summaryrefslogtreecommitdiff
path: root/pretyping/reductionops.ml
diff options
context:
space:
mode:
Diffstat (limited to 'pretyping/reductionops.ml')
-rw-r--r--pretyping/reductionops.ml717
1 files changed, 717 insertions, 0 deletions
diff --git a/pretyping/reductionops.ml b/pretyping/reductionops.ml
new file mode 100644
index 00000000..a030dcf2
--- /dev/null
+++ b/pretyping/reductionops.ml
@@ -0,0 +1,717 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: reductionops.ml,v 1.6.2.2 2004/07/16 19:30:46 herbelin Exp $ *)
+
+open Pp
+open Util
+open Names
+open Term
+open Termops
+open Univ
+open Evd
+open Declarations
+open Environ
+open Instantiate
+open Closure
+open Esubst
+open Reduction
+
+exception Elimconst
+
+(* The type of (machine) states (= lambda-bar-calculus' cuts) *)
+type state = constr * constr stack
+
+type contextual_reduction_function = env -> evar_map -> constr -> constr
+type reduction_function = contextual_reduction_function
+type local_reduction_function = constr -> constr
+
+type contextual_stack_reduction_function =
+ env -> evar_map -> constr -> constr * constr list
+type stack_reduction_function = contextual_stack_reduction_function
+type local_stack_reduction_function = constr -> constr * constr list
+
+type contextual_state_reduction_function =
+ env -> evar_map -> state -> state
+type state_reduction_function = contextual_state_reduction_function
+type local_state_reduction_function = state -> state
+
+(*************************************)
+(*** Reduction Functions Operators ***)
+(*************************************)
+
+let rec whd_state (x, stack as s) =
+ match kind_of_term x with
+ | App (f,cl) -> whd_state (f, append_stack cl stack)
+ | Cast (c,_) -> whd_state (c, stack)
+ | _ -> s
+
+let appterm_of_stack (f,s) = (f,list_of_stack s)
+
+let whd_stack x = appterm_of_stack (whd_state (x, empty_stack))
+let whd_castapp_stack = whd_stack
+
+let stack_reduction_of_reduction red_fun env sigma s =
+ let t = red_fun env sigma (app_stack s) in
+ whd_stack t
+
+let strong whdfun env sigma t =
+ let rec strongrec env t =
+ map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in
+ strongrec env t
+
+let local_strong whdfun =
+ let rec strongrec t = map_constr strongrec (whdfun t) in
+ strongrec
+
+let rec strong_prodspine redfun c =
+ let x = redfun c in
+ match kind_of_term x with
+ | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b)
+ | _ -> x
+
+(*************************************)
+(*** Reduction using bindingss ***)
+(*************************************)
+
+(* This signature is very similar to Closure.RedFlagsSig except there
+ is eta but no per-constant unfolding *)
+
+module type RedFlagsSig = sig
+ type flags
+ type flag
+ val fbeta : flag
+ val fevar : flag
+ val fdelta : flag
+ val feta : flag
+ val fiota : flag
+ val fzeta : flag
+ val mkflags : flag list -> flags
+ val red_beta : flags -> bool
+ val red_delta : flags -> bool
+ val red_evar : flags -> bool
+ val red_eta : flags -> bool
+ val red_iota : flags -> bool
+ val red_zeta : flags -> bool
+end
+
+(* Naive Implementation
+module RedFlags = (struct
+ type flag = BETA | DELTA | EVAR | IOTA | ZETA | ETA
+ type flags = flag list
+ let fbeta = BETA
+ let fdelta = DELTA
+ let fevar = EVAR
+ let fiota = IOTA
+ let fzeta = ZETA
+ let feta = ETA
+ let mkflags l = l
+ let red_beta = List.mem BETA
+ let red_delta = List.mem DELTA
+ let red_evar = List.mem EVAR
+ let red_eta = List.mem ETA
+ let red_iota = List.mem IOTA
+ let red_zeta = List.mem ZETA
+end : RedFlagsSig)
+*)
+
+(* Compact Implementation *)
+module RedFlags = (struct
+ type flag = int
+ type flags = int
+ let fbeta = 1
+ let fdelta = 2
+ let fevar = 4
+ let feta = 8
+ let fiota = 16
+ let fzeta = 32
