length l1
- and len2 = Array.length l2 in
- let (f1,l1,f2,l2) =
- if len1 = len2 then (f1,l1,f2,l2)
- else if len1 < len2 then
- let extras,restl2 = array_chop (len2-len1) l2 in
- (f1, l1, appvect (f2,extras), restl2)
- else
- let extras,restl1 = array_chop (len1-len2) l1 in
- (appvect (f1,extras), restl1, f2, l2) in
- (try
- array_fold_left2 (unirec_rec CONV)
- (unirec_rec CONV substn f1 f2) l1 l2
- with ex when catchable_exception ex ->
- trivial_unify pb substn cM cN)
- | Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
- array_fold_left2 (unirec_rec CONV)
- (unirec_rec CONV (unirec_rec CONV substn p1 p2) c1 c2) cl1 cl2
-
- | _ -> trivial_unify pb substn cM cN
-
- in
- if (not(occur_meta m)) & is_fconv cv_pb env sigma m n then
- ([],[])
- else
- let (mc,ec) = unirec_rec cv_pb ([],[]) m n in
- ((*sort_eqns*) mc, (*sort_eqns*) ec)
-
-
-(* Unification
- *
- * Procedure:
- * (1) The function [unify mc wc M N] produces two lists:
- * (a) a list of bindings Meta->RHS
- * (b) a list of bindings EVAR->RHS
- *
- * The Meta->RHS bindings cannot themselves contain
- * meta-vars, so they get applied eagerly to the other
- * bindings. This may or may not close off all RHSs of
- * the EVARs. For each EVAR whose RHS is closed off,
- * we can just apply it, and go on. For each which
- * is not closed off, we need to do a mimick step -
- * in general, we have something like:
- *
- * ?X == (c e1 e2 ... ei[Meta(k)] ... en)
- *
- * so we need to do a mimick step, converting ?X
- * into
- *
- * ?X -> (c ?z1 ... ?zn)
- *
- * of the proper types. Then, we can decompose the
- * equation into
- *
- * ?z1 --> e1
- * ...
- * ?zi --> ei[Meta(k)]
- * ...
- * ?zn --> en
- *
- * and keep on going. Whenever we find that a R.H.S.
- * is closed, we can, as before, apply the constraint
- * directly. Whenever we find an equation of the form:
- *
- * ?z -> Meta(n)
- *
- * we can reverse the equation, put it into our metavar
- * substitution, and keep going.
- *
- * The most efficient mimick possible is, for each
- * Meta-var remaining in the term, to declare a
- * new EVAR of the same type. This is supposedly
- * determinable from the clausale form context -
- * we look up the metavar, take its type there,
- * and apply the metavar substitution to it, to
- * close it off. But this might not always work,
- * since other metavars might also need to be resolved. *)
-
-let applyHead n c wc =
- let rec apprec n c cty wc =
- if n = 0 then
- (wc,c)
- else
- match kind_of_term (w_whd_betadeltaiota wc cty) with
- | Prod (_,c1,c2) ->
- let evar = Evarutil.new_evar_in_sign (w_env wc) in
- let (evar_n, _) = destEvar evar in
- (compose
- (apprec (n-1) (applist(c,[evar])) (subst1 evar c2))
- (w_Declare evar_n c1))
- wc
- | _ -> error "Apply_Head_Then"
- in
- apprec n c (w_type_of wc c) wc
-
-let is_mimick_head f =
- match kind_of_term f with
- (Const _|Var _|Rel _|Construct _|Ind _) -> true
- | _ -> false
-
-let rec mimick_evar hdc nargs sp wc =
- let evd = Evd.map wc.sigma sp in
- let wc' = extract_decl sp wc in
- let (wc'', c) = applyHead nargs hdc wc' in
- let (mc,ec) = unify_0 CONV wc'' (w_type_of wc'' c) (evd.evar_concl) in
- let (wc''',_) = w_resrec mc ec wc'' in
- if wc'== wc'''
- then w_Define sp c wc
- else
- let wc'''' = restore_decl sp evd wc''' in
- w_Define sp (Evarutil.nf_evar wc''''.sigma c) {it = wc.it ; sigma = wc''''.sigma}
-
-and w_Unify cv_pb m n wc =
- let (mc',ec') = unify_0 cv_pb wc m n in
- w_resrec mc' ec' wc
-
-and w_resrec metas evars wc =
- match evars with
- | [] -> (wc,metas)
-
- | (lhs,rhs) :: t ->
