diff options
Diffstat (limited to 'pretyping/reductionops.ml')
-rw-r--r-- | pretyping/reductionops.ml | 717 |
1 files changed, 717 insertions, 0 deletions
diff --git a/pretyping/reductionops.ml b/pretyping/reductionops.ml new file mode 100644 index 00000000..a030dcf2 --- /dev/null +++ b/pretyping/reductionops.ml @@ -0,0 +1,717 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: reductionops.ml,v 1.6.2.2 2004/07/16 19:30:46 herbelin Exp $ *) + +open Pp +open Util +open Names +open Term +open Termops +open Univ +open Evd +open Declarations +open Environ +open Instantiate +open Closure +open Esubst +open Reduction + +exception Elimconst + +(* The type of (machine) states (= lambda-bar-calculus' cuts) *) +type state = constr * constr stack + +type contextual_reduction_function = env -> evar_map -> constr -> constr +type reduction_function = contextual_reduction_function +type local_reduction_function = constr -> constr + +type contextual_stack_reduction_function = + env -> evar_map -> constr -> constr * constr list +type stack_reduction_function = contextual_stack_reduction_function +type local_stack_reduction_function = constr -> constr * constr list + +type contextual_state_reduction_function = + env -> evar_map -> state -> state +type state_reduction_function = contextual_state_reduction_function +type local_state_reduction_function = state -> state + +(*************************************) +(*** Reduction Functions Operators ***) +(*************************************) + +let rec whd_state (x, stack as s) = + match kind_of_term x with + | App (f,cl) -> whd_state (f, append_stack cl stack) + | Cast (c,_) -> whd_state (c, stack) + | _ -> s + +let appterm_of_stack (f,s) = (f,list_of_stack s) + +let whd_stack x = appterm_of_stack (whd_state (x, empty_stack)) +let whd_castapp_stack = whd_stack + +let stack_reduction_of_reduction red_fun env sigma s = + let t = red_fun env sigma (app_stack s) in + whd_stack t + +let strong whdfun env sigma t = + let rec strongrec env t = + map_constr_with_full_binders push_rel strongrec env (whdfun env sigma t) in + strongrec env t + +let local_strong whdfun = + let rec strongrec t = map_constr strongrec (whdfun t) in + strongrec + +let rec strong_prodspine redfun c = + let x = redfun c in + match kind_of_term x with + | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun b) + | _ -> x + +(*************************************) +(*** Reduction using bindingss ***) +(*************************************) + +(* This signature is very similar to Closure.RedFlagsSig except there + is eta but no per-constant unfolding *) + +module type RedFlagsSig = sig + type flags + type flag + val fbeta : flag + val fevar : flag + val fdelta : flag + val feta : flag + val fiota : flag + val fzeta : flag + val mkflags : flag list -> flags + val red_beta : flags -> bool + val red_delta : flags -> bool + val red_evar : flags -> bool + val red_eta : flags -> bool + val red_iota : flags -> bool + val red_zeta : flags -> bool +end + +(* Naive Implementation +module RedFlags = (struct + type flag = BETA | DELTA | EVAR | IOTA | ZETA | ETA + type flags = flag list + let fbeta = BETA + let fdelta = DELTA + let fevar = EVAR + let fiota = IOTA + let fzeta = ZETA + let feta = ETA + let mkflags l = l + let red_beta = List.mem BETA + let red_delta = List.mem DELTA + let red_evar = List.mem EVAR + let red_eta = List.mem ETA + let red_iota = List.mem IOTA + let red_zeta = List.mem ZETA +end : RedFlagsSig) +*) + +(* Compact Implementation *) +module RedFlags = (struct + type flag = int + type flags = int + let fbeta = 1 + let fdelta = 2 + let fevar = 4 + let feta = 8 + let fiota = 16 + let fzeta = 32 + let mkflags = List.fold_left (lor) 0 + let red_beta f = f land fbeta <> 0 + let red_delta f = f land fdelta <> 0 + let red_evar f = f land fevar <> 0 + let red_eta f = f land feta <> 0 + let red_iota f = f land fiota <> 0 + let red_zeta f = f land fzeta <> 0 +end : RedFlagsSig) + +open RedFlags + +(* Local *) +let beta = mkflags [fbeta] +let evar = mkflags [fevar] +let betaevar = mkflags [fevar; fbeta] +let betaiota = mkflags [fiota; fbeta] +let betaiotazeta = mkflags [fiota; fbeta;fzeta] + +(* Contextual *) +let delta = mkflags [fdelta;fevar] +let betadelta = mkflags [fbeta;fdelta;fzeta;fevar] +let betadeltaeta = mkflags [fbeta;fdelta;fzeta;fevar;feta] +let betadeltaiota = mkflags [fbeta;fdelta;fzeta;fevar;fiota] +let betadeltaiota_nolet = mkflags [fbeta;fdelta;fevar;fiota] +let betadeltaiotaeta = mkflags [fbeta;fdelta;fzeta;fevar;fiota;feta] +let betaiotaevar = mkflags [fbeta;fiota;fevar] +let betaetalet = mkflags [fbeta;feta;fzeta] +let betalet = mkflags [fbeta;fzeta] + +(* Beta Reduction tools *) + +let rec stacklam recfun env t stack = + match (decomp_stack stack,kind_of_term t) with + | Some (h,stacktl), Lambda (_,_,c) -> stacklam recfun (h::env) c stacktl + | _ -> recfun (substl env t, stack) + +let beta_applist (c,l) = + stacklam app_stack [] c (append_stack (Array.of_list l) empty_stack) + +(* Iota reduction tools *) + +type 'a miota_args = { + mP : constr; (* the result type *) + mconstr : constr; (* the constructor *) + mci : case_info; (* special info to re-build pattern *) + mcargs : 'a list; (* the constructor's arguments *) + mlf : 'a array } (* the branch code vector *) + +let reducible_mind_case c = match kind_of_term c with + | Construct _ | CoFix _ -> true + | _ -> false + +let contract_cofix (bodynum,(types,names,bodies as typedbodies)) = + let nbodies = Array.length bodies in + let make_Fi j = mkCoFix (nbodies-j-1,typedbodies) in + substl (list_tabulate make_Fi nbodies) bodies.(bodynum) + +let reduce_mind_case mia = + match kind_of_term mia.mconstr with + | Construct (ind_sp,i as cstr_sp) -> +(* let ncargs = (fst mia.mci).(i-1) in*) + let real_cargs = list_skipn mia.mci.ci_npar mia.mcargs in + applist (mia.mlf.(i-1),real_cargs) + | CoFix cofix -> + let cofix_def = contract_cofix cofix in + mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) + | _ -> assert false + +(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce + Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) + +let contract_fix ((recindices,bodynum),(types,names,bodies as typedbodies)) = + let nbodies = Array.length recindices in + let make_Fi j = mkFix ((recindices,nbodies-j-1),typedbodies) in + substl (list_tabulate make_Fi nbodies) bodies.(bodynum) + +let fix_recarg ((recindices,bodynum),_) stack = + assert (0 <= bodynum & bodynum < Array.length recindices); + let recargnum = Array.get recindices bodynum in + try + Some (recargnum, stack_nth stack recargnum) + with Not_found -> + None + +type fix_reduction_result = NotReducible | Reduced of state + +let reduce_fix whdfun fix stack = + match fix_recarg fix stack with + | None -> NotReducible + | Some (recargnum,recarg) -> + let (recarg'hd,_ as recarg') = whdfun (recarg, empty_stack) in + let stack' = stack_assign stack recargnum (app_stack recarg') in + (match kind_of_term recarg'hd with + | Construct _ -> Reduced (contract_fix fix, stack') + | _ -> NotReducible) + +(* Generic reduction function *) + +(* Y avait un commentaire pour whd_betadeltaiota : + + NB : Cette fonction alloue peu c'est l'appel + ``let (c,cargs) = whfun (recarg, empty_stack)'' + ------------------- + qui coute cher *) + +let rec whd_state_gen flags env sigma = + let rec whrec (x, stack as s) = + match kind_of_term x with + | Rel n when red_delta flags -> + (match lookup_rel n env with + | (_,Some body,_) -> whrec (lift n body, stack) + | _ -> s) + | Var id when