+ let mkflags = List.fold_left (lor) 0
+ let red_beta f = f land fbeta <> 0
+ let red_delta f = f land fdelta <> 0
+ let red_evar f = f land fevar <> 0
+ let red_eta f = f land feta <> 0
+ let red_iota f = f land fiota <> 0
+ let red_zeta f = f land fzeta <> 0
+end : RedFlagsSig)
+
+open RedFlags
+
+(* Local *)
+let beta = mkflags [fbeta]
+let evar = mkflags [fevar]
+let betaevar = mkflags [fevar; fbeta]
+let betaiota = mkflags [fiota; fbeta]
+let betaiotazeta = mkflags [fiota; fbeta;fzeta]
+
+(* Contextual *)
+let delta = mkflags [fdelta;fevar]
+let betadelta = mkflags [fbeta;fdelta;fzeta;fevar]
+let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta]
+let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota]
+let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota]
+let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta]
+let betaiotaevar = mkflags [fbeta;fiota;fevar]
+let betaetalet = mkflags [fbeta;feta;fzeta]
+let betalet = mkflags [fbeta;fzeta]
+
+(* Beta Reduction tools *)
+
+let rec stacklam recfun env t stack =
+ match (decomp_stack stack,kind_of_term t) with
+ | Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl
+ | _ -> recfun (substl env t, stack)
+
+let beta_applist (c,l) =
+ stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack)
+
+(* Iota reduction tools *)
+
+type 'a miota_args = {
+ mP : constr; (* the result type *)
+ mconstr : constr; (* the constructor *)
+ mci : case_info; (* special info to re-build pattern *)
+ mcargs : 'a list; (* the constructor's arguments *)
+ mlf : 'a array } (* the branch code vector *)
+
+let reducible_mind_case c = match kind_of_term c with
+ | Construct _ | CoFix _ -> true
+ | _ -> false
+
+let contract_cofix (bodynum,(types,names,bodies as typedbodies)) =
+ let nbodies = Array.length bodies in
+ let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in
+ substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
+
+let reduce_mind_case mia =
+ match kind_of_term mia.mconstr with
+ | Construct (ind_sp,i as cstr_sp) ->
+(* let ncargs = (fst mia.mci).(i-1) in*)
+ let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in
+ applist (mia.mlf.(i-1),real_cargs)
+ | CoFix cofix ->
+ let cofix_def = contract_cofix cofix in
+ mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
+ | _ -> assert false
+
+(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
+ Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)
+
+let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) =
+ let nbodies = Array.length recindices in
+ let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in
+ substl (list_tabulate make_Fi nbodies) bodies.(bodynum)
+
+let fix_recarg ((recindices,bodynum),_) stack =
+ assert (0 <= bodynum & bodynum < Array.length recindices);
+ let recargnum = Array.get recindices bodynum in
+ try
+ Some (recargnum, stack_nth stack recargnum)
+ with Not_found ->
+ None
+
+type fix_reduction_result = NotReducible | Reduced of state
+
+let reduce_fix whdfun fix stack =
+ match fix_recarg fix stack with
+ | None -> NotReducible
+ | Some (recargnum,recarg) ->
+ let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in
+ let stack' = stack_assign stack recargnum (app_stack recarg') in
+ (match kind_of_term recarg'hd with
+ | Construct _ -> Reduced (contract_fix fix, stack')
+ | _ -> NotReducible)
+
+(* Generic reduction function *)
+
+(* Y avait un commentaire pour whd_betadeltaiota :
+
+ NB : Cette fonction alloue peu c'est l'appel
+ ``let (c,cargs) = whfun (recarg, empty_stack)''
+ -------------------
+ qui coute cher *)
+
+let rec whd_state_gen flags env sigma =
+ let rec whrec (x, stack as s) =
+ match kind_of_term x with
+ | Rel n when red_delta flags ->
+ (match lookup_rel n env with
