diff options
Diffstat (limited to 'plugins')
170 files changed, 2882 insertions, 3779 deletions
diff --git a/plugins/cc/ccalgo.ml b/plugins/cc/ccalgo.ml index e3d27f71..d0f81dad 100644 --- a/plugins/cc/ccalgo.ml +++ b/plugins/cc/ccalgo.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/cc/ccalgo.mli b/plugins/cc/ccalgo.mli index 78dbee3f..9653da2c 100644 --- a/plugins/cc/ccalgo.mli +++ b/plugins/cc/ccalgo.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/cc/ccproof.ml b/plugins/cc/ccproof.ml index bb1d50c9..c5bbd105 100644 --- a/plugins/cc/ccproof.ml +++ b/plugins/cc/ccproof.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/cc/ccproof.mli b/plugins/cc/ccproof.mli index 67819596..b8a8d229 100644 --- a/plugins/cc/ccproof.mli +++ b/plugins/cc/ccproof.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/cc/cctac.ml b/plugins/cc/cctac.ml index ec31f891..95ff4d34 100644 --- a/plugins/cc/cctac.ml +++ b/plugins/cc/cctac.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -35,11 +35,11 @@ let _f_equal = constant ["Init";"Logic"] "f_equal" let _eq_rect = constant ["Init";"Logic"] "eq_rect" -let _refl_equal = constant ["Init";"Logic"] "refl_equal" +let _refl_equal = constant ["Init";"Logic"] "eq_refl" -let _sym_eq = constant ["Init";"Logic"] "sym_eq" +let _sym_eq = constant ["Init";"Logic"] "eq_sym" -let _trans_eq = constant ["Init";"Logic"] "trans_eq" +let _trans_eq = constant ["Init";"Logic"] "eq_trans" let _eq = constant ["Init";"Logic"] "eq" diff --git a/plugins/cc/cctac.mli b/plugins/cc/cctac.mli index 32f56163..365c172c 100644 --- a/plugins/cc/cctac.mli +++ b/plugins/cc/cctac.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/cc/g_congruence.ml4 b/plugins/cc/g_congruence.ml4 index 881b9bee..c9805f02 100644 --- a/plugins/cc/g_congruence.ml4 +++ b/plugins/cc/g_congruence.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_expr.mli b/plugins/decl_mode/decl_expr.mli index fa6acaeb..69b0a0e3 100644 --- a/plugins/decl_mode/decl_expr.mli +++ b/plugins/decl_mode/decl_expr.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_interp.ml b/plugins/decl_mode/decl_interp.ml index b3e076c4..7637fed2 100644 --- a/plugins/decl_mode/decl_interp.ml +++ b/plugins/decl_mode/decl_interp.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_interp.mli b/plugins/decl_mode/decl_interp.mli index 46fbcec7..bd6ed064 100644 --- a/plugins/decl_mode/decl_interp.mli +++ b/plugins/decl_mode/decl_interp.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_mode.ml b/plugins/decl_mode/decl_mode.ml index af6aa4bf..730051c1 100644 --- a/plugins/decl_mode/decl_mode.ml +++ b/plugins/decl_mode/decl_mode.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_mode.mli b/plugins/decl_mode/decl_mode.mli index 4e636598..f23a97b4 100644 --- a/plugins/decl_mode/decl_mode.mli +++ b/plugins/decl_mode/decl_mode.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_proof_instr.ml b/plugins/decl_mode/decl_proof_instr.ml index c1553b35..72caeaed 100644 --- a/plugins/decl_mode/decl_proof_instr.ml +++ b/plugins/decl_mode/decl_proof_instr.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/decl_proof_instr.mli b/plugins/decl_mode/decl_proof_instr.mli index 1205060a..775d2f53 100644 --- a/plugins/decl_mode/decl_proof_instr.mli +++ b/plugins/decl_mode/decl_proof_instr.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/g_decl_mode.ml4 b/plugins/decl_mode/g_decl_mode.ml4 index 362f6a61..5699c1bf 100644 --- a/plugins/decl_mode/g_decl_mode.ml4 +++ b/plugins/decl_mode/g_decl_mode.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/decl_mode/ppdecl_proof.ml b/plugins/decl_mode/ppdecl_proof.ml index b866efab..7ba0d4ff 100644 --- a/plugins/decl_mode/ppdecl_proof.ml +++ b/plugins/decl_mode/ppdecl_proof.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlBasic.v b/plugins/extraction/ExtrOcamlBasic.v index c9556972..3a54b252 100644 --- a/plugins/extraction/ExtrOcamlBasic.v +++ b/plugins/extraction/ExtrOcamlBasic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlBigIntConv.v b/plugins/extraction/ExtrOcamlBigIntConv.v index 69e72918..265fbc52 100644 --- a/plugins/extraction/ExtrOcamlBigIntConv.v +++ b/plugins/extraction/ExtrOcamlBigIntConv.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlIntConv.v b/plugins/extraction/ExtrOcamlIntConv.v index 697ea6b3..cb866dc8 100644 --- a/plugins/extraction/ExtrOcamlIntConv.v +++ b/plugins/extraction/ExtrOcamlIntConv.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlNatBigInt.v b/plugins/extraction/ExtrOcamlNatBigInt.v index 0a303b63..fb45a8be 100644 --- a/plugins/extraction/ExtrOcamlNatBigInt.v +++ b/plugins/extraction/ExtrOcamlNatBigInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlNatInt.v b/plugins/extraction/ExtrOcamlNatInt.v index a0cb26b5..fd134899 100644 --- a/plugins/extraction/ExtrOcamlNatInt.v +++ b/plugins/extraction/ExtrOcamlNatInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlString.v b/plugins/extraction/ExtrOcamlString.v index f8f942c8..3d86d712 100644 --- a/plugins/extraction/ExtrOcamlString.v +++ b/plugins/extraction/ExtrOcamlString.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ExtrOcamlZBigInt.v b/plugins/extraction/ExtrOcamlZBigInt.v index 12607b3a..a6ba9aa2 100644 --- a/plugins/extraction/ExtrOcamlZBigInt.v +++ b/plugins/extraction/ExtrOcamlZBigInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -75,13 +75,13 @@ Extract Constant Z.compare => "Big.compare_case Eq Lt Gt". Extract Constant Z.of_N => "fun p -> p". Extract Constant Z.abs_N => "Big.abs". -(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod). +(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod). For the moment we don't even try *) (** Test: Require Import ZArith NArith. Extraction "/tmp/test.ml" - Pplus Ppred Pminus Pmult Pcompare Npred Nminus Ndiv Nmod Ncompare - Zplus Zmult BinInt.Zcompare Z_of_N Zabs_N Zdiv.Zdiv Zmod. + Pos.add Pos.pred Pos.sub Pos.mul Pos.compare N.pred N.sub N.div N.modulo N.compare + Z.add Z.mul Z.compare Z.of_N Z.abs_N Z.div Z.modulo. *) diff --git a/plugins/extraction/ExtrOcamlZInt.v b/plugins/extraction/ExtrOcamlZInt.v index 55ba0ca1..c8c40e73 100644 --- a/plugins/extraction/ExtrOcamlZInt.v +++ b/plugins/extraction/ExtrOcamlZInt.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -74,7 +74,7 @@ Extract Constant Z.compare => Extract Constant Z.of_N => "fun p -> p". Extract Constant Z.abs_N => "abs". -(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod). +(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod). For the moment we don't even try *) diff --git a/plugins/extraction/big.ml b/plugins/extraction/big.ml index 4c33691d..ddb57a25 100644 --- a/plugins/extraction/big.ml +++ b/plugins/extraction/big.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/common.ml b/plugins/extraction/common.ml index 0bd5b843..92b5949e 100644 --- a/plugins/extraction/common.ml +++ b/plugins/extraction/common.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -197,7 +197,7 @@ let empty_env () = [], get_global_ids () let mktable autoclean = let h = Hashtbl.create 97 in if autoclean then register_cleanup (fun () -> Hashtbl.clear h); - (Hashtbl.add h, Hashtbl.find h, fun () -> Hashtbl.clear h) + (Hashtbl.replace h, Hashtbl.find h, fun () -> Hashtbl.clear h) (* We might have built [global_reference] whose canonical part is inaccurate. We must hence compare only the user part, diff --git a/plugins/extraction/common.mli b/plugins/extraction/common.mli index 02a496be..f5d90a43 100644 --- a/plugins/extraction/common.mli +++ b/plugins/extraction/common.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/extract_env.ml b/plugins/extraction/extract_env.ml index 83ebb139..6aa47eff 100644 --- a/plugins/extraction/extract_env.ml +++ b/plugins/extraction/extract_env.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -571,7 +571,9 @@ let separate_extraction lr = (*s Simple extraction in the Coq toplevel. The vernacular command is \verb!Extraction! [qualid]. *) -let simple_extraction r = match locate_ref [r] with +let simple_extraction r = + Vernacentries.dump_global (Genarg.AN r); + match locate_ref [r] with | ([], [mp]) as p -> full_extr None p | [r],[] -> init false false; diff --git a/plugins/extraction/extract_env.mli b/plugins/extraction/extract_env.mli index e587bf21..75ac111d 100644 --- a/plugins/extraction/extract_env.mli +++ b/plugins/extraction/extract_env.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/extraction.ml b/plugins/extraction/extraction.ml index 219b3913..e76c6919 100644 --- a/plugins/extraction/extraction.ml +++ b/plugins/extraction/extraction.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/extraction.mli b/plugins/extraction/extraction.mli index 48f05acb..1eb9ca8e 100644 --- a/plugins/extraction/extraction.mli +++ b/plugins/extraction/extraction.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/g_extraction.ml4 b/plugins/extraction/g_extraction.ml4 index 11a2d0e0..7dabb560 100644 --- a/plugins/extraction/g_extraction.ml4 +++ b/plugins/extraction/g_extraction.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/haskell.ml b/plugins/extraction/haskell.ml index 96731ed2..6c78b533 100644 --- a/plugins/extraction/haskell.ml +++ b/plugins/extraction/haskell.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/haskell.mli b/plugins/extraction/haskell.mli index 0f8949e3..5e76be48 100644 --- a/plugins/extraction/haskell.mli +++ b/plugins/extraction/haskell.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/miniml.mli b/plugins/extraction/miniml.mli index 5a19cc3f..856a481e 100644 --- a/plugins/extraction/miniml.mli +++ b/plugins/extraction/miniml.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/mlutil.ml b/plugins/extraction/mlutil.ml index c244e046..a38b303f 100644 --- a/plugins/extraction/mlutil.ml +++ b/plugins/extraction/mlutil.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/mlutil.mli b/plugins/extraction/mlutil.mli index 029e8cf4..e10b6070 100644 --- a/plugins/extraction/mlutil.mli +++ b/plugins/extraction/mlutil.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/modutil.ml b/plugins/extraction/modutil.ml index 4e0dbcab..257e1c1c 100644 --- a/plugins/extraction/modutil.ml +++ b/plugins/extraction/modutil.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/modutil.mli b/plugins/extraction/modutil.mli index 0565522b..fb8d5e1b 100644 --- a/plugins/extraction/modutil.mli +++ b/plugins/extraction/modutil.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ocaml.ml b/plugins/extraction/ocaml.ml index ed69ec45..289b2a1d 100644 --- a/plugins/extraction/ocaml.ml +++ b/plugins/extraction/ocaml.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/ocaml.mli b/plugins/extraction/ocaml.mli index fd60c69d..f55e2fd6 100644 --- a/plugins/extraction/ocaml.mli +++ b/plugins/extraction/ocaml.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/scheme.ml b/plugins/extraction/scheme.ml index 21507655..7915bc82 100644 --- a/plugins/extraction/scheme.ml +++ b/plugins/extraction/scheme.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/scheme.mli b/plugins/extraction/scheme.mli index eeca083c..405842f0 100644 --- a/plugins/extraction/scheme.mli +++ b/plugins/extraction/scheme.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/extraction/table.ml b/plugins/extraction/table.ml index 238befd2..e0a6e843 100644 --- a/plugins/extraction/table.ml +++ b/plugins/extraction/table.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -842,6 +842,7 @@ let extract_constant_inline inline r ids s = let extract_inductive r s l optstr = check_inside_section (); let g = Smartlocate.global_with_alias r in + Dumpglob.add_glob (loc_of_reference r) g; match g with | IndRef ((kn,i) as ip) -> let mib = Global.lookup_mind kn in diff --git a/plugins/extraction/table.mli b/plugins/extraction/table.mli index a3b7124e..192426c3 100644 --- a/plugins/extraction/table.mli +++ b/plugins/extraction/table.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/field/LegacyField.v b/plugins/field/LegacyField.v index 011bc81e..504304c6 100644 --- a/plugins/field/LegacyField.v +++ b/plugins/field/LegacyField.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/field/LegacyField_Compl.v b/plugins/field/LegacyField_Compl.v index 97c70c0e..5e9ae430 100644 --- a/plugins/field/LegacyField_Compl.v +++ b/plugins/field/LegacyField_Compl.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/field/LegacyField_Tactic.v b/plugins/field/LegacyField_Tactic.v index 810443f8..41d2998c 100644 --- a/plugins/field/LegacyField_Tactic.v +++ b/plugins/field/LegacyField_Tactic.