red_delta flags -> + (match lookup_named id env with + | (_,Some body,_) -> whrec (body, stack) + | _ -> s) + | Evar ev when red_evar flags -> + (match existential_opt_value sigma ev with + | Some body -> whrec (body, stack) + | None -> s) + | Const const when red_delta flags -> + (match constant_opt_value env const with + | Some body -> whrec (body, stack) + | None -> s) + | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack + | Cast (c,_) -> whrec (c, stack) + | App (f,cl) -> whrec (f, append_stack cl stack) + | Lambda (na,t,c) -> + (match decomp_stack stack with + | Some (a,m) when red_beta flags -> stacklam whrec [a] c m + | None when red_eta flags -> + let env' = push_rel (na,None,t) env in + let whrec' = whd_state_gen flags env' sigma in + (match kind_of_term (app_stack (whrec' (c, empty_stack))) with + | App (f,cl) -> + let napp = Array.length cl in + if napp > 0 then + let x', l' = whrec' (array_last cl, empty_stack) in + match kind_of_term x', decomp_stack l' with + | Rel 1, None -> + let lc = Array.sub cl 0 (napp-1) in + let u = if napp=1 then f else appvect (f,lc) in + if noccurn 1 u then (pop u,empty_stack) else s + | _ -> s + else s + | _ -> s) + | _ -> s) + + | Case (ci,p,d,lf) when red_iota flags -> + let (c,cargs) = whrec (d, empty_stack) in + if reducible_mind_case c then + whrec (reduce_mind_case + {mP=p; mconstr=c; mcargs=list_of_stack cargs; + mci=ci; mlf=lf}, stack) + else + (mkCase (ci, p, app_stack (c,cargs), lf), stack) + + | Fix fix when red_iota flags -> + (match reduce_fix whrec fix stack with + | Reduced s' -> whrec s' + | NotReducible -> s) + + | x -> s + in + whrec + +let local_whd_state_gen flags = + let rec whrec (x, stack as s) = + match kind_of_term x with + | LetIn (_,b,_,c) when red_zeta flags -> stacklam whrec [b] c stack + | Cast (c,_) -> whrec (c, stack) + | App (f,cl) -> whrec (f, append_stack cl stack) + | Lambda (_,_,c) -> + (match decomp_stack stack with + | Some (a,m) when red_beta flags -> stacklam whrec [a] c m + | None when red_eta flags -> + (match kind_of_term (app_stack (whrec (c, empty_stack))) with + | App (f,cl) -> + let napp = Array.length cl in + if napp > 0 then + let x', l' = whrec (array_last cl, empty_stack) in + match kind_of_term x', decomp_stack l' with + | Rel 1, None -> + let lc = Array.sub cl 0 (napp-1) in + let u = if napp=1 then f else appvect (f,lc) in + if noccurn 1 u then (pop u,empty_stack) else s + | _ -> s + else s + | _ -> s) + | _ -> s) + + | Case (ci,p,d,lf) when red_iota flags -> + let (c,cargs) = whrec (d, empty_stack) in + if reducible_mind_case c then + whrec (reduce_mind_case + {mP=p; mconstr=c; mcargs=list_of_stack cargs; + mci=ci; mlf=lf}, stack) + else + (mkCase (ci, p, app_stack (c,cargs), lf), stack) + + | Fix fix when red_iota flags -> + (match reduce_fix whrec fix stack with + | Reduced s' -> whrec s' + | NotReducible -> s) + + | x -> s + in + whrec + +(* 1. Beta Reduction Functions *) + +let whd_beta_state = local_whd_state_gen beta +let whd_beta_stack x = appterm_of_stack (whd_beta_state (x, empty_stack)) +let whd_beta x = app_stack (whd_beta_state (x,empty_stack)) + +(* Nouveau ! *) +let whd_betaetalet_state = local_whd_state_gen betaetalet +let whd_betaetalet_stack x = + appterm_of_stack (whd_betaetalet_state (x, empty_stack)) +let whd_betaetalet x = app_stack (whd_betaetalet_state (x,empty_stack)) + +let whd_betalet_state = local_whd_state_gen betalet +let whd_betalet_stack x = appterm_of_stack (whd_betalet_state (x, empty_stack)) +let whd_betalet x = app_stack (whd_betalet_state (x,empty_stack)) + +(* 2. Delta Reduction Functions *) + +let whd_delta_state e = whd_state_gen delta e +let whd_delta_stack env sigma x = + appterm_of_stack (whd_delta_state env sigma (x, empty_stack)) +let whd_delta env sigma