+ | (_,Some body,_) -> whrec (lift n body, stack)
+ | _ -> s)
+ | Var id when red_delta flags ->
+ (match lookup_named id env with
+ | (_,Some body,_) -> whrec (body, stack)
+ | _ -> s)
+ | Evar ev when red_evar flags ->
+ (match existential_opt_value sigma ev with
+ | Some body -> whrec (body, stack)
+ | None -> s)
+ | Const const when red_delta flags ->
+ (match constant_opt_value env const with
+ | Some body -> whrec (body, stack)
+ | None -> s)
+ | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
+ | Cast (c,_) -> whrec (c, stack)
+ | App (f,cl) -> whrec (f, append_stack cl stack)
+ | Lambda (na,t,c) ->
+ (match decomp_stack stack with
+ | Some (a,m) when red_beta flags -> stacklam whrec [a] c m
+ | None when red_eta flags ->
+ let env' = push_rel (na,None,t) env in
+ let whrec' = whd_state_gen flags env' sigma in
+ (match kind_of_term (app_stack (whrec' (c, empty_stack))) with
+ | App (f,cl) ->
+ let napp = Array.length cl in
+ if napp > 0 then
+ let x', l' = whrec' (array_last cl, empty_stack) in
+ match kind_of_term x', decomp_stack l' with
+ | Rel 1, None ->
+ let lc = Array.sub cl 0 (napp-1) in
+ let u = if napp=1 then f else appvect (f,lc) in
+ if noccurn 1 u then (pop u,empty_stack) else s
+ | _ -> s
+ else s
+ | _ -> s)
+ | _ -> s)
+
+ | Case (ci,p,d,lf) when red_iota flags ->
+ let (c,cargs) = whrec (d, empty_stack) in
+ if reducible_mind_case c then
+ whrec (reduce_mind_case
+ {mP=p; mconstr=c; mcargs=list_of_stack cargs;
+ mci=ci; mlf=lf}, stack)
+ else
+ (mkCase (ci, p, app_stack (c,cargs), lf), stack)
+
+ | Fix fix when red_iota flags ->
+ (match reduce_fix whrec fix stack with
+ | Reduced s' -> whrec s'
+ | NotReducible -> s)
+
+ | x -> s
+ in
+ whrec
+
+let local_whd_state_gen flags =
+ let rec whrec (x, stack as s) =
+ match kind_of_term x with
+ | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack
+ | Cast (c,_) -> whrec (c, stack)
+ | App (f,cl) -> whrec (f, append_stack cl stack)
+ | Lambda (_,_,c) ->
+ (match decomp_stack stack with
+ | Some (a,m) when red_beta flags -> stacklam whrec [a] c m
+ | None when red_eta flags ->
+ (match kind_of_term (app_stack (whrec (c, empty_stack))) with
+ | App (f,cl) ->
+ let napp = Array.length cl in
+ if napp > 0 then
+ let x', l' = whrec (array_last cl, empty_stack) in
+ match kind_of_term x', decomp_stack l' with
+ | Rel 1, None ->
+ let lc = Array.sub cl 0 (napp-1) in
+ let u = if napp=1 then f else appvect (f,lc) in
+ if noccurn 1 u then (pop u,empty_stack) else s
+ | _ -> s
+ else s
+ | _ -> s)
+ | _ -> s)
+
+ | Case (ci,p,d,lf) when red_iota flags ->
+ let (c,cargs) = whrec (d, empty_stack) in
+ if reducible_mind_case c then
+ whrec (reduce_mind_case
+ {mP=p; mconstr=c; mcargs=list_of_stack cargs;
+ mci=ci; mlf=lf}, stack)
+ else
+ (mkCase (ci, p, app_stack (c,cargs), lf), stack)
+
+ | Fix fix when red_iota flags ->
+ (match reduce_fix whrec fix stack with
+ | Reduced s' -> whrec s'
+ | NotReducible -> s)
+
+ | x -> s
+ in
+ whrec
+
+(* 1. Beta Reduction Functions *)
+
+let whd_beta_state = local_whd_state_gen beta
+let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack))
+let whd_beta x = app_stack (whd_beta_state (x,empty_stack))
+
+(* Nouveau ! *)
+let whd_betaetalet_state = local_whd_state_gen betaetalet
+let whd_betaetalet_stack x =
+ appterm_of_stack (whd_betaetalet_state (x, empty_stack))
+let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack))
+
+let whd_betalet_state = local_whd_state_gen betalet
+let whd_betalet_stack x = appterm_of_stack (whd_betalet_state (x, empty_stack))
+let whd_betalet x = app_stack (whd_betalet_state (x,empty_stack))
+
+(* 2. Delta Reduction Functions *)
+
+let whd_delta_state e = whd_state_gen delta e
+let whd_delta_stack env sigma x =