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -150,7 +150,7 @@ Ltac apply_assoc FT lvar trm := match constr:(t = trm) with | (?X1 = ?X1) => idtac | _ => - rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- * + rewrite <- (assoc_correct FT trm); change (assoc trm) with t end. (**** Distribution *****) @@ -161,7 +161,7 @@ Ltac apply_distrib FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (distrib_correct FT trm); - change (distrib trm) with t in |- * + change (distrib trm) with t end. (**** Multiplication by the inverse product ****) @@ -175,7 +175,7 @@ Ltac weak_reduce := | |- context [(interp_ExprA ?X1 ?X2 _)] => cbv beta iota zeta delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero - Aone Aplus Amult Aopp Ainv] in |- * + Aone Aplus Amult Aopp Ainv] end. Ltac multiply mul := @@ -199,7 +199,7 @@ Ltac apply_multiply FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (multiply_correct FT trm); - change (multiply trm) with t in |- * + change (multiply trm) with t end. (**** Permutations and simplification ****) @@ -210,7 +210,7 @@ Ltac apply_inverse mul FT lvar trm := | (?X1 = ?X1) => idtac | _ => rewrite <- (inverse_correct FT trm mul); - [ change (inverse_simplif mul trm) with t in |- * | assumption ] + [ change (inverse_simplif mul trm) with t | assumption ] end. (**** Inverse test ****) @@ -252,11 +252,11 @@ Ltac apply_simplif sfun := Ltac unfolds FT := match get_component Aminus FT with - | Some ?X1 => unfold X1 in |- * + | Some ?X1 => unfold X1 | _ => idtac end; match get_component Adiv FT with - | Some ?X1 => unfold X1 in |- * + | Some ?X1 => unfold X1 | _ => idtac end. @@ -267,8 +267,8 @@ Ltac reduce FT := with AmultT := get_component Amult FT with AoppT := get_component Aopp FT with AinvT := get_component Ainv FT in - (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * || - compute in |- *). + (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] || + compute). Ltac field_gen_aux FT := let AplusT := get_component Aplus FT in @@ -280,7 +280,7 @@ Ltac field_gen_aux FT := cut (let ft := FT in let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2); - [ compute in |- *; auto + [ compute; auto | intros ft vm; apply_simplif apply_distrib; apply_simplif apply_assoc; multiply mul; [ apply_simplif apply_multiply; diff --git a/plugins/field/LegacyField_Theory.v b/plugins/field/LegacyField_Theory.v index 20ffbc27..1d581a8f 100644 --- a/plugins/field/LegacyField_Theory.v +++ b/plugins/field/LegacyField_Theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -44,20 +44,20 @@ Proof. elim (H1 e0); intro y; elim (H2 e); intro y0; try (left; rewrite y; rewrite y0; auto) || - (right; red in |- *; intro; inversion H3; auto). + (right; red; intro; inversion H3; auto). elim (H1 e0); intro y; elim (H2 e); intro y0; try (left; rewrite y; rewrite y0; auto) || - (right; red in |- *; intro; inversion H3; auto). + (right; red; intro; inversion H3; auto). elim (H0 e); intro y. left; rewrite y; auto. - right; red in |- *; intro; inversion H1; auto. + right; red; intro; inversion H1; auto. elim (H0 e); intro y. left; rewrite y; auto. - right; red in |- *; intro; inversion H1; auto. + right; red; intro; inversion H1; auto. elim (eq_nat_dec n n0); intro y. left; rewrite y; auto. - right; red in |- *; intro; inversion H; auto. + right; red; intro; inversion H; auto. Defined. Definition eq_nat_dec := Eval compute in eq_nat_dec. @@ -152,7 +152,7 @@ Lemma r_AmultT_mult : forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2. Proof. intros; transitivity (AmultT (AmultT (AinvT r) r) r1). - rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ]. + rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ]. transitivity (AmultT (AmultT (AinvT r) r) r2). repeat rewrite AmultT_assoc; rewrite H; trivial. rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ]. @@ -181,7 +181,7 @@ Qed. Lemma Rmult_neq_0_reg : forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT. Proof. - intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; legacy ring. + intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring. Qed. (************************) @@ -262,11 +262,11 @@ Lemma merge_mult_correct1 : Proof. intros e1 e2; generalize e1; generalize e2; clear e1 e2. simple induction e2; auto; intros. -unfold merge_mult at 1 in |- *; fold merge_mult in |- *; - unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *; - rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *; - fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *; - fold interp_ExprA in |- *; auto. +unfold merge_mult at 1; fold merge_mult; + unfold interp_ExprA at 2; fold interp_ExprA; + rewrite (H0 e e3 lvar); unfold interp_ExprA at 1; + fold interp_ExprA; unfold interp_ExprA at 5; + fold interp_ExprA; auto. Qed. Lemma merge_mult_correct : @@ -274,7 +274,7 @@ Lemma merge_mult_correct : interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2). Proof. simple induction e1; auto; intros. -elim e0; try (intros; simpl in |- *; legacy ring). +elim e0; try (intros; simpl; legacy ring). unfold interp_ExprA in H2; fold interp_ExprA in H2; cut (AmultT (interp_ExprA lvar e2) @@ -284,7 +284,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2; (AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4)) (interp_ExprA lvar e2)) (interp_ExprA lvar e3)). intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1; - simpl in |- *; legacy ring. + simpl; legacy ring. legacy ring. Qed. @@ -295,8 +295,8 @@ Lemma assoc_mult_correct1 : interp_ExprA lvar (assoc_mult (EAmult e1 e2)). Proof. simple induction e1; auto; intros. -rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct; - simpl in |- *; rewrite merge_mult_correct; simpl in |- *; +rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct; + simpl; rewrite merge_mult_correct; simpl; auto. Qed. @@ -306,21 +306,21 @@ Lemma assoc_mult_correct : Proof. simple induction e; auto; intros. elim e0; intros. -intros; simpl in |- *; legacy ring. -simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1))); +intros; simpl; legacy ring. +simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1))); rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite merge_mult_correct; simpl in |- *; - rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc; - rewrite assoc_mult_correct1; rewrite H2; simpl in |- *; +simpl; rewrite (H0 lvar); auto. +simpl; rewrite merge_mult_correct; simpl; + rewrite merge_mult_correct; simpl; rewrite AmultT_assoc; + rewrite assoc_mult_correct1; rewrite H2; simpl; rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1; fold interp_ExprA in H1; rewrite (H0 lvar) in H1; rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1)); rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc; legacy ring. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. Qed. Lemma merge_plus_correct1 : @@ -330,11 +330,11 @@ Lemma merge_plus_correct1 : Proof. intros e1 e2; generalize e1; generalize e2; clear e1 e2. simple induction e2; auto; intros. -unfold merge_plus at 1 in |- *; fold merge_plus in |- *; - unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *; - rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *; - fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *; - fold interp_ExprA in |- *; auto. +unfold merge_plus at 1; fold merge_plus; + unfold interp_ExprA at 2; fold interp_ExprA; + rewrite (H0 e e3 lvar); unfold interp_ExprA at 1; + fold interp_ExprA; unfold interp_ExprA at 5; + fold interp_ExprA; auto. Qed. Lemma merge_plus_correct : @@ -342,7 +342,7 @@ Lemma merge_plus_correct : interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2). Proof. simple induction e1; auto; intros. -elim e0; try intros; try (simpl in |- *; legacy ring). +elim e0; try intros; try (simpl; legacy ring). unfold interp_ExprA in H2; fold interp_ExprA in H2; cut (AplusT (interp_ExprA lvar e2) @@ -352,7 +352,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2; (AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4)) (interp_ExprA lvar e2)) (interp_ExprA lvar e3)). intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1; - simpl in |- *; legacy ring. + simpl; legacy ring. legacy ring. Qed. @@ -362,8 +362,8 @@ Lemma assoc_plus_correct : interp_ExprA lvar (assoc (EAplus e1 e2)). Proof. simple induction e1; auto; intros. -rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct; - simpl in |- *; rewrite merge_plus_correct; simpl in |- *; +rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct; + simpl; rewrite merge_plus_correct; simpl; auto. Qed. @@ -373,11 +373,11 @@ Lemma assoc_correct : Proof. simple induction e; auto; intros. elim e0; intros. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite merge_plus_correct; simpl in |- *; - rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc; - rewrite assoc_plus_correct; rewrite H2; simpl in |- *; +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite merge_plus_correct; simpl; + rewrite merge_plus_correct; simpl; rewrite AplusT_assoc; + rewrite assoc_plus_correct; rewrite H2; simpl; apply (r_AplusT_plus (interp_ExprA lvar (assoc e1)) (AplusT (interp_ExprA lvar (assoc e2)) @@ -386,7 +386,7 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *; (interp_ExprA lvar e1))); rewrite <- AplusT_assoc; rewrite (AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2))) - ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *; + ; rewrite assoc_plus_correct; rewrite H1; simpl; rewrite (H0 lvar); rewrite <- (AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1)) @@ -399,15 +399,15 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *; rewrite <- (AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3) (interp_ExprA lvar e1)); apply AplusT_comm. -unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *; - fold interp_ExprA in |- *; rewrite assoc_mult_correct; - rewrite (H0 lvar); simpl in |- *; auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -simpl in |- *; rewrite (H0 lvar); auto. -unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *; - fold interp_ExprA in |- *; rewrite assoc_mult_correct; - simpl in |- *; auto. +unfold assoc; fold assoc; unfold interp_ExprA; + fold interp_ExprA; rewrite assoc_mult_correct; + rewrite (H0 lvar); simpl; auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +simpl; rewrite (H0 lvar); auto. +unfold assoc; fold assoc; unfold interp_ExprA; + fold interp_ExprA; rewrite assoc_mult_correct; + simpl; auto. Qed. (**** Distribution *****) @@ -451,7 +451,7 @@ Lemma distrib_mult_right_correct : interp_ExprA lvar (distrib_mult_right e1 e2) = AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2). Proof. -simple induction e1; try intros; simpl in |- *; auto. +simple induction e1; try intros; simpl; auto. rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar); rewrite (H0 e2 lvar); legacy ring. Qed. @@ -461,10 +461,10 @@ Lemma distrib_mult_left_correct : interp_ExprA lvar (distrib_mult_left e1 e2) = AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2). Proof. -simple induction e1; try intros; simpl in |- *. -rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *; +simple induction e1; try intros; simpl. +rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl; apply AmultT_Or. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. rewrite AmultT_comm; rewrite (AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e) @@ -472,10 +472,10 @@ rewrite AmultT_comm; rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e)); rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0)); rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. -rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. +rewrite distrib_mult_right_correct; simpl; apply AmultT_comm. Qed. Lemma distrib_correct : @@ -483,13 +483,13 @@ Lemma distrib_correct : interp_ExprA lvar (distrib e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar); - unfold distrib in |- *; simpl in |- *; auto. -simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar); - unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct. -simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar); - unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct; - simpl in |- *; fold AoppT in |- *; legacy ring. +simpl; rewrite <- (H lvar); rewrite <- (H0 lvar); + unfold distrib; simpl; auto. +simpl; rewrite <- (H lvar); rewrite <- (H0 lvar); + unfold distrib; simpl; apply distrib_mult_left_correct. +simpl; fold AoppT; rewrite <- (H lvar); + unfold distrib; simpl; rewrite distrib_mult_right_correct; + simpl; fold AoppT; legacy ring. Qed. (**** Multiplication by the inverse product ****) @@ -500,7 +500,7 @@ Lemma mult_eq : interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) -> interp_ExprA lvar e1 = interp_ExprA lvar e2. Proof. - simpl in |- *; intros; + simpl; intros; apply (r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1) (interp_ExprA lvar e2)); assumption. @@ -523,16 +523,16 @@ Lemma multiply_aux_correct : interp_ExprA lvar (multiply_aux a e) = AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. -simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct; +simple induction e; simpl; intros; try rewrite merge_mult_correct; auto. - simpl in |- *; rewrite (H0 lvar); legacy ring. + simpl; rewrite (H0 lvar); legacy ring. Qed. Lemma multiply_correct : forall (e:ExprA) (lvar:list (AT * nat)), interp_ExprA lvar (multiply e) = interp_ExprA lvar e. Proof. - simple induction e; simpl in |- *; auto. + simple induction e; simpl; auto. intros; apply multiply_aux_correct. Qed. @@ -583,27 +583,27 @@ Lemma monom_remove_correct : AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. simple induction e; intros. -simpl in |- *; case (eqExprA EAzero (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA EAone (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros; - [ inversion e2 | simpl in |- *; trivial ]. -simpl in |- *; case (eqExprA e0 (EAinv a)); intros. -rewrite