- match kind_of_term rhs with
-
- | Meta k -> w_resrec ((k,lhs)::metas) t wc
-
- | krhs ->
- match kind_of_term lhs with
-
- | Evar (evn,_) ->
- if w_defined_evar wc evn then
- let (wc',metas') = w_Unify CONV rhs lhs wc in
- w_resrec (metas@metas') t wc'
- else
- (try
- w_resrec metas t (w_Define evn rhs wc)
- with ex when catchable_exception ex ->
- (match krhs with
- | App (f,cl) when is_mimick_head f ->
- let wc' = mimick_evar f (Array.length cl) evn wc in
- w_resrec metas evars wc'
- | _ -> raise ex (*error "w_Unify" *)))
- | _ -> anomaly "w_resrec"
-
-
-(* [unifyTerms] et [unify] ne semble pas gérer les Meta, en
- particulier ne semblent pas vérifier que des instances différentes
- d'une même Meta sont compatibles. D'ailleurs le "fst" jette les metas
- provenant de w_Unify. (Utilisé seulement dans prolog.ml) *)
-
-(* let unifyTerms m n = walking (fun wc -> fst (w_Unify CONV m n [] wc)) *)
-let unifyTerms m n gls =
- tclIDTAC {it = gls.it;
- sigma = (get_gc (fst (w_Unify CONV m n (Refiner.project_with_focus gls))))}
-
-let unify m gls =
- let n = pf_concl gls in unifyTerms m n gls
-
-(* [clenv_merge b metas evars clenv] merges common instances in metas
- or in evars, possibly generating new unification problems; if [b]
- is true, unification of types of metas is required *)
-
-let clenv_merge with_types metas evars clenv =
- let ty_metas = ref [] in
- let ty_evars = ref [] in
- let rec clenv_resrec metas evars clenv =
- match (evars,metas) with
- | ([], []) -> clenv
-
- | ((lhs,rhs)::t, metas) ->
- (match kind_of_term rhs with
-
- | Meta k -> clenv_resrec ((k,lhs)::metas) t clenv
-
- | krhs ->
- (match kind_of_term lhs with
-
- | Evar (evn,_) ->
- if w_defined_evar clenv.hook evn then
- let (metas',evars') = unify_0 CONV clenv.hook rhs lhs in
- clenv_resrec (metas'@metas) (evars'@t) clenv
- else begin
- let rhs' =
- if occur_meta rhs then subst_meta metas rhs else rhs
- in
- if occur_evar evn rhs' then error "w_Unify";
- try
- clenv_resrec metas t
- (clenv_wtactic (w_Define evn rhs') clenv)
- with ex when catchable_exception ex ->
- (match krhs with
- | App (f,cl) when is_mimick_head f ->
- clenv_resrec metas evars
- (clenv_wtactic
- (mimick_evar f (Array.length cl) evn)
- clenv)
- | _ -> raise ex (********* error "w_Unify" *))
- end
-
- | _ -> anomaly "clenv_resrec"))
-
- | ([], (mv,n)::t) ->
- if clenv_defined clenv mv then
- let (metas',evars') =
- unify_0 CONV clenv.hook (clenv_value clenv mv).rebus n in
- clenv_resrec (metas'@t) evars' clenv
- else
- begin
- if with_types (* or occur_meta mvty *) then
- (let mvty = clenv_instance_type clenv mv in
- try
- let nty = clenv_type_of clenv
- (clenv_instance clenv (mk_freelisted n)) in
- let (mc,ec) = unify_0 CUMUL clenv.hook nty mvty in
- ty_metas := mc @ !ty_metas;
- ty_evars := ec @ !ty_evars
- with e when Logic.catchable_exception e -> ());
- clenv_resrec t [] (clenv_assign mv n clenv)
- end in
- (* merge constraints *)
- let clenv' = clenv_resrec metas evars clenv in
- if with_types then
- (* merge constraints about types: if they fail, don't worry *)
- try clenv_resrec !ty_metas !ty_evars clenv'
- with e when Logic.catchable_exception e -> clenv'
- else clenv'
-
-(* [clenv_unify M N clenv]
- performs a unification of M and N, generating a bunch of
- unification constraints in the process. These constraints
- are processed, one-by-one - they may either generate new
- bindings, or, if there is already a binding, new unifications,
- which themselves generate new constraints. This continues
- until we get failure, or we run out of constraints.