+ appterm_of_stack (whd_delta_state env sigma (x, empty_stack))
+let whd_delta env sigma c =
+ app_stack (whd_delta_state env sigma (c, empty_stack))
+
+let whd_betadelta_state e = whd_state_gen betadelta e
+let whd_betadelta_stack env sigma x =
+ appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack))
+let whd_betadelta env sigma c =
+ app_stack (whd_betadelta_state env sigma (c, empty_stack))
+
+let whd_betaevar_state e = whd_state_gen betaevar e
+let whd_betaevar_stack env sigma c =
+ appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack))
+let whd_betaevar env sigma c =
+ app_stack (whd_betaevar_state env sigma (c, empty_stack))
+
+
+let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e
+let whd_betadeltaeta_stack env sigma x =
+ appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
+let whd_betadeltaeta env sigma x =
+ app_stack (whd_betadeltaeta_state env sigma (x, empty_stack))
+
+(* 3. Iota reduction Functions *)
+
+let whd_betaiota_state = local_whd_state_gen betaiota
+let whd_betaiota_stack x =
+ appterm_of_stack (whd_betaiota_state (x, empty_stack))
+let whd_betaiota x =
+ app_stack (whd_betaiota_state (x, empty_stack))
+
+let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta
+let whd_betaiotazeta_stack x =
+ appterm_of_stack (whd_betaiotazeta_state (x, empty_stack))
+let whd_betaiotazeta x =
+ app_stack (whd_betaiotazeta_state (x, empty_stack))
+
+let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e
+let whd_betaiotaevar_stack env sigma x =
+ appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
+let whd_betaiotaevar env sigma x =
+ app_stack (whd_betaiotaevar_state env sigma (x, empty_stack))
+
+let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e
+let whd_betadeltaiota_stack env sigma x =
+ appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
+let whd_betadeltaiota env sigma x =
+ app_stack (whd_betadeltaiota_state env sigma (x, empty_stack))
+
+let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e
+let whd_betadeltaiotaeta_stack env sigma x =
+ appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
+let whd_betadeltaiotaeta env sigma x =
+ app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack))
+
+let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e
+let whd_betadeltaiota_nolet_stack env sigma x =
+ appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
+let whd_betadeltaiota_nolet env sigma x =
+ app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack))
+
+(****************************************************************************)
+(* Reduction Functions *)
+(****************************************************************************)
+
+(* Replacing defined evars for error messages *)
+let rec whd_evar sigma c =
+ match kind_of_term c with
+ | Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev ->
+ whd_evar sigma (Instantiate.existential_value sigma (ev,args))
+ | _ -> collapse_appl c
+
+let nf_evar sigma =
+ local_strong (whd_evar sigma)
+
+(* lazy reduction functions. The infos must be created for each term *)
+let clos_norm_flags flgs env sigma t =
+ norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
+
+let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty
+let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty
+let nf_betadeltaiota env sigma =
+ clos_norm_flags Closure.betadeltaiota env sigma
+
+(* lazy weak head reduction functions *)
+let whd_flags flgs env sigma t =
+ whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t))
+
+(********************************************************************)
+(* Conversion *)
+(********************************************************************)
+(*
+let fkey = Profile.declare_profile "fhnf";;