c = + app_stack (whd_delta_state env sigma (c, empty_stack)) + +let whd_betadelta_state e = whd_state_gen betadelta e +let whd_betadelta_stack env sigma x = + appterm_of_stack (whd_betadelta_state env sigma (x, empty_stack)) +let whd_betadelta env sigma c = + app_stack (whd_betadelta_state env sigma (c, empty_stack)) + +let whd_betaevar_state e = whd_state_gen betaevar e +let whd_betaevar_stack env sigma c = + appterm_of_stack (whd_betaevar_state env sigma (c, empty_stack)) +let whd_betaevar env sigma c = + app_stack (whd_betaevar_state env sigma (c, empty_stack)) + + +let whd_betadeltaeta_state e = whd_state_gen betadeltaeta e +let whd_betadeltaeta_stack env sigma x = + appterm_of_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) +let whd_betadeltaeta env sigma x = + app_stack (whd_betadeltaeta_state env sigma (x, empty_stack)) + +(* 3. Iota reduction Functions *) + +let whd_betaiota_state = local_whd_state_gen betaiota +let whd_betaiota_stack x = + appterm_of_stack (whd_betaiota_state (x, empty_stack)) +let whd_betaiota x = + app_stack (whd_betaiota_state (x, empty_stack)) + +let whd_betaiotazeta_state = local_whd_state_gen betaiotazeta +let whd_betaiotazeta_stack x = + appterm_of_stack (whd_betaiotazeta_state (x, empty_stack)) +let whd_betaiotazeta x = + app_stack (whd_betaiotazeta_state (x, empty_stack)) + +let whd_betaiotaevar_state e = whd_state_gen betaiotaevar e +let whd_betaiotaevar_stack env sigma x = + appterm_of_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) +let whd_betaiotaevar env sigma x = + app_stack (whd_betaiotaevar_state env sigma (x, empty_stack)) + +let whd_betadeltaiota_state e = whd_state_gen betadeltaiota e +let whd_betadeltaiota_stack env sigma x = + appterm_of_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) +let whd_betadeltaiota env sigma x = + app_stack (whd_betadeltaiota_state env sigma (x, empty_stack)) + +let whd_betadeltaiotaeta_state e = whd_state_gen betadeltaiotaeta e +let whd_betadeltaiotaeta_stack env sigma x = + appterm_of_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) +let whd_betadeltaiotaeta env sigma x = + app_stack (whd_betadeltaiotaeta_state env sigma (x, empty_stack)) + +let whd_betadeltaiota_nolet_state e = whd_state_gen betadeltaiota_nolet e +let whd_betadeltaiota_nolet_stack env sigma x = + appterm_of_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) +let whd_betadeltaiota_nolet env sigma x = + app_stack (whd_betadeltaiota_nolet_state env sigma (x, empty_stack)) + +(****************************************************************************) +(* Reduction Functions *) +(****************************************************************************) + +(* Replacing defined evars for error messages *) +let rec whd_evar sigma c = + match kind_of_term c with + | Evar (ev,args) when Evd.in_dom sigma ev & Evd.is_defined sigma ev -> + whd_evar sigma (Instantiate.existential_value sigma (ev,args)) + | _ -> collapse_appl c + +let nf_evar sigma = + local_strong (whd_evar sigma) + +(* lazy reduction functions. The infos must be created for each term *) +let clos_norm_flags flgs env sigma t = + norm_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) + +let nf_beta = clos_norm_flags Closure.beta empty_env Evd.empty +let nf_betaiota = clos_norm_flags Closure.betaiota empty_env Evd.empty +let nf_betadeltaiota env sigma = + clos_norm_flags Closure.betadeltaiota env sigma + +(* lazy weak head reduction functions *) +let whd_flags flgs env sigma t = + whd_val (create_clos_infos flgs env) (inject (nf_evar sigma t)) + +(********************************************************************) +(* Conversion *) +(********************************************************************) +(* +let fkey = Profile.declare_profile "fhnf";; +let