- [clenv_typed_unify M N clenv] expects in addition that expected
- types of metavars are unifiable with the types of their instances *)
-
-let clenv_unify_core_0 with_types cv_pb m n clenv =
- let (mc,ec) = unify_0 cv_pb clenv.hook m n in
- clenv_merge with_types mc ec clenv
-
-let clenv_unify_0 = clenv_unify_core_0 false
-let clenv_typed_unify = clenv_unify_core_0 true
-
-
-(* takes a substitution s, an open term op and a closed term cl
- try to find a subterm of cl which matches op, if op is just a Meta
- FAIL because we cannot find a binding *)
-
-let iter_fail f a =
- let n = Array.length a in
- let rec ffail i =
- if i = n then error "iter_fail"
- else
- try f a.(i)
- with ex when catchable_exception ex -> ffail (i+1)
- in ffail 0
-
-(* Tries to find an instance of term [cl] in term [op].
- Unifies [cl] to every subterm of [op] until it finds a match.
- Fails if no match is found *)
-let unify_to_subterm clause (op,cl) =
- let rec matchrec cl =
- let cl = strip_outer_cast cl in
- (try
- if closed0 cl
- then clenv_unify_0 CONV op cl clause,cl
- else error "Bound 1"
- with ex when catchable_exception ex ->
- (match kind_of_term cl with
- | App (f,args) ->
- let n = Array.length args in
- assert (n>0);
- let c1 = mkApp (f,Array.sub args 0 (n-1)) in
- let c2 = args.(n-1) in
- (try
- matchrec c1
- with ex when catchable_exception ex ->
- matchrec c2)
- | Case(_,_,c,lf) -> (* does not search in the predicate *)
- (try
- matchrec c
- with ex when catchable_exception ex ->
- iter_fail matchrec lf)
- | LetIn(_,c1,_,c2) ->
- (try
- matchrec c1
- with ex when catchable_exception ex ->
- matchrec c2)
-
- | Fix(_,(_,types,terms)) ->
- (try
- iter_fail matchrec types
- with ex when catchable_exception ex ->
- iter_fail matchrec terms)
-
- | CoFix(_,(_,types,terms)) ->
- (try
- iter_fail matchrec types
- with ex when catchable_exception ex ->
- iter_fail matchrec terms)
-
- | Prod (_,t,c) ->
- (try
- matchrec t
- with ex when catchable_exception ex ->
- matchrec c)
- | Lambda (_,t,c) ->
- (try
- matchrec t
- with ex when catchable_exception ex ->
- matchrec c)
- | _ -> error "Match_subterm"))
- in
- try matchrec cl
- with ex when catchable_exception ex ->
- raise (RefinerError (NoOccurrenceFound op))
-
-let unify_to_subterm_list allow_K clause oplist t =
- List.fold_right
- (fun op (clause,l) ->
- if isMeta op then
- if allow_K then (clause,op::l)
- else error "Match_subterm"
- else if occur_meta op then
- let (clause',cl) =
- try
- (* This is up to delta for subterms w/o metas ... *)
- unify_to_subterm clause (strip_outer_cast op,t)
- with RefinerError (NoOccurrenceFound _) when allow_K -> (clause,op)
- in
- (clause',cl::l)
- else if not allow_K & not (dependent op t) then
- (* This is not up to delta ... *)
- raise (RefinerError (NoOccurrenceFound op))
- else
- (clause,op::l))
- oplist
- (clause,[])
-
-let secondOrderAbstraction allow_K typ (p, oplist) clause =
- let env = w_env clause.hook in
- let sigma = w_Underlying clause.hook in