+let fhnf info v = Profile.profile2 fkey fhnf info v;;
+
+let fakey = Profile.declare_profile "fhnf_apply";;
+let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;;
+*)
+
+(* Conversion utility functions *)
+
+type conversion_test = constraints -> constraints
+
+type conv_pb =
+ | CONV
+ | CUMUL
+
+let pb_is_equal pb = pb = CONV
+
+let pb_equal = function
+ | CUMUL -> CONV
+ | CONV -> CONV
+
+let sort_cmp pb s0 s1 cuniv =
+ match (s0,s1) with
+ | (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible
+ | (Prop c1, Type u) ->
+ (match pb with
+ CUMUL -> cuniv
+ | _ -> raise NotConvertible)
+ | (Type u1, Type u2) ->
+ (match pb with
+ | CONV -> enforce_eq u1 u2 cuniv
+ | CUMUL -> enforce_geq u2 u1 cuniv)
+ | (_, _) -> raise NotConvertible
+
+let base_sort_cmp pb s0 s1 =
+ match (s0,s1) with
+ | (Prop c1, Prop c2) -> c1 = c2
+ | (Prop c1, Type u) -> pb = CUMUL
+ | (Type u1, Type u2) -> true
+ | (_, _) -> false
+
+
+let test_conversion f env sigma x y =
+ try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true
+ with NotConvertible -> false
+
+let is_conv env sigma = test_conversion Reduction.conv env sigma
+let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma
+let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq
+
+(********************************************************************)
+(* Special-Purpose Reduction *)
+(********************************************************************)
+
+let whd_meta metamap c = match kind_of_term c with
+ | Meta p -> (try List.assoc p metamap with Not_found -> c)
+ | _ -> c
+
+(* Try to replace all metas. Does not replace metas in the metas' values
+ * Differs from (strong whd_meta). *)
+let plain_instance s c =
+ let rec irec u = match kind_of_term u with
+ | Meta p -> (try List.assoc p s with Not_found -> u)
+ | App (f,l) when isCast f ->
+ let (f,t) = destCast f in
+ let l' = Array.map irec l in
+ (match kind_of_term f with
+ | Meta p ->
+ (* Don't flatten application nodes: this is used to extract a
+ proof-term from a proof-tree and we want to keep the structure
+ of the proof-tree *)
+ (try let g = List.assoc p s in
+ match kind_of_term g with
+ | App _ ->
+ let h = id_of_string "H" in
+ mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l'))
+ | _ -> mkApp (g,l')
+ with Not_found -> mkApp (f,l'))
+ | _ -> mkApp (irec f,l'))
+ | Cast (m,_) when isMeta m ->
+ (try List.assoc (destMeta m) s with Not_found -> u)
+ | _ -> map_constr irec u
+ in
+ if s = [] then c else irec c
+
+(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *)
+let instance s c =
+ if s = [] then c else local_strong whd_betaiota (plain_instance s c)
+
+
+(* pseudo-reduction rule:
+ * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
+ * with an HNF on the first argument to produce a product.
+ * if this does not work, then we use the string S as part of our
+ * error message. *)
+
+let hnf_prod_app env sigma t n =
+ match kind_of_term (whd_betadeltaiota env sigma t) with
+ | Prod (_,_,b) -> subst1 n b
+ | _ -> anomaly "hnf_prod_app: Need a product"
+
+let hnf_prod_appvect env sigma t nl =
+ Array.fold_left (hnf_prod_app env sigma) t nl
+
+let hnf_prod_applist env sigma t nl =
+ List.fold_left (hnf_prod_app env sigma) t nl
+
+let hnf_lam_app env sigma t n =
+ match kind_of_term (whd_betadeltaiota env sigma t) with
+ | Lambda (_,_,b) -> subst1 n b
+ | _ -> anomaly "hnf_lam_app: Need an abstraction"
+
+let hnf_lam_appvect env sigma t nl =
+ Array.fold_left (hnf_lam_app env sigma) t nl
+
+let hnf_lam_applist env sigma t nl =
+ List.fold_left (hnf_lam_app env sigma) t nl
+
+let splay_prod env sigma =
+ let rec decrec env m c =
+ let t = whd_betadeltaiota env sigma c in
+ match kind_of_term t with
+ | Prod (n,a,c0) ->
+ decrec (push_rel (n,None,a) env)