e2; simpl in |- *; fold AinvT in |- *. +simpl; case (eqExprA EAzero (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. +simpl; case (eqExprA EAone (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. +simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros; + [ inversion e2 | simpl; trivial ]. +simpl; case (eqExprA e0 (EAinv a)); intros. +rewrite e2; simpl; fold AinvT. rewrite <- (AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a)) (interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ]. -simpl in |- *; rewrite H0; auto; legacy ring. -simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a)); - intros; [ inversion e1 | simpl in |- *; trivial ]. -unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros. +simpl; rewrite H0; auto; legacy ring. +simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a)); + intros; [ inversion e1 | simpl; trivial ]. +unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros. case (eqExprA e0 a); intros. -rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto. -inversion e1; simpl in |- *; exfalso; auto. -simpl in |- *; trivial. -unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros; - [ inversion e0 | simpl in |- *; trivial ]. +rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto. +inversion e1; simpl; exfalso; auto. +simpl; trivial. +unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros; + [ inversion e0 | simpl; trivial ]. Qed. Lemma monom_simplif_rem_correct : @@ -612,7 +612,7 @@ Lemma monom_simplif_rem_correct : interp_ExprA lvar (monom_simplif_rem a e) = AmultT (interp_ExprA lvar a) (interp_ExprA lvar e). Proof. -simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct; +simple induction a; simpl; intros; try rewrite monom_remove_correct; auto. elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1); intros. @@ -626,9 +626,9 @@ Lemma monom_simplif_correct : interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; case (eqExprA a e0); intros. +simpl; case (eqExprA a e0); intros. rewrite <- e2; apply monom_simplif_rem_correct; auto. -simpl in |- *; trivial. +simpl; trivial. Qed. Lemma inverse_correct : @@ -637,8 +637,8 @@ Lemma inverse_correct : interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e. Proof. simple induction e; intros; auto. -simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto. -unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto. +simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto. +unfold inverse_simplif; rewrite monom_simplif_correct; auto. Qed. End Theory_of_fields. diff --git a/plugins/field/field.ml4 b/plugins/field/field.ml4 index 9e4f4d74..6c9fd325 100644 --- a/plugins/field/field.ml4 +++ b/plugins/field/field.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/formula.ml b/plugins/firstorder/formula.ml index d67dceea..f0043140 100644 --- a/plugins/firstorder/formula.ml +++ b/plugins/firstorder/formula.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/formula.mli b/plugins/firstorder/formula.mli index 379aaff1..fe6238ab 100644 --- a/plugins/firstorder/formula.mli +++ b/plugins/firstorder/formula.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/g_ground.ml4 b/plugins/firstorder/g_ground.ml4 index 034dc3c2..9d3d8c99 100644 --- a/plugins/firstorder/g_ground.ml4 +++ b/plugins/firstorder/g_ground.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/ground.ml b/plugins/firstorder/ground.ml index 46708053..4d907b2c 100644 --- a/plugins/firstorder/ground.ml +++ b/plugins/firstorder/ground.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/ground.mli b/plugins/firstorder/ground.mli index a4ee68fd..8b2ba20c 100644 --- a/plugins/firstorder/ground.mli +++ b/plugins/firstorder/ground.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/instances.ml b/plugins/firstorder/instances.ml index 16831d3e..68f112d6 100644 --- a/plugins/firstorder/instances.ml +++ b/plugins/firstorder/instances.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/instances.mli b/plugins/firstorder/instances.mli index be69b067..edccf213 100644 --- a/plugins/firstorder/instances.mli +++ b/plugins/firstorder/instances.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/rules.ml b/plugins/firstorder/rules.ml index 23eeb2f6..33bb522f 100644 --- a/plugins/firstorder/rules.ml +++ b/plugins/firstorder/rules.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/rules.mli b/plugins/firstorder/rules.mli index 7d1e57f4..d56efbcb 100644 --- a/plugins/firstorder/rules.mli +++ b/plugins/firstorder/rules.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/sequent.ml b/plugins/firstorder/sequent.ml index f75678c6..43de96ab 100644 --- a/plugins/firstorder/sequent.ml +++ b/plugins/firstorder/sequent.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/sequent.mli b/plugins/firstorder/sequent.mli index c5c2bb95..9e99e23b 100644 --- a/plugins/firstorder/sequent.mli +++ b/plugins/firstorder/sequent.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/unify.ml b/plugins/firstorder/unify.ml index 299a0054..73c7f79c 100644 --- a/plugins/firstorder/unify.ml +++ b/plugins/firstorder/unify.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/firstorder/unify.mli b/plugins/firstorder/unify.mli index 06865611..a13709f4 100644 --- a/plugins/firstorder/unify.mli +++ b/plugins/firstorder/unify.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v index a1113d2d..f37d0027 100644 --- a/plugins/fourier/Fourier.v +++ b/plugins/fourier/Fourier.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/fourier/Fourier_util.v b/plugins/fourier/Fourier_util.v index 3d16f189..b10c304c 100644 --- a/plugins/fourier/Fourier_util.v +++ b/plugins/fourier/Fourier_util.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -16,7 +16,7 @@ intros; apply Rmult_lt_compat_l; assumption. Qed. Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1. -red in |- *. +red. intros. case H; auto with real. Qed. @@ -63,19 +63,19 @@ Lemma Rfourier_le_le : x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2. intros x1 y1 x2 y2 a H H0 H1; try assumption. case H0; intros. -red in |- *. +red. left; try assumption. apply Rfourier_le_lt; auto with real. rewrite H2. case H; intros. -red in |- *. +red. left; try assumption. rewrite (Rplus_comm x1 (a * y2)). rewrite (Rplus_comm y1 (a * y2)). apply Rplus_lt_compat_l. try exact H3. rewrite H3. -red in |- *. +red. right; try assumption. auto with real. Qed. @@ -84,7 +84,7 @@ Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x. intros x H; try assumption. rewrite Rplus_comm. apply Rle_lt_0_plus_1. -red in |- *; auto with real. +red; auto with real. Qed. Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y. @@ -101,12 +101,12 @@ Qed. Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x. intros x H; try assumption. case H; intros. -red in |- *. +red. left; try assumption. apply Rlt_zero_pos_plus1; auto with real. rewrite <- H0. replace (1 + 0) with 1. -red in |- *; left. +red; left. exact Rlt_zero_1. ring. Qed. @@ -114,28 +114,28 @@ Qed. Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y. intros x y H H0; try assumption. case H; intros. -red in |- *; left. +red; left. apply Rlt_mult_inv_pos; auto with real. rewrite <- H1. -red in |- *; right; ring. +red; right; ring. Qed. Lemma Rle_zero_1 : 0 <= 1. -red in |- *; left. +red; left. exact Rlt_zero_1. Qed. Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d. -intros n d H; red in |- *; intros H0; try exact H0. +intros n d H; red; intros H0; try exact H0. generalize (Rgt_not_le 0 (n * / d)). intros H1; elim H1; try assumption. replace (n * / d) with (- - (n * / d)). replace 0 with (- -0). replace (- (n * / d)) with (- n * / d). replace (-0) with 0. -red in |- *. +red. apply Ropp_gt_lt_contravar. -red in |- *. +red. exact H0. ring. ring. @@ -162,7 +162,7 @@ ring. Qed. Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y. -unfold not in |- *; intros. +unfold not; intros. apply H. apply Rplus_lt_reg_r with x. replace (x + 0) with x. @@ -173,7 +173,7 @@ ring. Qed. Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y. -unfold not in |- *; intros. +unfold not; intros. apply H. case H0; intros. left. @@ -188,7 +188,7 @@ rewrite H1; ring. Qed. Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y. -unfold Rgt in |- *; intros; assumption. +unfold Rgt; intros; assumption. Qed. Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y. diff --git a/plugins/fourier/fourier.ml b/plugins/fourier/fourier.ml index 6c4d4d15..043c9e51 100644 --- a/plugins/fourier/fourier.ml +++ b/plugins/fourier/fourier.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/fourier/fourierR.ml b/plugins/fourier/fourierR.ml index 48493785..cdd10d70 100644 --- a/plugins/fourier/fourierR.ml +++ b/plugins/fourier/fourierR.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/fourier/g_fourier.ml4 b/plugins/fourier/g_fourier.ml4 index 9276eda1..7c7cf64f 100644 --- a/plugins/fourier/g_fourier.ml4 +++ b/plugins/fourier/g_fourier.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/funind/Recdef.v b/plugins/funind/Recdef.v index b29b8362..b2955e90 100644 --- a/plugins/funind/Recdef.v +++ b/plugins/funind/Recdef.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/funind/functional_principles_types.ml b/plugins/funind/functional_principles_types.ml index 6df9d574..00e966fb 100644 --- a/plugins/funind/functional_principles_types.ml +++ b/plugins/funind/functional_principles_types.ml @@ -142,12 +142,6 @@ let compute_new_princ_type_from_rel rel_to_fun sorts princ_type = (* observe (str "replacing " ++ pr_lconstr c ++ str " by " ++ pr_lconstr res); *) res in - let rec has_dummy_var t = - fold_constr - (fun b t -> b || (eq_constr t dummy_var) || (has_dummy_var t)) - false - t - in let rec compute_new_princ_type remove env pre_princ : types*(constr list) = let (new_princ_type,_) as res = match kind_of_term pre_princ with diff --git a/plugins/funind/g_indfun.ml4 b/plugins/funind/g_indfun.ml4 index 06abb8ce..85d79214 100644 --- a/plugins/funind/g_indfun.ml4 +++ b/plugins/funind/g_indfun.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/funind/invfun.ml b/plugins/funind/invfun.ml index 95ca86c2..55451a9f 100644 --- a/plugins/funind/invfun.ml +++ b/plugins/funind/invfun.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/funind/merge.ml b/plugins/funind/merge.ml index 4eedf8dc..6ee2f352 100644 --- a/plugins/funind/merge.ml +++ b/plugins/funind/merge.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml index 3355300e..892c1a77 100644 --- a/plugins/funind/recdef.ml +++ b/plugins/funind/recdef.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/CheckerMaker.v b/plugins/micromega/CheckerMaker.v index 3031fd22..fa780671 100644 --- a/plugins/micromega/CheckerMaker.v +++ b/plugins/micromega/CheckerMaker.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/Env.v b/plugins/micromega/Env.v index 5f6c60be..caec7800 100644 --- a/plugins/micromega/Env.v +++ b/plugins/micromega/Env.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -12,10 +12,9 @@ (* *) (************************************************************************) -Require Import ZArith. -Require Import Coq.Arith.Max. -Require Import List. +Require Import BinInt List. Set Implicit Arguments. +Local Open Scope positive_scope. Section S. @@ -23,154 +22,78 @@ Section S. Definition Env := positive -> D. - Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j). + Definition jump (j:positive) (e:Env) := fun x => e (x+j). - Definition nth (n:positive) (e : Env ) := e n. + Definition nth (n:positive) (e:Env) := e n. - Definition hd (x:D) (e: Env) := nth xH e. + Definition hd (e:Env) := nth 1 e. - Definition tail (e: Env) := jump xH e. + Definition tail (e:Env) := jump 1 e. - Lemma psucc : forall p, (match p with - | xI y' => xO (Psucc y') - | xO y' => xI y' - | 1%positive => 2%positive - end) = (p+1)%positive. + Lemma jump_add i j l x : jump (i + j) l x = jump i (jump j l) x. Proof. - destruct p. - auto with zarith. - rewrite xI_succ_xO. - auto with zarith. - reflexivity. + unfold jump. f_equal. apply Pos.add_assoc. Qed. - Lemma jump_Pplus : forall i j l, - forall x, jump (i + j) l x = jump i (jump j l) x. - Proof. - unfold jump. - intros. - rewrite Pplus_assoc. - reflexivity. - Qed. - - Lemma jump_simpl : forall p l, - forall x, jump p l x = + Lemma jump_simpl p l x : + jump p l x = match p with | xH => tail l x | xO p => jump p (jump p l) x | xI p => jump p (jump p (tail l)) x end. Proof. - destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus. - (* xI p = p + p + 1 *) - rewrite xI_succ_xO. - rewrite Pplus_diag. - rewrite <- Pplus_one_succ_r. - reflexivity. - (* xO p = p + p *) - rewrite Pplus_diag. - reflexivity. - reflexivity. + destruct p; unfold tail; rewrite <- ?jump_add; f_equal; + now rewrite Pos.add_diag. Qed. - Ltac jump_s := - repeat - match goal with - | |- context [jump xH ?e] => rewrite (jump_simpl xH) - | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p)) - | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p)) - end. - - Lemma jump_tl : forall j l, forall x, tail (jump j l) x = jump j (tail l) x. + Lemma jump_tl j l x : tail (jump j l) x = jump j (tail l) x. Proof. - unfold tail. - intros. - repeat rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + unfold tail. rewrite <- !jump_add. f_equal. apply Pos.add_comm. Qed. - Lemma jump_Psucc : forall j l, - forall x, (jump (Psucc j) l x) = (jump 1 (jump j l) x). + Lemma jump_succ j l x : jump (Pos.succ j) l x = jump 1 (jump j l) x. Proof. - intros. - rewrite <- jump_Pplus. - rewrite Pplus_one_succ_r. - rewrite Pplus_comm. - reflexivity. + rewrite <- jump_add. f_equal. symmetry. apply Pos.add_1_l. Qed. - Lemma jump_Pdouble_minus_one : forall i l, - forall x, (jump (Pdouble_minus_one i) (tail l)) x = (jump i (jump i l)) x. + Lemma jump_pred_double i l x : + jump (Pos.pred_double i) (tail l) x = jump i (jump i l) x. Proof. - unfold tail. - intros. - repeat rewrite <- jump_Pplus. - rewrite <- Pplus_one_succ_r. - rewrite Psucc_o_double_minus_one_eq_xO. - rewrite Pplus_diag. - reflexivity. + unfold tail. rewrite <- !jump_add. f_equal. + now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag. Qed. - Lemma jump_x0_tail : forall p l, forall x, jump (xO p) (tail l) x = jump (xI p) l x. - Proof. - intros. - unfold jump. - unfold tail. - unfold jump. - rewrite <- Pplus_assoc. - simpl. - reflexivity. - Qed. - - Lemma nth_spec : forall p l x, + Lemma nth_spec p l : nth p l = match p with - | xH => hd x l + | xH => hd l | xO p => nth p (jump p l) | xI p => nth p (jump p (tail l)) end. Proof. - unfold nth. - destruct p. - intros. - unfold jump, tail. - unfold jump. - rewrite Pplus_diag. - rewrite xI_succ_xO. - simpl. - reflexivity. - unfold jump. - rewrite Pplus_diag. - reflexivity. - unfold hd. - unfold nth. - reflexivity. + unfold hd, nth, tail, jump. + destruct p; f_equal; now rewrite Pos.add_diag. Qed. - - Lemma nth_jump : forall p l x, nth p (tail l) = hd x (jump p l). + Lemma nth_jump p l : nth p (tail l) = hd (jump p l). Proof. - unfold tail. - unfold hd. - unfold jump. - unfold nth. - intros. - rewrite Pplus_comm. - reflexivity. + unfold hd, nth, tail, jump. f_equal. apply Pos.add_comm. Qed. - Lemma nth_Pdouble_minus_one : - forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l). + Lemma nth_pred_double p l : + nth (Pos.pred_double p) (tail l) = nth p (jump p l). Proof. - intros. - unfold tail. - unfold nth, jump. - rewrite Pplus_diag. - rewrite <- Psucc_o_double_minus_one_eq_xO. - rewrite Pplus_one_succ_r. - reflexivity. + unfold nth, tail, jump. f_equal. + now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag. Qed. End S. +Ltac jump_simpl := + repeat + match goal with + | |- appcontext [jump xH] => rewrite (jump_simpl xH) + | |- appcontext [jump (xO ?p)] => rewrite (jump_simpl (xO p)) + | |- appcontext [jump (xI ?p)] => rewrite (jump_simpl (xI p)) + end. diff --git a/plugins/micromega/EnvRing.v b/plugins/micromega/EnvRing.v index 309ebdef..786c3393 100644 --- a/plugins/micromega/EnvRing.v +++ b/plugins/micromega/EnvRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -11,15 +11,10 @@ Set Implicit Arguments. -Require Import Setoid. -Require Import BinList. -Require Import Env. -Require Import BinPos. -Require Import BinNat. -Require Import BinInt. +Require Import Setoid Morphisms Env BinPos BinNat BinInt. Require Export Ring_theory. -Open Local Scope positive_scope. +Local Open Scope positive_scope. Import RingSyntax. Section MakeRingPol. @@ -30,7 +25,7 @@ Section MakeRingPol. Variable req : R -> R -> Prop. (* Ring properties *) - Variable Rsth : Setoid_Theory R req. + Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req. @@ -42,35 +37,55 @@ Section MakeRingPol. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. - (* Power coefficients *) + (* Power coefficients *) Variable Cpow : Type. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. Variable pow_th : power_theory rI rmul req Cp_phi rpow. - (* R notations *) Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). + Infix "==" := req. + Infix "^" := (pow_pos rmul). (* C notations *) - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). - - (* Usefull tactics *) - Add Setoid R req Rsth as R_set1. - Ltac rrefl := gen_reflexivity Rsth. - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-! " := csub. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). + + (* Useful tactics *) + Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. + Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. + Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. + Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. Ltac rsimpl := gen_srewrite Rsth Reqe ARth. + Ltac add_push := gen_add_push radd Rsth Reqe ARth. Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth. + Ltac add_permut_rec t := + match t with + | ?x + ?y => add_permut_rec y || add_permut_rec x + | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] + end. + + Ltac add_permut := + repeat (reflexivity || + match goal with |- ?t == _ => add_permut_rec t end). + + Ltac mul_permut_rec t := + match t with + | ?x * ?y => mul_permut_rec y || mul_permut_rec x + | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] + end. + + Ltac mul_permut := + repeat (reflexivity || + match goal with |- ?t == _ => mul_permut_rec t end). + + (* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial @@ -117,19 +132,19 @@ Section MakeRingPol. | _, _ => false end. - Notation " P ?== P' " := (Peq P P'). + Infix "?==" := Peq. Definition mkPinj j P := match P with | Pc _ => P - | Pinj j' Q => Pinj ((j + j'):positive) Q + | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end. Definition mkPinj_pred j P:= match j with | xH => P - | xO j => Pinj (Pdouble_minus_one j) P + | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end. @@ -157,14 +172,14 @@ Section MakeRingPol. (** Addition et subtraction *) - Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end. - Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) @@ -176,11 +191,11 @@ Section MakeRingPol. Variable Pop : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') @@ -188,16 +203,16 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PaddI (Pdouble_minus_one j) Q') + | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end. - Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') @@ -205,41 +220,41 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PsubI (Pdouble_minus_one j) Q') + | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end. Variable P' : Pol. - Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' - | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end. - Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' - | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' @@ -259,18 +274,18 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') - | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end. - Notation "P ++ P'" := (Padd P P'). + Infix "++" := Padd. Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with @@ -282,22 +297,22 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') - | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end. - Notation "P -- P'" := (Psub P P'). + Infix "--" := Psub. (** Multiplication *) - Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) @@ -311,11 +326,11 @@ Section MakeRingPol. Section PmulI. Variable Pmul : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol := + Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') @@ -323,13 +338,12 @@ Section MakeRingPol. | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) - | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q') + | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end. End PmulI. -(* A symmetric version of the multiplication *) Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with @@ -342,7 +356,7 @@ Section MakeRingPol. let QQ' := match j with | xH => Pmul Q Q' - | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q' + | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' @@ -355,25 +369,7 @@ Section MakeRingPol. end end. -(* Non symmetric *) -(* - Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol := - match P' with - | Pc c' => PmulC P c' - | Pinj j' Q' => PmulI Pmul_aux Q' j' P - | PX P' i' Q' => - (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P) - end. - - Definition Pmul P P' := - match P with - | Pc c => PmulC P' c - | Pinj j Q => PmulI Pmul_aux Q j P' - | PX P i Q => - (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P') - end. -*) - Notation "P ** P'" := (Pmul P P'). + Infix "**" := Pmul. Fixpoint Psquare (P:Pol) : Pol := match P with @@ -388,26 +384,26 @@ Section MakeRingPol. (** Monomial **) + (** A monomial is X1^k1...Xi^ki. Its representation + is a simplified version of the polynomial representation: + + - [mon0] correspond to the polynom [P1]. + - [(zmon j M)] corresponds to [(Pinj j ...)], + i.e. skip j variable indices. + - [(vmon i M)] is X^i*M with X the current variable, + its corresponds to (PX P1 i ...)] + *) + Inductive Mon: Set := - mon0: Mon + | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon. - Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R := - match M with - mon0 => rI - | zmon j M1 => Mphi (jump j l) M1 - | vmon i M1 => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Mphi (tail l) M1) * xi - end. - Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end. Definition zmon_pred j M := - match j with xH => M | _ => mkZmon (Ppred j) M end. + match j with xH => M | _ => mkZmon (Pos.pred j) M end. Definition mkVmon i M := match M with @@ -416,7 +412,7 @@ Section MakeRingPol. | vmon i' m => vmon (i+i') m end. - Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol := + Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol := match P, M with _, mon0 => (Pc cO, P) | Pc _, _ => (P, Pc cO) @@ -453,7 +449,7 @@ Section MakeRingPol. | _ => Some (Padd Q1 (Pmul P2 R1)) end. - Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol := + Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 M1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end | _ => P1 @@ -465,14 +461,13 @@ Section MakeRingPol. | _ => None end. - Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: - Pol := + Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end. - Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol := + Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with @@ -482,7 +477,7 @@ Section MakeRingPol. | _ => None end. - Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol := + Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 @@ -490,726 +485,446 @@ Section MakeRingPol. (** Evaluation of a polynomial towards R *) - Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R := + Fixpoint Pphi(l:Env R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q - | PX P i Q => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Pphi l P) * xi + (Pphi (tail l) Q) + | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end. Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + + (** Evaluation of a monomial towards R *) + + Fixpoint Mphi(l:Env R) (M: Mon) : R := + match M with + | mon0 => rI + | zmon j M1 => Mphi (jump j l) M1 + | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i + end. + + Notation "M @@ l" := (Mphi l M) (at level 10, no associativity). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub := + match goal with |- context [Z.pos_sub ?x ?y] => + generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. + + Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l. Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. + revert P';induction P;destruct P';simpl; intros H l; try easy. + - now apply (morph_eq CRmorph). + - destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + now rewrite IHP. + - specialize (IHP1 P'1); specialize (IHP2 P'2). + destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + destruct (P2 ?== P'1); [|easy]. + rewrite H in *. + now rewrite IHP1, IHP2. Qed. - Lemma Peq_ok : forall P P', - (P ?== P') = true -> forall l, P@l == P'@ l. + Lemma Peq_spec P P' : + BoolSpec (forall l, P@l == P'@l) True (P ?== P'). Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply (morph_eq CRmorph);trivial. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite (IHP P' H); rewrite H1;trivial;rrefl. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite H1;trivial. clear H1. - assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2); - destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H] - |discriminate H]. - rewrite (H1 H);rewrite (H2 H);rrefl. + generalize (Peq_ok P P'). destruct (P ?