- let (clause',cllist) = unify_to_subterm_list allow_K clause oplist typ in
- let typp = clenv_instance_type clause' p in
- let pred = abstract_list_all env sigma typp typ cllist in
- clenv_unify_0 CONV (mkMeta p) pred clause'
-
-let clenv_unify2 allow_K cv_pb ty1 ty2 clause =
- let c1, oplist1 = whd_stack ty1 in
- let c2, oplist2 = whd_stack ty2 in
- match kind_of_term c1, kind_of_term c2 with
- | Meta p1, _ ->
- (* Find the predicate *)
- let clause' =
- secondOrderAbstraction allow_K ty2 (p1,oplist1) clause in
- (* Resume first order unification *)
- clenv_unify_0 cv_pb (clenv_instance_term clause' ty1) ty2 clause'
- | _, Meta p2 ->
- (* Find the predicate *)
- let clause' =
- secondOrderAbstraction allow_K ty1 (p2, oplist2) clause in
- (* Resume first order unification *)
- clenv_unify_0 cv_pb ty1 (clenv_instance_term clause' ty2) clause'
- | _ -> error "clenv_unify2"
-
-
-(* The unique unification algorithm works like this: If the pattern is
- flexible, and the goal has a lambda-abstraction at the head, then
- we do a first-order unification.
-
- If the pattern is not flexible, then we do a first-order
- unification, too.
-
- If the pattern is flexible, and the goal doesn't have a
- lambda-abstraction head, then we second-order unification. *)
-
-(* We decide here if first-order or second-order unif is used for Apply *)
-(* We apply a term of type (ai:Ai)C and try to solve a goal C' *)
-(* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *)
-
-(* 3-4-99 [HH] New fo/so choice heuristic :
- In case we have to unify (Meta(1) args) with ([x:A]t args')
- we first try second-order unification and if it fails first-order.
- Before, second-order was used if the type of Meta(1) and [x:A]t was
- convertible and first-order otherwise. But if failed if e.g. the type of
- Meta(1) had meta-variables in it. *)
-let clenv_unify allow_K cv_pb ty1 ty2 clenv =
- let hd1,l1 = whd_stack ty1 in
- let hd2,l2 = whd_stack ty2 in
- match kind_of_term hd1, l1<>[], kind_of_term hd2, l2<>[] with
- (* Pattern case *)
- | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true)
- when List.length l1 = List.length l2 ->
- (try
- clenv_typed_unify cv_pb ty1 ty2 clenv
- with ex when catchable_exception ex ->
- try
- clenv_unify2 allow_K cv_pb ty1 ty2 clenv
- with RefinerError (NoOccurrenceFound c) as e -> raise e
- | ex when catchable_exception ex ->
- error "Cannot solve a second-order unification problem")
-
- (* Second order case *)
- | (Meta _, true, _, _ | _, _, Meta _, true) ->
- (try
- clenv_unify2 allow_K cv_pb ty1 ty2 clenv
- with RefinerError (NoOccurrenceFound c) as e -> raise e
- | ex when catchable_exception ex ->
- try
- clenv_typed_unify cv_pb ty1 ty2 clenv
- with ex when catchable_exception ex ->
- error "Cannot solve a second-order unification problem")
-
- (* General case: try first order *)
- | _ -> clenv_unify_0 cv_pb ty1 ty2 clenv
-
-
-(* [clenv_bchain mv clenv' clenv]
- *
- * Resolves the value of "mv" (which must be undefined) in clenv to be