+ ((n,a)::m) c0
+ | _ -> m,t
+ in
+ decrec env []
+
+let splay_prod_assum env sigma =
+ let rec prodec_rec env l c =
+ let t = whd_betadeltaiota_nolet env sigma c in
+ match kind_of_term c with
+ | Prod (x,t,c) ->
+ prodec_rec (push_rel (x,None,t) env)
+ (Sign.add_rel_decl (x, None, t) l) c
+ | LetIn (x,b,t,c) ->
+ prodec_rec (push_rel (x, Some b, t) env)
+ (Sign.add_rel_decl (x, Some b, t) l) c
+ | Cast (c,_) -> prodec_rec env l c
+ | _ -> l,t
+ in
+ prodec_rec env Sign.empty_rel_context
+
+let splay_arity env sigma c =
+ let l, c = splay_prod env sigma c in
+ match kind_of_term c with
+ | Sort s -> l,s
+ | _ -> error "not an arity"
+
+let sort_of_arity env c = snd (splay_arity env Evd.empty c)
+
+let decomp_n_prod env sigma n =
+ let rec decrec env m ln c = if m = 0 then (ln,c) else
+ match kind_of_term (whd_betadeltaiota env sigma c) with
+ | Prod (n,a,c0) ->
+ decrec (push_rel (n,None,a) env)
+ (m-1) (Sign.add_rel_decl (n,None,a) ln) c0
+ | _ -> error "decomp_n_prod: Not enough products"
+ in
+ decrec env n Sign.empty_rel_context
+
+(* One step of approximation *)
+
+let rec apprec env sigma s =
+ let (t, stack as s) = whd_betaiota_state s in
+ match kind_of_term t with
+ | Case (ci,p,d,lf) ->
+ let (cr,crargs) = whd_betadeltaiota_stack env sigma d in
+ let rslt = mkCase (ci, p, applist (cr,crargs), lf) in
+ if reducible_mind_case cr then
+ apprec env sigma (rslt, stack)
+ else
+ s
+ | Fix fix ->
+ (match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with
+ | Reduced s -> apprec env sigma s
+ | NotReducible -> s)
+ | _ -> s
+
+let hnf env sigma c = apprec env sigma (c, empty_stack)
+
+(* A reduction function like whd_betaiota but which keeps casts
+ * and does not reduce redexes containing existential variables.
+ * Used in Correctness.
+ * Added by JCF, 29/1/98. *)
+
+let whd_programs_stack env sigma =
+ let rec whrec (x, stack as s) =
+ match kind_of_term x with
+ | App (f,cl) ->
+ let n = Array.length cl - 1 in
+ let c = cl.(n) in
+ if occur_existential c then
+ s
+ else
+ whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack)
+ | LetIn (_,b,_,c) ->
+ if occur_existential b then
+ s
+ else
+ stacklam whrec [b] c stack
+ | Lambda (_,_,c) ->
+ (match decomp_stack stack with
+ | None -> s
+ | Some (a,m) -> stacklam whrec [a] c m)
+ | Case (ci,p,d,lf) ->
+ if occur_existential d then
+ s
+ else
+ let (c,cargs) = whrec (d, empty_stack) in
+ if reducible_mind_case c then
+ whrec (reduce_mind_case
+ {mP=p; mconstr=c; mcargs=list_of_stack cargs;
+ mci=ci; mlf=lf}, stack)
+ else
+ (mkCase (ci, p, app_stack(c,cargs), lf), stack)
+ | Fix fix ->
+ (match reduce_fix whrec fix stack with
+ | Reduced s' -> whrec s'
+ | NotReducible -> s)
+ | _ -> s
+ in
+ whrec
+
+let whd_programs env sigma x =
+ app_stack (whd_programs_stack env sigma (x, empty_stack))
+
+exception IsType
+
+let find_conclusion env sigma =
+ let rec decrec env c =
+ let t = whd_betadeltaiota env sigma c in
+ match kind_of_term t with
+ | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
+ | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0
+ | t -> t
+ in
+ decrec env
+
+let is_arity env sigma c =
+ match find_conclusion env sigma c with
+ | Sort _ -> true
+ | _ -> false
+
+let info_arity env sigma c =
+ match find_conclusion env sigma c with
+ | Sort (Prop Null) -> false
+ | Sort (Prop Pos) -> true
+ | _ -> raise IsType
+
+let is_info_arity env sigma c =
+ try (info_arity env sigma c) with IsType -> true
+
+let is_type_arity env sigma c =
+ match find_conclusion env sigma c with
+ | Sort (Type _) -> true
+ | _ -> false
+
+let is_info_type env sigma t =
+ let s = t.utj_type in
+ (s = Prop Pos) ||
+ (s <> Prop Null &&
+ try info_arity env sigma t.utj_val with IsType -> true)