== P'); auto. Qed. - Lemma Pphi0 : forall l, P0@l == 0. + Lemma Pphi0 l : P0@l == 0. Proof. - intros;simpl;apply (morph0 CRmorph). + simpl;apply (morph0 CRmorph). Qed. -Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) -> - p @ e1 = p @ e2. + Lemma Pphi1 l : P1@l == 1. + Proof. + simpl;apply (morph1 CRmorph). + Qed. + +Lemma env_morph p e1 e2 : + (forall x, e1 x = e2 x) -> p @ e1 = p @ e2. Proof. - induction p ; simpl. - reflexivity. - intros. - apply IHp. - intros. - unfold jump. - apply H. - intros. - rewrite (IHp1 e1 e2) ; auto. - rewrite (IHp2 (tail e1) (tail e2)) ; auto. - unfold hd. unfold nth. rewrite H. reflexivity. - unfold tail. unfold jump. intros ; apply H. + revert e1 e2. induction p ; simpl. + - reflexivity. + - intros e1 e2 EQ. apply IHp. intros. apply EQ. + - intros e1 e2 EQ. f_equal; [f_equal|]. + + now apply IHp1. + + f_equal. apply EQ. + + apply IHp2. intros; apply EQ. Qed. -Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)). +Lemma Pjump_add P i j l : + P @ (jump (i + j) l) = P @ (jump j (jump i l)). Proof. - intros. apply env_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + apply env_morph. intros. rewrite <- jump_add. f_equal. + apply Pos.add_comm. Qed. -Lemma Pjump_xO_tail : forall P p l, +Lemma Pjump_xO_tail P p l : P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l). Proof. - intros. - apply env_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply env_morph. intros. now jump_simpl. Qed. -Lemma Pjump_Pdouble_minus_one : forall P p l, - P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l). +Lemma Pjump_pred_double P p l : + P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l). Proof. - intros. - apply env_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply env_morph. intros. + rewrite jump_pred_double. now jump_simpl. Qed. - - - Lemma Pphi1 : forall l, P1@l == 1. + Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l). Proof. - intros;simpl;apply (morph1 CRmorph). + destruct P;simpl;rsimpl. + now rewrite Pjump_add. Qed. - Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l). + Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j. Proof. - intros j l p;destruct p;simpl;rsimpl. - rewrite Pjump_Pplus. - reflexivity. + rewrite Pos.add_comm. + apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). Qed. - Let pow_pos_Pplus := - pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc). - - Lemma mkPX_ok : forall l P i Q, - (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l). + Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c'). Proof. - intros l P i Q;unfold mkPX. - destruct P;try (simpl;rrefl). - assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl. - rewrite (H (refl_equal true));rewrite (morph0 CRmorph). - rewrite mkPinj_ok;rsimpl;simpl;rrefl. - assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl. - rewrite (H (refl_equal true));trivial. - rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl. + generalize (morph_eq CRmorph c c'). + destruct (c ?=! c'); auto. Qed. - - Ltac Esimpl := - repeat (progress ( - match goal with - | |- context [P0@?l] => rewrite (Pphi0 l) - | |- context [P1@?l] => rewrite (Pphi1 l) - | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P) - | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q) - | |- context [[cO]] => rewrite (morph0 CRmorph) - | |- context [[cI]] => rewrite (morph1 CRmorph) - | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y) - | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y) - | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y) - | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x) - end)); - rsimpl; simpl. - - Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c]. + Lemma mkPX_ok l P i Q : + (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l). Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP2;rsimpl. + unfold mkPX. destruct P. + - case ceqb_spec; intros H; simpl; try reflexivity. + rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl. + - reflexivity. + - case Peq_spec; intros H; simpl; try reflexivity. + rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl. Qed. - Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c]. + Hint Rewrite + Pphi0 + Pphi1 + mkPinj_ok + mkPX_ok + (morph0 CRmorph) + (morph1 CRmorph) + (morph0 CRmorph) + (morph_add CRmorph) + (morph_mul CRmorph) + (morph_sub CRmorph) + (morph_opp CRmorph) + : Esimpl. + + (* Quicker than autorewrite with Esimpl :-) *) + Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl. + + Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c]. Proof. - induction P;simpl;intros. - Esimpl. - rewrite IHP;rsimpl. + revert l;induction P;simpl;intros;Esimpl;trivial. rewrite IHP2;rsimpl. Qed. - Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. + Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c]. Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP1;rewrite IHP2;rsimpl. - mul_push ([c]);rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - rewrite IHP;rsimpl. + - rewrite IHP2;rsimpl. Qed. - Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. + Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c]. Proof. - intros c P l; unfold PmulC. - assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO). - rewrite (H (refl_equal true));Esimpl. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - apply PmulC_aux_ok. + revert l;induction P;simpl;intros;Esimpl;trivial. + rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut. Qed. - Lemma Popp_ok : forall P l, (--P)@l == - P@l. + Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c]. Proof. - induction P;simpl;intros. - Esimpl. - apply IHP. - rewrite IHP1;rewrite IHP2;rsimpl. + unfold PmulC. + case ceqb_spec; intros H. + - rewrite H; Esimpl. + - case ceqb_spec; intros H'. + + rewrite H'; Esimpl. + + apply PmulC_aux_ok. Qed. - Ltac Esimpl2 := - Esimpl; - repeat (progress ( - match goal with - | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l) - | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l) - | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) - | |- context [(--?P)@?l] => rewrite (Popp_ok P l) - end)); Esimpl. - - - - - Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l. + Lemma Popp_ok P l : (--P)@l == - P@l. Proof. - induction P';simpl;intros;Esimpl2. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rrefl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite Pjump_Pplus. rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite Pjump_Pplus. rrefl. - destruct p0;simpl. - rewrite IHP2;simpl. rsimpl. - rewrite Pjump_xO_tail. Esimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one. - rsimpl. - rewrite IHP'. - rsimpl. - destruct P;simpl. - Esimpl2;add_push [c];rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl. - rewrite Pjump_xO_tail. - rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;simpl. - rewrite Pjump_Pdouble_minus_one. rsimpl. - add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl. - unfold tail. - add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1;rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1;rewrite IHP'2;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros;try apply (ARadd_comm ARth). - destruct p2; simpl; try apply (ARadd_comm ARth). - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth). - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth). - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2. - rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl. - rewrite IHP'1;simpl;Esimpl. - rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - apply IHP. + - rewrite IHP1, IHP2;rsimpl. Qed. - Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. + Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl. + + Lemma PaddX_ok P' P k l : + (forall P l, (P++P')@l == P@l + P'@l) -> + (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k. Proof. - induction P';simpl;intros;Esimpl2;trivial. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rsimpl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl; try rewrite Pjump_xO_tail ; rsimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one;rsimpl. - unfold tail ; rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial. - rewrite Pjump_xO_tail. - add_push (P @ ((jump (xI p0) l)));rrefl. - rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl. - add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl. - unfold tail. - rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1; rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros. - rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial. - destruct p2;simpl; rewrite Popp_ok;rsimpl. - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth);trivial. - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth);trivial. - apply (ARadd_comm ARth);trivial. - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl. - rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl. - rewrite IHP'1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. + intros IHP'. + revert k l. induction P;simpl;intros. + - add_permut. + - destruct p; simpl; + rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut. + - destr_pos_sub; intros ->;Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. -(* Proof for the symmetric version *) - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : Env R), (Pmul P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : Env R), - (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). + Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pjump_Pplus;simpl;rrefl. - rewrite H1. - rewrite Pjump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;rsimpl. - rewrite Pjump_xO_tail. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one. - rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * now rewrite IHP'. + * rewrite IHP';Esimpl. now rewrite Pjump_add. + * rewrite IHP. now rewrite Pjump_add. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl. + * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl. add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rewrite Pjump_xO_tail. rsimpl. add_permut. + * rewrite Pjump_pred_double. rsimpl. add_permut. + * rsimpl. unfold tail. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PaddX_ok by trivial; rsimpl. + rewrite IHP'2, pow_pos_add; rsimpl. add_permut. Qed. -(* - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l). + Lemma PsubX_ok P' P k l : + (forall P l, (P--P')@l == P@l - P'@l) -> + (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + intros IHP'. + revert k l. induction P;simpl;intros. + - rewrite Popp_ok;rsimpl; add_permut. + - destruct p; simpl; + rewrite Popp_ok;rsimpl; + rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut. + - destr_pos_sub; intros ->; Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. - Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l. + Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l. Proof. - induction P';simpl;intros. - Esimpl2;trivial. - apply PmulI_ok;trivial. - rewrite Padd_ok;Esimpl2. - rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * rewrite IHP';rsimpl. + * rewrite IHP';Esimpl. now rewrite Pjump_add. + * rewrite IHP. now rewrite Pjump_add. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl. + * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl; add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rewrite Pjump_xO_tail. rsimpl. add_permut. + * rewrite Pjump_pred_double. rsimpl. add_permut. + * rsimpl. unfold tail. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PsubX_ok by trivial;rsimpl. + rewrite IHP'2, pow_pos_add;rsimpl. add_permut. Qed. -*) -(* Proof for the symmetric version *) - Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma PmulI_ok P' : + (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> + forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). Proof. - intros P P';generalize P;clear P;induction P';simpl;intros. - apply PmulC_ok. apply PmulI_ok;trivial. - destruct P. - rewrite (ARmul_comm ARth);Esimpl2;Esimpl2. - Esimpl2. rewrite IHP'1;Esimpl2. - assert (match p0 with - | xI j => Pinj (xO j) P ** P'2 - | xO j => Pinj (Pdouble_minus_one j) P ** P'2 - | 1 => P ** P'2 - end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)). - destruct p0;rewrite IHP'2;Esimpl. - rewrite Pjump_xO_tail. reflexivity. - rewrite Pjump_Pdouble_minus_one;Esimpl. - rewrite H;Esimpl. - rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2. - repeat (rewrite IHP'1 || rewrite IHP'2);simpl. - rewrite PmulI_ok;trivial. - unfold tail. - mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl. + intros IHP'. + induction P;simpl;intros. + - Esimpl; mul_permut. + - destr_pos_sub; intros ->;Esimpl. + + now rewrite IHP'. + + now rewrite IHP', Pjump_add. + + now rewrite IHP, Pjump_add. + - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl. + + rewrite Pjump_xO_tail. f_equiv. mul_permut. + + rewrite Pjump_pred_double. f_equiv. mul_permut. + + rewrite IHP'. f_equiv. mul_permut. Qed. -(* -Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l. Proof. - destruct P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - rewrite (PmulI_ok P (Pmul_aux_ok P)). - apply (ARmul_comm ARth). - rewrite Padd_ok; Esimpl2. - rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial. - rewrite Pmul_aux_ok;mul_push (P' @ l). - rewrite (ARmul_comm ARth (P' @ l));rrefl. + revert P l;induction P';simpl;intros. + - apply PmulC_ok. + - apply PmulI_ok;trivial. + - destruct P. + + rewrite (ARmul_comm ARth). Esimpl. + + Esimpl. rewrite IHP'1;Esimpl. f_equiv. + destruct p0;rewrite IHP'2;Esimpl. + * now rewrite Pjump_xO_tail. + * rewrite Pjump_pred_double; Esimpl. + + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, + !