- * the template of clenv' be the value "c", applied to "n" fresh
- * metavars, whose types are chosen by destructing "clf", which should
- * be a clausale forme generated from the type of "c". The process of
- * resolution can cause unification of already-existing metavars, and
- * of the fresh ones which get created. This operation is a composite
- * of operations which pose new metavars, perform unification on
- * terms, and make bindings. *)
-
-let clenv_bchain mv subclenv clenv =
- (* Add the metavars of [subclenv] to [clenv], with their name-environment *)
- let clenv' =
- { templval = clenv.templval;
- templtyp = clenv.templtyp;
- namenv =
- List.fold_left (fun ne (mv,id) ->
- if clenv_defined subclenv mv then
- ne
- else if metamap_in_dom mv ne then begin
- warning ("Cannot put metavar "^(string_of_meta mv)^
- " in name-environment twice");
- ne
- end else
- Metamap.add mv id ne)
- clenv.namenv (metamap_to_list subclenv.namenv);
- env = List.fold_left (fun m (n,v) -> Metamap.add n v m)
- clenv.env (metamap_to_list subclenv.env);
- hook = clenv.hook }
- in
- (* unify the type of the template of [subclenv] with the type of [mv] *)
- let clenv'' =
- clenv_unify true CUMUL
- (clenv_instance clenv' (clenv_template_type subclenv))
- (clenv_instance_type clenv' mv)
- clenv'
- in
- (* assign the metavar *)
- let clenv''' =
- clenv_assign mv (clenv_instance clenv' (clenv_template subclenv)) clenv''
- in
- clenv'''
-
-
-(* swaps the "hooks" in [clenv1] and [clenv2], so we can then use
- backchain to hook them together *)
-
-let clenv_swap clenv1 clenv2 =
- let clenv1' = { templval = clenv1.templval;
- templtyp = clenv1.templtyp;
- namenv = clenv1.namenv;
- env = clenv1.env;
- hook = clenv2.hook}
- and clenv2' = { templval = clenv2.templval;
- templtyp = clenv2.templtyp;
- namenv = clenv2.namenv;
- env = clenv2.env;
- hook = clenv1.hook}
- in
- (clenv1',clenv2')
-
-let clenv_fchain mv nextclenv clenv =
- let (clenv',nextclenv') = clenv_swap clenv nextclenv in
- clenv_bchain mv clenv' nextclenv'
-
-let clenv_refine kONT clenv gls =
- tclTHEN
- (kONT clenv.hook)
- (refine (clenv_instance_template clenv)) gls
-
-let clenv_refine_cast kONT clenv gls =
- tclTHEN
- (kONT clenv.hook)
- (refine (clenv_cast_meta clenv (clenv_instance_template clenv)))
- gls
-
-(* [clenv_metavars clenv mv]
- * returns a list of the metavars which appear in the type of
- * the metavar mv. The list is unordered. *)
-
-let clenv_metavars clenv mv =
- match Metamap.find mv clenv.env with
- | Clval(_,b) -> b.freemetas
- | Cltyp b -> b.freemetas
-
-let clenv_template_metavars clenv = clenv.templval.freemetas
-
-(* [clenv_dependent hyps_only clenv]
- * returns a list of the metavars which appear in the template of clenv,
- * and which are dependent, This is computed by taking the metavars in cval,
- * in right-to-left order, and collecting the metavars which appear
- * in their types, and adding in all the metavars appearing in the
- * type of clenv.