fhnf info v = Profile.profile2 fkey fhnf info v;; + +let fakey = Profile.declare_profile "fhnf_apply";; +let fhnf_apply info k h a = Profile.profile4 fakey fhnf_apply info k h a;; +*) + +(* Conversion utility functions *) + +type conversion_test = constraints -> constraints + +type conv_pb = + | CONV + | CUMUL + +let pb_is_equal pb = pb = CONV + +let pb_equal = function + | CUMUL -> CONV + | CONV -> CONV + +let sort_cmp pb s0 s1 cuniv = + match (s0,s1) with + | (Prop c1, Prop c2) -> if c1 = c2 then cuniv else raise NotConvertible + | (Prop c1, Type u) -> + (match pb with + CUMUL -> cuniv + | _ -> raise NotConvertible) + | (Type u1, Type u2) -> + (match pb with + | CONV -> enforce_eq u1 u2 cuniv + | CUMUL -> enforce_geq u2 u1 cuniv) + | (_, _) -> raise NotConvertible + +let base_sort_cmp pb s0 s1 = + match (s0,s1) with + | (Prop c1, Prop c2) -> c1 = c2 + | (Prop c1, Type u) -> pb = CUMUL + | (Type u1, Type u2) -> true + | (_, _) -> false + + +let test_conversion f env sigma x y = + try let _ = f env (nf_evar sigma x) (nf_evar sigma y) in true + with NotConvertible -> false + +let is_conv env sigma = test_conversion Reduction.conv env sigma +let is_conv_leq env sigma = test_conversion Reduction.conv_leq env sigma +let is_fconv = function | CONV -> is_conv | CUMUL -> is_conv_leq + +(********************************************************************) +(* Special-Purpose Reduction *) +(********************************************************************) + +let whd_meta metamap c = match kind_of_term c with + | Meta p -> (try List.assoc p metamap with Not_found -> c) + | _ -> c + +(* Try to replace all metas. Does not replace metas in the metas' values + * Differs from (strong whd_meta). *) +let plain_instance s c = + let rec irec u = match kind_of_term u with + | Meta p -> (try List.assoc p s with Not_found -> u) + | App (f,l) when isCast f -> + let (f,t) = destCast f in + let l' = Array.map irec l in + (match kind_of_term f with + | Meta p -> + (* Don't flatten application nodes: this is used to extract a + proof-term from a proof-tree and we want to keep the structure + of the proof-tree *) + (try let g = List.assoc p s in + match kind_of_term g with + | App _ -> + let h = id_of_string "H" in + mkLetIn (Name h,g,t,mkApp(mkRel 1,Array.map (lift 1) l')) + | _ -> mkApp (g,l') + with Not_found -> mkApp (f,l')) + | _ -> mkApp (irec f,l')) + | Cast (m,_) when isMeta m -> + (try List.assoc (destMeta m) s with Not_found -> u) + | _ -> map_constr irec u + in + if s = [] then c else irec c + +(* Pourquoi ne fait-on pas nf_betaiota si s=[] ? *) +let instance s c = + if s = [] then c else local_strong whd_betaiota (plain_instance s c) + + +(* pseudo-reduction rule: + * [hnf_prod_app env s (Prod(_,B)) N --> B[N] + * with an HNF on the first argument to produce a product. + * if this does not work, then we use the string S as part of our + * error message. *) + +let hnf_prod_app env sigma t n = + match kind_of_term (whd_betadeltaiota env sigma t) with + | Prod (_,_,b) -> subst1 n b + | _ -> anomaly "hnf_prod_app: Need a product" + +let hnf_prod_appvect env sigma t nl = + Array.fold_left (hnf_prod_app env sigma) t nl + +let hnf_prod_applist env sigma t nl = + List.fold_left (hnf_prod_app env sigma) t nl + +let hnf_lam_app env sigma t n = + match kind_of_term (whd_betadeltaiota env sigma t) with + | Lambda (_,_,b) -> subst1 n b + | _ -> anomaly "hnf_lam_app: Need an abstraction" + +let hnf_lam_appvect env sigma t nl = + Array.fold_left (hnf_lam_app env sigma) t nl + +let hnf_lam_applist env sigma t nl = + List.fold_left (hnf_lam_app env sigma) t nl + +let splay_prod env sigma = + let rec decrec env m c = + let t = whd_betadeltaiota env sigma c in + match kind_of_term t with + | Prod (n,a,c0) -> + decrec (push_rel (n,None,a) env) + ((n,a)::m) c0 + | _ -> m,t + in + decrec env [] + +let splay_prod_assum env sigma = + let rec prodec_rec env l c = + let t = whd_betadeltaiota_nolet env sigma c in + match kind_of_term c with + | Prod (x,t,c) -> + prodec_rec (push_rel (x,None,t) env) + (Sign.add_rel_decl (x, None, t) l) c + | LetIn (x,b,t,c) -> + prodec_rec (push_rel (x, Some b, t) env) + (Sign.add_rel_decl (x, Some b, t) l) c + | Cast (c,_) -> prodec_rec env l c + | _ -> l,t + in + prodec_rec env Sign.empty_rel_context + +let splay_arity env sigma c = + let l, c = splay_prod env sigma c in + match kind_of_term c with + | Sort s -> l,s + | _ -> error "not an arity" + +let sort_of_arity env c = snd (splay_arity env Evd.empty c) + +let decomp_n_prod env sigma n = + let rec decrec env m ln c = if m = 0 then (ln,c) else + match kind_of_term (whd_betadeltaiota env sigma c) with + | Prod (n,a,c0) -> + decrec (push_rel (n,None,a) env) + (m-1) (Sign.add_rel_decl (n,None,a) ln) c0 + | _ -> error "decomp_n_prod: Not enough products" + in + decrec env n Sign.empty_rel_context + +(* One step of approximation *) + +let rec apprec env sigma s = + let (t, stack as s) = whd_betaiota_state s in + match kind_of_term t with + | Case (ci,p,d,lf) -> + let (cr,crargs) = whd_betadeltaiota_stack env sigma d in + let rslt = mkCase (ci, p, applist (cr,crargs), lf) in + if reducible_mind_case cr then + apprec env sigma (rslt, stack) + else + s + | Fix fix -> + (match reduce_fix (whd_betadeltaiota_state env sigma) fix stack with + | Reduced s -> apprec env sigma s + | NotReducible -> s) + | _ -> s + +let hnf env sigma c = apprec env sigma (c, empty_stack) + +(* A reduction function like whd_betaiota but which keeps casts + * and does not reduce redexes containing existential variables. + * Used in Correctness. + * Added by JCF, 29/1/98. *) + +let whd_programs_stack env sigma = + let rec whrec (x, stack as s) = + match kind_of_term x with + | App (f,cl) -> + let n = Array.length cl - 1 in + let c = cl.(n) in + if occur_existential c then + s + else + whrec (mkApp (f, Array.sub cl 0 n), append_stack [|c|] stack) + | LetIn (_,b,_,c) -> + if occur_existential b then + s + else + stacklam whrec [b] c stack + | Lambda (_,_,c) -> + (match decomp_stack stack with + | None -> s + | Some (a,m) -> stacklam whrec [a] c m) + | Case (ci,p,d,lf) -> + if occur_existential d then + s + else + let (c,cargs) = whrec (d, empty_stack) in + if reducible_mind_case c then + whrec (reduce_mind_case + {mP=p; mconstr=c; mcargs=list_of_stack cargs; + mci=ci; mlf=lf}, stack) + else + (mkCase (ci, p, app_stack(c,cargs), lf), stack) + | Fix fix -> + (match reduce_fix whrec fix stack with + | Reduced s' -> whrec s' + | NotReducible -> s) + | _ -> s + in + whrec + +let whd_programs env sigma x = + app_stack (whd_programs_stack env sigma (x, empty_stack)) + +exception IsType + +let find_conclusion env sigma = + let rec decrec env c = + let t = whd_betadeltaiota env sigma c in + match kind_of_term t with + | Prod (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 + | Lambda (x,t,c0) -> decrec (push_rel (x,None,t) env) c0 + | t -> t + in + decrec env + +let is_arity env sigma c = + match find_conclusion env sigma c with + | Sort _ -> true + | _ -> false + +let info_arity env sigma c = + match find_conclusion env sigma c with + | Sort (Prop Null) -> false + | Sort (Prop Pos) -> true + | _ -> raise IsType + +let is_info_arity env sigma c = + try (info_arity env sigma c) with IsType -> true + +let is_type_arity env sigma c = + match find_conclusion env sigma c with + | Sort (Type _) -> true + | _ -> false + +let is_info_type env sigma t = + let s = t.utj_type in + (s = Prop Pos) || + (s <> Prop Null && + try info_arity env sigma t.utj_val with IsType -> true) |