- * If [hyps_only] then metavariables occurring in the type are _excluded_ *)
-
-let dependent_metas clenv mvs conclmetas =
- List.fold_right
- (fun mv deps ->
- Metaset.union deps (clenv_metavars clenv mv))
- mvs conclmetas
-
-let clenv_dependent hyps_only clenv =
- let mvs = collect_metas (clenv_instance_template clenv) in
- let ctyp_mvs = metavars_of (clenv_instance_template_type clenv) in
- let deps = dependent_metas clenv mvs ctyp_mvs in
- List.filter
- (fun mv -> Metaset.mem mv deps && not (hyps_only && Metaset.mem mv ctyp_mvs))
- mvs
-
-let clenv_missing c = clenv_dependent true c
-
-(* [clenv_independent clenv]
- * returns a list of metavariables which appear in the term cval,
- * and which are not dependent. That is, they do not appear in
- * the types of other metavars which are in cval, nor in the type
- * of cval, ctyp. *)
-
-let clenv_independent clenv =
- let mvs = collect_metas (clenv_instance_template clenv) in
- let ctyp_mvs = metavars_of (clenv_instance_template_type clenv) in
- let deps = dependent_metas clenv mvs ctyp_mvs in
- List.filter (fun mv -> not (Metaset.mem mv deps)) mvs
-
-let w_coerce wc c ctyp target =
- let j = make_judge c ctyp in
- let env = w_env wc in
- let isevars = Evarutil.create_evar_defs (w_Underlying wc) in
- let j' = Coercion.inh_conv_coerce_to dummy_loc env isevars j target in
- (* faire quelque chose avec isevars ? *)
- j'.uj_val
-
-let clenv_constrain_dep_args hyps_only clause = function
- | [] -> clause
- | mlist ->
- let occlist = clenv_dependent hyps_only clause in
- if List.length occlist = List.length mlist then
- List.fold_left2
- (fun clenv k c ->
- let wc = clause.hook in
- try
- let k_typ = w_hnf_constr wc (clenv_instance_type clause k) in
- let c_typ = w_hnf_constr wc (w_type_of wc c) in
- let c' = w_coerce wc c c_typ k_typ in
- clenv_unify true CONV (mkMeta k) c' clenv
- with _ ->
- clenv_unify true CONV (mkMeta k) c clenv)
- clause occlist mlist
- else
- error ("Not the right number of missing arguments (expected "
- ^(string_of_int (List.length occlist))^")")
-
-let clenv_constrain_missing_args mlist clause =
- clenv_constrain_dep_args true clause mlist
-
-let clenv_lookup_name clenv id =
- match metamap_inv clenv.namenv id with
- | [] ->
- errorlabstrm "clenv_lookup_name"
- (str"No such bound variable " ++ pr_id id)
- | [n] ->
- n
- | _ ->
- anomaly "clenv_lookup_name: a name occurs more than once in clause"
-
-let clenv_match_args s clause =
- let mvs = clenv_independent clause in
- let rec matchrec clause = function
- | [] -> clause
- | (loc,b,c)::t ->
- let k =
- match b with
- | NamedHyp s ->
- if List.exists (fun (_,b',_) -> b=b') t then
- errorlabstrm "clenv_match_args"
- (str "The variable " ++ pr_id s ++
- str " occurs more than once in binding")
- else
- clenv_lookup_name clause s
- | AnonHyp n ->
- if List.exists (fun (_,b',_) -> b=b') t then
- errorlabstrm "clenv_match_args"
- (str "The position " ++ int n ++
- str " occurs more than once in binding");
- try
- List.nth mvs (n-1)
- with (Failure _|Invalid_argument _) ->
- errorlabstrm "clenv_match_args" (str "No such binder")
- in
- let k_typ = w_hnf_constr clause.hook (clenv_instance_type clause k)
- (* nf_betaiota was before in type_of - useful to reduce types like *)
- (* (x:A)([x]P u) *)
- and c_typ = w_hnf_constr clause.hook
- (nf_betaiota (w_type_of clause.hook c)) in
- let cl =
- (* Try to infer some Meta/Evar from the type of [c] *)
- try
- clenv_assign k c (clenv_unify true CUMUL c_typ k_typ clause)
- with _ ->
- (* Try to coerce to the type of [k]; cannot merge with the
- previous case because Coercion does not handle Meta *)
- let c' = w_coerce clause.hook c c_typ k_typ in
- try clenv_unify true CONV (mkMeta k) c' clause
- with RefinerError (CannotUnify (m,n)) ->
- Stdpp.raise_with_loc loc
- (RefinerError (CannotUnifyBindingType (m,n)))
- in matchrec cl t
- in
- matchrec clause s
-
-type arg_bindings = (int * constr) list
-
-let clenv_constrain_with_bindings bl clause =
- if bl = [] then
- clause
- else
- let all_mvs = collect_metas (clenv_template clause).rebus in
- let rec matchrec clause = function
- | [] -> clause
- | (n,c)::t ->
- let k =
- (try
- if n > 0 then
- List.nth all_mvs (n-1)
- else if n < 0 then
- List.nth (List.rev all_mvs) (-n-1)
- else error "clenv_constrain_with_bindings"
- with Failure _ ->
- errorlabstrm "clenv_constrain_with_bindings"
- (str"Clause did not have " ++ int n ++ str"-th" ++
- str" absolute argument")) in
- let env = Global.env () in
- let sigma = Evd.empty in
- let k_typ = nf_betaiota (clenv_instance_type clause k) in
- let c_typ = nf_betaiota (w_type_of clause.hook c) in
- matchrec
- (clenv_assign k c (clenv_unify true CUMUL c_typ k_typ clause)) t
- in
- matchrec clause bl
-
-
-(* [clenv_pose_dependent_evars clenv]
- * For each dependent evar in the clause-env which does not have a value,
- * pose a value for it by constructing a fresh evar. We do this in
- * left-to-right order, so that every evar's type is always closed w.r.t.
- * metas. *)
-
-let clenv_pose_dependent_evars clenv =
- let dep_mvs = clenv_dependent false clenv in
- List.fold_left
- (fun clenv mv ->
- let evar = Evarutil.new_evar_in_sign (w_env clenv.hook) in
- let (evar_n,_) = destEvar evar in
- let tY = clenv_instance_type clenv mv in
- let clenv' = clenv_wtactic (w_Declare evar_n tY) clenv in
- clenv_assign mv evar clenv')
- clenv
- dep_mvs
-
-(***************************)
-
-let clenv_unique_resolver allow_K clause gl =
- clenv_unify allow_K CUMUL
- (clenv_instance_template_type clause) (pf_concl gl) clause
-
-let res_pf kONT clenv gls =
- clenv_refine kONT (clenv_unique_resolver false clenv gls) gls
-
-let res_pf_cast kONT clenv gls =
- clenv_refine_cast kONT (clenv_unique_resolver false clenv gls) gls
-
-let elim_res_pf kONT clenv allow_K gls =
- clenv_refine_cast kONT (clenv_unique_resolver allow_K clenv gls) gls
-
-let elim_res_pf_THEN_i kONT clenv tac gls =
- let clenv' = (clenv_unique_resolver true clenv gls) in
- tclTHENLASTn (clenv_refine kONT clenv') (tac clenv') gls
-
-let e_res_pf kONT clenv gls =
- clenv_refine kONT
- (clenv_pose_dependent_evars (clenv_unique_resolver false clenv gls)) gls
-
-(* Clausal environment for an application *)
-
-let make_clenv_binding_gen n wc (c,t) = function
- | ImplicitBindings largs ->
- let clause = mk_clenv_from_n wc n (c,t) in
- clenv_constrain_dep_args (n <> None) clause largs
- | ExplicitBindings lbind ->
- let clause = mk_clenv_rename_from_n wc n (c,t) in
- clenv_match_args lbind clause
- | NoBindings ->
- mk_clenv_from_n wc n (c,t)
-
-let make_clenv_binding_apply wc n = make_clenv_binding_gen (Some n) wc
-let make_clenv_binding = make_clenv_binding_gen None
-
-open Printer
-
-let pr_clenv clenv =
- let pr_name mv =
- try
- let id = Metamap.find mv clenv.namenv in
- (str"[" ++ pr_id id ++ str"]")
- with Not_found -> (mt ())
- in
- let pr_meta_binding = function
- | (mv,Cltyp b) ->
- hov 0
- (pr_meta mv ++ pr_name mv ++ str " : " ++ prterm b.rebus ++ fnl ())
- | (mv,Clval(b,_)) ->
- hov 0
- (pr_meta mv ++ pr_name mv ++ str " := " ++ prterm b.rebus ++ fnl ())
- in
- (str"TEMPL: " ++ prterm clenv.templval.rebus ++
- str" : " ++ prterm clenv.templtyp.rebus ++ fnl () ++
- (prlist pr_meta_binding (metamap_to_list clenv.env)))