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl. + unfold tail. + add_permut; f_equiv; mul_permut. Qed. -*) - Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. + Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l. Proof. - induction P;simpl;intros;Esimpl2. - apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2. - rewrite IHP1;rewrite IHP2. - mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l). - rrefl. + revert l;induction P;simpl;intros;Esimpl. + - apply IHP. + - rewrite Padd_ok, Pmul_ok;Esimpl. + rewrite IHP1, IHP2. + mul_push ((hd l)^p). now mul_push (P2@l). Qed. - Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) -> - Mphi env P = Mphi env' P. + Lemma Mphi_morph M e1 e2 : + (forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2. Proof. - induction P ; simpl. - reflexivity. - intros. - apply IHP. - intros. - unfold jump. - apply H. - (**) - intros. - replace (Mphi (tail env) P) with (Mphi (tail env') P). - unfold hd. unfold nth. - rewrite H. - reflexivity. - apply IHP. - unfold tail,jump. - intros. symmetry. apply H. + revert e1 e2; induction M; simpl; intros e1 e2 EQ; trivial. + - apply IHM. intros; apply EQ. + - f_equal. + * apply IHM. intros; apply EQ. + * f_equal. apply EQ. Qed. -Lemma Mjump_xO_tail : forall M p l, - Mphi (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M. +Lemma Mjump_xO_tail M p l : + M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l). Proof. - intros. - apply Mphi_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply Mphi_morph. intros. now jump_simpl. Qed. -Lemma Mjump_Pdouble_minus_one : forall M p l, - Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M. +Lemma Mjump_pred_double M p l : + M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l). Proof. - intros. - apply Mphi_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. + apply Mphi_morph. intros. + rewrite jump_pred_double. now jump_simpl. Qed. -Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M. +Lemma Mjump_add M i j l : + M @@ (jump (i + j) l) = M @@ (jump j (jump i l)). Proof. - intros. apply Mphi_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. + apply Mphi_morph. intros. now rewrite <- jump_add, Pos.add_comm. Qed. - - - Lemma mkZmon_ok: forall M j l, - Mphi l (mkZmon j M) == Mphi l (zmon j M). - intros M j l; case M; simpl; intros; rsimpl. + Lemma mkZmon_ok M j l : + (mkZmon j M) @@ l == (zmon j M) @@ l. + Proof. + destruct M; simpl; rsimpl. Qed. - Lemma zmon_pred_ok : forall M j l, - Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M). + Lemma zmon_pred_ok M j l : + (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l. Proof. - destruct j; simpl;intros l; rsimpl. - rewrite mkZmon_ok;rsimpl. - simpl. - rewrite Mjump_xO_tail. - reflexivity. - rewrite mkZmon_ok;simpl. - rewrite Mjump_Pdouble_minus_one; rsimpl. + destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl. + - now rewrite Mjump_xO_tail. + - rewrite Mjump_pred_double; rsimpl. Qed. - Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i. + Lemma mkVmon_ok M i l : + (mkVmon i M)@@l == M@@l * (hd l)^i. Proof. destruct M;simpl;intros;rsimpl. - rewrite zmon_pred_ok;simpl;rsimpl. - rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl. + - rewrite zmon_pred_ok;simpl;rsimpl. + - rewrite pow_pos_add;rsimpl. Qed. + Ltac destr_mfactor R S := match goal with + | H : context [MFactor ?P _] |- context [MFactor ?P ?M] => + specialize (H M); destruct MFactor as (R,S) + end. - Lemma Mphi_ok: forall P M l, - let (Q,R) := MFactor P M in - P@l == Q@l + (Mphi l M) * (R@l). + Lemma Mphi_ok P M l : + let (Q,R) := MFactor P M in + P@l == Q@l + M@@l * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c M l; case M; simpl; auto; try intro p; try intro m; - try rewrite (morph0 CRmorph); rsimpl. - - intros i P Hrec M l; case M; simpl; clear M. - rewrite (morph0 CRmorph); rsimpl. - intros j M. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec M (jump j l)); case (MFactor P M); - simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - generalize (Hrec (zmon (j -i) M) (jump i l)); - case (MFactor P (zmon (j -i) M)); simpl. - intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)). - rewrite Mjump_Pplus; auto. - rewrite (morph0 CRmorph); rsimpl. - intros P2 m; rewrite (morph0 CRmorph); rsimpl. - - intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto. - rewrite (morph0 CRmorph); rsimpl. - intros j M1. - generalize (Hrec1 (zmon j M1) l); - case (MFactor P2 (zmon j M1)). - intros R1 S1 H1. - generalize (Hrec2 (zmon_pred j M1) (tail l)); - case (MFactor Q2 (zmon_pred j M1)); simpl. - intros R2 S2 H2; rewrite H1; rewrite H2. - repeat rewrite mkPX_ok; simpl. - rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - rewrite zmon_pred_ok;rsimpl. - intros j M1. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite mkZmon_ok. - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - generalize (Hrec1 (vmon (j - i) M1) l); - case (MFactor P2 (vmon (j - i) M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl. - generalize (Hrec1 (mkZmon 1 M1) l); - case (MFactor P2 (mkZmon 1 M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite mkZmon_ok. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - rewrite mkPX_ok; simpl; rsimpl. - rewrite (morph0 CRmorph); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite (ARmul_comm ARth (Q3@l)); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ He); rsimpl. + revert M l; induction P; destruct M; intros l; simpl; auto; Esimpl. + - case Pos.compare_spec; intros He; simpl. + * destr_mfactor R1 S1. now rewrite IHP, He, !mkPinj_ok. + * destr_mfactor R1 S1. rewrite IHP; simpl. + now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add. + * Esimpl. + - destr_mfactor R1 S1. destr_mfactor R2 S2. + rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl. + add_permut. + - case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1; + rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl; + unfold tail; add_permut; mul_permut. + * rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl. + * rewrite mkPX_ok. simpl. Esimpl. mul_permut. + rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl. Qed. -(* Proof for the symmetric version *) - - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. + Lemma POneSubst_ok P1 M1 P2 P3 l : + POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l -> + P1@l == P3@l. Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - (* new version *) - rewrite Padd_ok; rewrite PmulC_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - assert (P4 = Q1 ++ P3 ** PX i P5 P6). - injection H2; intros; subst;trivial. - rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl. -Qed. -(* - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. -Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - injection H2; intros; subst; rsimpl. - rewrite Padd_ok. - rewrite Pmul_ok; rsimpl. + unfold POneSubst. + assert (H := Mphi_ok P1). destr_mfactor R1 S1. rewrite H; clear H. + intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1). + - rewrite EQ', Padd_ok, Pmul_ok; rsimpl. + - revert EQ. destruct S1; try now injection 1. + case ceqb_spec; now inversion 2. Qed. -*) - Lemma PNSubst1_ok: forall n P1 M1 P2 l, - Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. + + Lemma PNSubst1_ok n P1 M1 P2 l : + M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. Proof. - intros n; elim n; simpl; auto. - intros P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl. - intros n1 Hrec P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl. + revert P1. induction n; simpl; intros P1; + generalize (POneSubst_ok P1 M1 P2); destruct POneSubst; + intros; rewrite <- ?IHn; auto; reflexivity. Qed. - Lemma PNSubst_ok: forall n P1 M1 P2 l P3, - PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. + Lemma PNSubst_ok n P1 M1 P2 l P3 : + PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l. Proof. - intros n P2 M1 P3 l P4; unfold PNSubst. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; discriminate]. - intros P5 H1; case n; try (intros; discriminate). - intros n1 H2; injection H2; intros; subst. - rewrite <- PNSubst1_ok; auto. + unfold PNSubst. + assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate. + destruct n; inversion_clear 1. + intros. rewrite <- PNSubst1_ok; auto. Qed. - Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop := - match LM1 with - cons (M1,P2) LM2 => (Mphi l M1 == P2@l) /\ (MPcond LM2 l) - | _ => True - end. + Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop := + match LM1 with + | cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l + | _ => True + end. - Lemma PSubstL1_ok: forall n LM1 P1 l, - MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. + Lemma PSubstL1_ok n LM1 P1 l : + MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; rsimpl. - intros (M2,P2) LM2 Hrec P3 l [H H1]. - rewrite <- Hrec; auto. - apply PNSubst1_ok; auto. + revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros. + - reflexivity. + - rewrite <- IH by intuition. now apply PNSubst1_ok. Qed. - Lemma PSubstL_ok: forall n LM1 P1 P2 l, - PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. + Lemma PSubstL_ok n LM1 P1 P2 l : + PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; discriminate. - intros (M2,P2) LM2 Hrec P3 P4 l. - generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n). - intros P5 H0 H1 [H2 H3]; injection H1; intros; subst. - rewrite <- PSubstL1_ok; auto. - intros l1 H [H1 H2]; auto. + revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros. + - discriminate. + - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst. + * injection H; intros <-. rewrite <- PSubstL1_ok; intuition. + * now apply IH. Qed. - Lemma PNSubstL_ok: forall m n LM1 P1 l, - MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. + Lemma PNSubstL_ok m n LM1 P1 l : + MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. Proof. - intros m; elim m; simpl; auto. - intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - intros m1 Hrec n LM1 P2 l H. - generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - rewrite <- Hrec; auto. + revert LM1 P1. induction m; simpl; intros; + assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; + auto; try reflexivity. + rewrite <- IHm; auto. Qed. (** Definition of polynomial expressions *) @@ -1228,7 +943,7 @@ Proof. (** evaluation of polynomial expressions towards R *) - Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R := + Fixpoint PEeval (l:Env R) (pe:PExpr) : R := match pe with | PEc c => phi c | PEX j => nth j l @@ -1241,60 +956,23 @@ Proof. (** Correctness proofs *) - Lemma mkX_ok : forall p l, nth p l == (mk_X p) @ l. + Lemma mkX_ok p l : nth p l == (mk_X p) @ l. Proof. destruct p;simpl;intros;Esimpl;trivial. rewrite nth_spec ; auto. unfold hd. - rewrite <- nth_Pdouble_minus_one. - rewrite (nth_jump (Pdouble_minus_one p) l 1). - reflexivity. + now rewrite <- nth_pred_double, nth_jump. Qed. - Ltac Esimpl3 := - repeat match goal with - | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l) - | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l) - end;Esimpl2;try rrefl;try apply (ARadd_comm ARth). - -(* Power using the chinise algorithm *) -(*Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => P - | xO p => subst_l (Psquare (Ppow_pos P p)) - | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p))) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok P. - induction p;simpl;intros;try rrefl;try rewrite subst_l_ok. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed. - - End POWER. *) + Hint Rewrite Padd_ok Psub_ok : Esimpl. Section POWER. Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := + Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with - | xH => subst_l (Pmul res P) + | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p - | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P) + | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end. Definition Ppow_N P n := @@ -1303,17 +981,23 @@ Section POWER. | Npos p => Ppow_pos P1 P p end. - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. + Lemma Ppow_pos_ok l : + (forall P, subst_l P@l == P@l) -> + forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. Proof. - intros l subst_l_ok res P p. generalize res;clear res. - induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp. - rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl. + intros subst_l_ok res P p. revert res. + induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; + mul_permut. Qed. - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl. auto. Qed. + Lemma Ppow_N_ok l : + (forall P, subst_l P@l == P@l) -> + forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. + Proof. + destruct n;simpl. + - reflexivity. + - rewrite Ppow_pos_ok by trivial. Esimpl. + Qed. End POWER. @@ -1342,62 +1026,57 @@ Section POWER. Definition norm_subst pe := subst_l (norm_aux pe). - (* - Fixpoint norm_subst (pe:PExpr) : Pol := + (** Internally, [norm_aux] is expanded in a large number of cases. + To speed-up proofs, we use an alternative definition. *) + + Definition get_PEopp pe := match pe with - | PEc c => Pc c - | PEX j => subst_l (mk_X j) - | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_subst pe1) (norm_subst pe2) - | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2) - | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2) - | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2) - | PEopp pe1 => Popp (norm_subst pe1) - | PEpow pe1 n => Ppow_subst (norm_subst pe1) n + | PEopp pe' => Some pe' + | _ => None end. - Lemma norm_subst_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_subst pe)@l. + Lemma norm_aux_PEadd pe1 pe2 : + norm_aux (PEadd pe1 pe2) = + match get_PEopp pe1, get_PEopp pe2 with + | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') + | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') + | None, None => (norm_aux pe1) ++ (norm_aux pe2) + end. Proof. - intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l). - unfold subst_l;intros. - rewrite <- PNSubstL_ok;trivial. rrefl. - assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l). - intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl. - induction pe;simpl;Esimpl3. - rewrite subst_l_ok;apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe;rrefl. - unfold Ppow_subst. rewrite Ppow_N_ok. trivial. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + simpl (norm_aux (PEadd _ _)). + destruct pe1; [ | | | | | reflexivity | ]; + destruct pe2; simpl get_PEopp; reflexivity. Qed. -*) - Lemma norm_aux_spec : - forall l pe, (*MPcond lmp l ->*) - PEeval l pe == (norm_aux pe)@l. + + Lemma norm_aux_PEopp pe : + match get_PEopp pe with + | Some pe' => norm_aux pe = -- (norm_aux pe') + | None => True + end. Proof. - intros. - induction pe;simpl;Esimpl3. - apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl. - rewrite IHpe;rrefl. - rewrite Ppow_N_ok by reflexivity. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + now destruct pe. Qed. + Lemma norm_aux_spec l pe : + PEeval l pe == (norm_aux pe)@l. + Proof. + intros. + induction pe. + - reflexivity. + - apply mkX_ok. + - simpl PEeval. rewrite IHpe1, IHpe2. + assert (H1 := norm_aux_PEopp pe1). + assert (H2 := norm_aux_PEopp pe2). + rewrite norm_aux_PEadd. + do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut. + - simpl. rewrite IHpe1, IHpe2. Esimpl. + - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok. + - simpl. rewrite IHpe. Esimpl. + - simpl. rewrite Ppow_N_ok by reflexivity. + rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl. + induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok. + Qed. End NORM_SUBST_REC. - End MakeRingPol. - diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v index 19a98f87..64181cde 100644 --- a/plugins/micromega/MExtraction.v +++ b/plugins/micromega/MExtraction.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -51,7 +51,7 @@ Extract Constant Rinv => "fun x -> 1 / x". Extraction "micromega.ml" List.map simpl_cone (*map_cone indexes*) denorm Qpower - n_of_Z N_of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find. + n_of_Z N.of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find. diff --git a/plugins/micromega/OrderedRing.v b/plugins/micromega/OrderedRing.v index 97517957..b260feab 100644 --- a/plugins/micromega/OrderedRing.v +++ b/plugins/micromega/OrderedRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/Psatz.v b/plugins/micromega/Psatz.v index 7f6cf79b..bcf84c6b 100644 --- a/plugins/micromega/Psatz.v +++ b/plugins/micromega/Psatz.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -81,14 +81,14 @@ Ltac lra := first [ psatzl R | psatzl Q ]. Ltac lia := - zify ; unfold Zsucc in * ; - (*cbv delta - [Zplus Zminus Zopp Zmult Zpower Zgt Zge Zle Zlt iff not] ;*) xlia ; + zify ; unfold Z.succ in * ; + (*cbv delta - [Z.add Z.sub Z.opp Z.mul Z.pow Z.gt Z.ge Z.le Z.lt iff not] ;*) xlia ; intros __wit __varmap __ff ; change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ; apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity. Ltac nia := - zify ; unfold Zsucc in * ; + zify ; unfold Z.succ in * ; xnlia ; intros __wit __varmap __ff ; change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ; diff --git a/plugins/micromega/QMicromega.v b/plugins/micromega/QMicromega.v index f64504a5..792e2c3c 100644 --- a/plugins/micromega/QMicromega.v +++ b/plugins/micromega/QMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -60,7 +60,7 @@ Proof. Qed. -(*Definition Zeval_expr := eval_pexpr 0 Zplus Zmult Zminus Zopp (fun x => x) (fun x => Z_of_N x) (Zpower).*) +(*Definition Zeval_expr := eval_pexpr 0 Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => Z.of_N x) (Z.pow).*) Require Import EnvRing. Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := @@ -71,7 +71,7 @@ Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Lemma Qeval_expr_simpl : forall env e, @@ -83,7 +83,7 @@ Lemma Qeval_expr_simpl : forall env e, | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Proof. destruct e ; reflexivity. @@ -91,7 +91,7 @@ Qed. Definition Qeval_expr' := eval_pexpr Qplus Qmult Qminus Qopp (fun x => x) (fun x => x) (pow_N 1 Qmult). -Lemma QNpower : forall r n, r ^ Z_of_N n = pow_N 1 Qmult r n. +Lemma QNpower : forall r n, r ^ Z.of_N n = pow_N 1 Qmult r n. Proof. destruct n ; reflexivity. Qed. diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v index 2be99da1..d6f67485 100644 --- a/plugins/micromega/RMicromega.v +++ b/plugins/micromega/RMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -85,17 +85,17 @@ Qed. Ltac INR_nat_of_P := match goal with - | H : context[INR (nat_of_P ?X)] |- _ => + | H : context[INR (Pos.to_nat ?X)] |- _ => revert H ; let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X)) - | |- context[INR (nat_of_P ?X)] => + assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) + | |- context[INR (Pos.to_nat ?X)] => let HH := fresh in - assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (nat_of_P X)) + assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X)) end. Ltac add_eq expr val := set (temp := expr) ; - generalize (refl_equal temp) ; + generalize (eq_refl temp) ; unfold temp at 1 ; generalize temp ; intro val ; clear temp. Ltac Rinv_elim := @@ -210,7 +210,7 @@ Proof. rewrite plus_IZR in *. rewrite mult_IZR in *. simpl. - rewrite nat_of_P_mult_morphism. + rewrite Pos2Nat.inj_mul. rewrite mult_INR. rewrite mult_IZR. simpl. @@ -244,7 +244,7 @@ Proof. simpl. repeat rewrite mult_IZR. simpl. - rewrite nat_of_P_mult_morphism. + rewrite Pos2Nat.inj_mul. rewrite mult_INR. repeat INR_nat_of_P. intros. field ; split ; apply Rlt_neq ; auto. @@ -275,7 +275,7 @@ Proof. apply Rlt_neq ; auto. simpl in H. exfalso. - rewrite Pmult_comm in H. + rewrite Pos.mul_comm in H. compute in H. discriminate. Qed. @@ -291,7 +291,7 @@ Proof. destruct x. unfold Qopp. simpl. - rewrite Zopp_involutive. + rewrite Z.opp_involutive. reflexivity. Qed. @@ -348,7 +348,7 @@ Proof. intros. assert ( 0 > x \/ 0 < x)%Q. destruct x ; unfold Qlt, Qeq in * ; simpl in *. - rewrite Zmult_1_r in *. + rewrite Z.mul_1_r in *. destruct Qnum ; simpl in * ; intuition auto. right. reflexivity. left ; reflexivity. @@ -379,7 +379,7 @@ Proof. Qed. -Notation to_nat := N.to_nat. (*Nnat.nat_of_N*) +Notation to_nat := N.to_nat. Lemma QSORaddon : @SORaddon R @@ -471,7 +471,7 @@ Definition INZ (n:N) : R := | Npos p => IZR (Zpos p) end. -Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst nat_of_N pow. +Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow. Definition Reval_op2 (o:Op2) : R -> R -> Prop := @@ -490,10 +490,10 @@ Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) := Definition Reval_formula' := - eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt nat_of_N pow R_of_Rcst. + eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst. Definition QReval_formula := - eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR nat_of_N pow . + eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow . Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f. Proof. diff --git a/plugins/micromega/Refl.v b/plugins/micromega/Refl.v index b839195c..43bfb4d7 100644 --- a/plugins/micromega/Refl.v +++ b/plugins/micromega/Refl.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/RingMicromega.v b/plugins/micromega/RingMicromega.v index 4af65086..fccacc74 100644 --- a/plugins/micromega/RingMicromega.v +++ b/plugins/micromega/RingMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -142,7 +142,7 @@ Qed. Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *) Definition PolEnv := Env R. (* For interpreting PolC *) Definition eval_pol (env : PolEnv) (p:PolC) : R := - Pphi 0 rplus rtimes phi env p. + Pphi rplus rtimes phi env p. Inductive Op1 : Set := (* relations with 0 *) | Equal (* == 0 *) @@ -320,7 +320,7 @@ Definition map_option2 (A B C : Type) (f : A -> B -> option C) Arguments map_option2 [A B C] f o o'. -Definition Rops_wd := mk_reqe rplus rtimes ropp req +Definition Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd). @@ -469,17 +469,11 @@ Fixpoint ge_bool (n m : nat) : bool := end end. -Lemma ge_bool_cases : forall n m, (if ge_bool n m then n >= m else n < m)%nat. +Lemma ge_bool_cases : forall n m, + (if ge_bool n m then n >= m else n < m)%nat. Proof. - induction n ; simpl. - destruct m ; simpl. - constructor. - omega. - destruct m. - constructor. - omega. - generalize (IHn m). - destruct (ge_bool n m) ; omega. + induction n; destruct m ; simpl; auto with arith. + specialize (IHn m). destruct (ge_bool); auto with arith. Qed. @@ -593,7 +587,7 @@ Definition paddC := PaddC cplus. Definition psubC := PsubC cminus. Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] := - let Rops_wd := mk_reqe rplus rtimes ropp req + let Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd) in @@ -601,7 +595,7 @@ Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env addon.(SORrm). Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] := - let Rops_wd := mk_reqe rplus rtimes ropp req + let Rops_wd := mk_reqe (*rplus rtimes ropp req*) sor.(SORplus_wd) sor.(SORtimes_wd) sor.(SORopp_wd) in @@ -882,13 +876,14 @@ Qed. Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C := match p with | Pc c => PEc c - | Pinj j p => xdenorm (Pplus j jmp ) p + | Pinj j p => xdenorm (Pos.add j jmp ) p | PX p j q => PEadd (PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j))) - (xdenorm (Psucc jmp) q) + (xdenorm (Pos.succ jmp) q) end. -Lemma xdenorm_correct : forall p i env, eval_pol (jump i env) p == eval_pexpr env (xdenorm (Psucc i) p). +Lemma xdenorm_correct : forall p i env, + eval_pol (jump i env) p == eval_pexpr env (xdenorm (Pos.succ i) p). Proof. unfold eval_pol. induction p. @@ -896,22 +891,21 @@ Proof. (* Pinj *) simpl. intros. - rewrite Pplus_succ_permute_r. + rewrite Pos.add_succ_r. rewrite <- IHp. symmetry. - rewrite Pplus_comm. - rewrite Pjump_Pplus. reflexivity. + rewrite Pos.add_comm. + rewrite Pjump_add. reflexivity. (* PX *) simpl. intros. - rewrite <- IHp1. - rewrite <- IHp2. + rewrite <- IHp1, <- IHp2. unfold Env.tail , Env.hd. - rewrite <- Pjump_Pplus. - rewrite <- Pplus_one_succ_r. + rewrite <- Pjump_add. + rewrite Pos.add_1_r. unfold Env.nth. unfold jump at 2. - rewrite Pplus_one_succ_l. + rewrite <- Pos.add_1_l. rewrite addon.(SORpower).(rpow_pow_N). unfold pow_N. ring. Qed. @@ -924,14 +918,14 @@ Proof. induction p. reflexivity. simpl. - rewrite <- Pplus_one_succ_r. + rewrite Pos.add_1_r. apply xdenorm_correct. simpl. intros. rewrite IHp1. unfold Env.tail. rewrite xdenorm_correct. - change (Psucc xH) with 2%positive. + change (Pos.succ xH) with 2%positive. rewrite addon.(SORpower).(rpow_pow_N). simpl. reflexivity. Qed. diff --git a/plugins/micromega/Tauto.v b/plugins/micromega/Tauto.v index b3ccdfcc..440070a1 100644 --- a/plugins/micromega/Tauto.v +++ b/plugins/micromega/Tauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/VarMap.v b/plugins/micromega/VarMap.v index f41252b7..9ff8044e 100644 --- a/plugins/micromega/VarMap.v +++ b/plugins/micromega/VarMap.v @@ -1,7 +1,7 @@ (* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/ZCoeff.v b/plugins/micromega/ZCoeff.v index 2bf3d8c3..e30295e6 100644 --- a/plugins/micromega/ZCoeff.v +++ b/plugins/micromega/ZCoeff.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -109,7 +109,7 @@ Qed. Lemma Zring_morph : ring_morph 0 1 rplus rtimes rminus ropp req - 0%Z 1%Z Zplus Zmult Zminus Zopp + 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool gen_order_phi_Z. Proof. exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)). @@ -122,7 +122,7 @@ try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_ try apply (Rlt_0_1 sor); assumption. Qed. -Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Psucc x) == 1 + phi_pos1 x. +Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Pos.succ x) == 1 + phi_pos1 x. Proof. exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd (Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))). @@ -130,7 +130,7 @@ Qed. Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y. Proof. -intros x y H. pattern y; apply Plt_ind with x. +intros x y H. pattern y; apply Pos.lt_ind with x. rewrite phi_pos1_succ; apply (Rlt_succ_r sor). clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor). assumption. @@ -150,9 +150,9 @@ apply -> (Ropp_lt_mono sor); apply clt_pos_morph. red. now rewrite Pos.compare_antisym. Qed. -Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y]. +Lemma Zcleb_morph : forall x y : Z, Z.leb x y = true -> [x] <= [y]. Proof. -unfold Zle_bool; intros x y H. +unfold Z.leb; intros x y H. case_eq (x ?= y)%Z; intro H1; rewrite H1 in H. le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1. le_less. now apply clt_morph. @@ -162,9 +162,9 @@ Qed. Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y]. Proof. intros x y H. unfold Zeq_bool in H. -case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H). +case_eq (Z.compare x y); intro H1; rewrite H1 in *; (discriminate || clear H). apply (Rlt_neq sor). now apply clt_morph. -fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1. +fold (x > y)%Z in H1. rewrite Z.gt_lt_iff in H1. apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph. Qed. diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v index 461f53b5..bdc4671d 100644 --- a/plugins/micromega/ZMicromega.v +++ b/plugins/micromega/ZMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -34,20 +34,20 @@ Require Import EnvRing. Open Scope Z_scope. -Lemma Zsor : SOR 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt. +Lemma Zsor : SOR 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt. Proof. constructor ; intros ; subst ; try (intuition (auto with zarith)). apply Zsth. apply Zth. - destruct (Ztrichotomy n m) ; intuition (auto with zarith). - apply Zmult_lt_0_compat ; auto. + destruct (Z.lt_trichotomy n m) ; intuition. + apply Z.mul_pos_pos ; auto. Qed. Lemma ZSORaddon : - SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *) - 0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *) - Zeq_bool Zle_bool - (fun x => x) (fun x => x) (pow_N 1 Zmult). + SORaddon 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le (* ring elements *) + 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (* coefficients *) + Zeq_bool Z.leb + (fun x => x) (fun x => x) (pow_N 1 Z.mul). Proof. constructor. constructor ; intros ; try reflexivity. @@ -65,20 +65,20 @@ Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z := | PEX x => env x | PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2 | PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2 - | PEpow e1 n => Zpower (Zeval_expr env e1) (Z_of_N n) + | PEpow e1 n => Z.pow (Zeval_expr env e1) (Z.of_N n) | PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2) - | PEopp e => Zopp (Zeval_expr env e) + | PEopp e => Z.opp (Zeval_expr env e) end. -Definition eval_expr := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult). +Definition eval_expr := eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => x) (pow_N 1 Z.mul). -Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n. +Lemma ZNpower : forall r n, r ^ Z.of_N n = pow_N 1 Z.mul r n. Proof. destruct n. reflexivity. simpl. - unfold Zpower_pos. - replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring. + unfold Z.pow_pos. + replace (pow_pos Z.mul r p) with (1 * (pow_pos Z.mul r p)) by ring. generalize 1. induction p; simpl ; intros ; repeat rewrite IHp ; ring. Qed. @@ -94,10 +94,10 @@ Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop := match o with | OpEq => @eq Z | OpNEq => fun x y => ~ x = y -| OpLe => Zle -| OpGe => Zge -| OpLt => Zlt -| OpGt => Zgt +| OpLe => Z.le +| OpGe => Z.ge +| OpLt => Z.lt +| OpGt => Z.gt end. Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):= @@ -105,23 +105,23 @@ Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):= (Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs). Definition Zeval_formula' := - eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult). + eval_formula Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt (fun x => x) (fun x => x) (pow_N 1 Z.mul). Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f. Proof. destruct f ; simpl. rewrite Zeval_expr_compat. rewrite Zeval_expr_compat. unfold eval_expr. - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env Flhs). - generalize ((eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env Frhs)). + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env Flhs). + generalize ((eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env Frhs)). destruct Fop ; simpl; intros ; intuition (auto with zarith). Qed. Definition eval_nformula := - eval_nformula 0 Zplus Zmult (@eq Z) Zle Zlt (fun x => x) . + eval_nformula 0 Z.add Z.mul (@eq Z) Z.le Z.lt (fun x => x) . Definition Zeval_op1 (o : Op1) : Z -> Prop := match o with @@ -140,7 +140,7 @@ Qed. Definition ZWitness := Psatz Z. -Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zeq_bool Zle_bool. +Definition ZWeakChecker := check_normalised_formulas 0 1 Z.add Z.mul Zeq_bool Z.leb. Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness), ZWeakChecker l cm = true -> @@ -154,13 +154,13 @@ Proof. exact H. Qed. -Definition psub := psub Z0 Zplus Zminus Zopp Zeq_bool. +Definition psub := psub Z0 Z.add Z.sub Z.opp Zeq_bool. -Definition padd := padd Z0 Zplus Zeq_bool. +Definition padd := padd Z0 Z.add Zeq_bool. -Definition norm := norm 0 1 Zplus Zmult Zminus Zopp Zeq_bool. +Definition norm := norm 0 1 Z.add Z.mul Z.sub Z.opp Zeq_bool. -Definition eval_pol := eval_pol 0 Zplus Zmult (fun x => x). +Definition eval_pol := eval_pol Z.add Z.mul (fun x => x). Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs. Proof. @@ -211,10 +211,10 @@ Proof. repeat rewrite eval_pol_add; repeat rewrite <- eval_pol_norm ; simpl in *; unfold eval_expr; - generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env lhs); - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst; + generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env lhs); + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst; intuition (auto with zarith). Transparent padd. Qed. @@ -248,17 +248,17 @@ Proof. repeat rewrite eval_pol_add; repeat rewrite <- eval_pol_norm ; simpl in *; unfold eval_expr; - generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env lhs); - generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x) - (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst; + generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env lhs); + generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x) + (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst; intuition (auto with zarith). Transparent padd. Qed. -Definition Zunsat := check_inconsistent 0 Zeq_bool Zle_bool. +Definition Zunsat := check_inconsistent 0 Zeq_bool Z.leb. -Definition Zdeduce := nformula_plus_nformula 0 Zplus Zeq_bool. +Definition Zdeduce := nformula_plus_nformula 0 Z.add Zeq_bool. Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool := @@ -270,7 +270,7 @@ Require Import Zdiv. Open Scope Z_scope. Definition ceiling (a b:Z) : Z := - let (q,r) := Zdiv_eucl a b in + let (q,r) := Z.div_eucl a b in match r with | Z0 => q | _ => q + 1 @@ -279,47 +279,38 @@ Definition ceiling (a b:Z) : Z := Require Import Znumtheory. -Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Zdiv a b. +Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Z.div a b. Proof. unfold ceiling. intros. apply Zdivide_mod in H. - case_eq (Zdiv_eucl a b). + case_eq (Z.div_eucl a b). intros. change z with (fst (z,z0)). rewrite <- H0. - change (fst (Zdiv_eucl a b)) with (Zdiv a b). + change (fst (Z.div_eucl a b)) with (Z.div a b). change z0 with (snd (z,z0)). rewrite <- H0. - change (snd (Zdiv_eucl a b)) with (Zmod a b). + change (snd (Z.div_eucl a b)) with (Z.modulo a b). rewrite H. reflexivity. Qed. -Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a. +Lemma narrow_interval_lower_bound a b x : + a > 0 -> a * x >= b -> x >= ceiling b a. Proof. + rewrite !Z.ge_le_iff. unfold ceiling. - intros. - generalize (Z_div_mod b a H). - destruct (Zdiv_eucl b a). - intros. - destruct H1. - destruct H2. - subst. - destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate. - assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith). - destruct HH ;auto. - generalize (Zmult_lt_compat_l _ _ _ H3 H1). - auto with zarith. - clear H2. - assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)). - destruct HH ;auto. - assert (0 < a) by auto with zarith. - generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1). - intros. - rewrite Zmult_comm in H4. - rewrite (Zmult_comm z) in H4. - auto with zarith. + intros Ha H. + generalize (Z_div_mod b a Ha). + destruct (Z.div_eucl b a) as (q,r). intros (->,(H1,H2)). + destruct r as [|r|r]. + - rewrite Z.add_0_r in H. + apply Z.mul_le_mono_pos_l in H; auto with zarith. + - assert (0 < Z.pos r) by easy. + rewrite Z.add_1_r, Z.le_succ_l. + apply Z.mul_lt_mono_pos_l with a; auto with zarith. + - now elim H1. Qed. (** NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound *) @@ -360,7 +351,7 @@ Proof. destruct x ; simpl ; intuition congruence. Qed. -Definition ZgcdM (x y : Z) := Zmax (Zgcd x y) 1. +Definition ZgcdM (x y : Z) := Z.max (Z.gcd x y) 1. Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) := @@ -378,7 +369,7 @@ Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) := Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z := match p with - | Pc c => Pc (Zdiv c x) + | Pc c => Pc (Z.div c x) | Pinj j p => Pinj j (Zdiv_pol p x) | PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x) end. @@ -421,10 +412,10 @@ Proof. intros. simpl. unfold ZgcdM. - generalize (Zgcd_is_pos z1 z2). - generalize (Zmax_spec (Zgcd z1 z2) 1). - generalize (Zgcd_is_pos (Zmax (Zgcd z1 z2) 1) z). - generalize (Zmax_spec (Zgcd (Zmax (Zgcd z1 z2) 1) z) 1). + generalize (Z.gcd_nonneg z1 z2). + generalize (Zmax_spec (Z.gcd z1 z2) 1). + generalize (Z.gcd_nonneg (Z.max (Z.gcd z1 z2) 1) z). + generalize (Zmax_spec (Z.gcd (Z.max (Z.gcd z1 z2) 1) z) 1). auto with zarith. Qed. @@ -433,7 +424,7 @@ Proof. intros. induction H. constructor. - apply Zdivide_trans with (1:= H0) ; assumption. + apply Z.divide_trans with (1:= H0) ; assumption. constructor. auto. constructor ; auto. Qed. @@ -444,20 +435,20 @@ Proof. exists c. ring. Qed. -Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Zgcd a b | c). +Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Z.gcd a b | c). Proof. intros a b c (q,Hq). destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _]. - set (g:=Zgcd a b) in *; clearbody g. + set (g:=Z.gcd a b) in *; clearbody g. exists (q * a' + b'). - symmetry in Hq. rewrite <- Zeq_plus_swap in Hq. + symmetry in Hq. rewrite <- Z.add_move_r in Hq. rewrite <- Hq, Hb, Ha. ring. Qed. Lemma Zdivide_pol_sub : forall p a b, - 0 < Zgcd a b -> - Zdivide_pol a (PsubC Zminus p b) -> - Zdivide_pol (Zgcd a b) p. + 0 < Z.gcd a b -> + Zdivide_pol a (PsubC Z.sub p b) -> + Zdivide_pol (Z.gcd a b) p. Proof. induction p. simpl. @@ -477,7 +468,7 @@ Proof. Qed. Lemma Zdivide_pol_sub_0 : forall p a, - Zdivide_pol a (PsubC Zminus p 0) -> + Zdivide_pol a (PsubC Z.sub p 0) -> Zdivide_pol a p. Proof. induction p. @@ -496,7 +487,7 @@ Qed. Lemma Zgcd_pol_div : forall p g c, - Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Zminus p c). + Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Z.sub p c). Proof. induction p ; simpl. (* Pc *) @@ -511,12 +502,12 @@ Proof. case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros. inv H1. unfold ZgcdM at 1. - destruct (Zmax_spec (Zgcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1]; + destruct (Zmax_spec (Z.gcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1]; destruct HH1 as [HH1 HH1'] ; rewrite HH1'. constructor. apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2). unfold ZgcdM. - destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2]. + destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2]. destruct HH2. rewrite H2. apply Zdivide_pol_sub ; auto. @@ -524,9 +515,9 @@ Proof. destruct HH2. rewrite H2. apply Zdivide_pol_one. unfold ZgcdM in HH1. unfold ZgcdM. - destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2]. + destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2]. destruct HH2. rewrite H2 in *. - destruct (Zgcd_is_gcd (Zgcd z1 z2) z); auto. + destruct (Zgcd_is_gcd (Z.gcd z1 z2) z); auto. destruct HH2. rewrite H2. destruct (Zgcd_is_gcd 1 z); auto. apply Zdivide_pol_Zdivide with (x:= z). @@ -539,7 +530,7 @@ Qed. -Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) + c. +Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) + c. Proof. intros. rewrite <- Zdiv_pol_correct ; auto. @@ -553,8 +544,8 @@ Qed. Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z := let (g,c) := Zgcd_pol p in - if Zgt_bool g Z0 - then (Zdiv_pol (PsubC Zminus p c) g , Zopp (ceiling (Zopp c) g)) + if Z.gtb g Z0 + then (Zdiv_pol (PsubC Z.sub p c) g , Z.opp (ceiling (Z.opp c) g)) else (p,Z0). @@ -562,13 +553,13 @@ Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) := let (e,op) := f in match op with | Equal => let (g,c) := Zgcd_pol e in - if andb (Zgt_bool g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Zgcd g c) g))) + if andb (Z.gtb g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Z.gcd g c) g))) then None (* inconsistent *) else (* Could be optimised Zgcd_pol is recomputed *) let (p,c) := makeCuttingPlane e in Some (p,c,Equal) | NonEqual => Some (e,Z0,op) - | Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in + | Strict => let (p,c) := makeCuttingPlane (PsubC Z.sub e 1) in Some (p,c,NonStrict) | NonStrict => let (p,c) := makeCuttingPlane e in Some (p,c,NonStrict) @@ -595,7 +586,7 @@ Qed. Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) := - eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool. + eval_Psatz 0 1 Z.add Z.mul Zeq_bool Z.leb. Definition valid_cut_sign (op:Op1) := @@ -634,9 +625,9 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool : (fix label (pfs:list ZArithProof) := fun lb ub => match pfs with - | nil => if Zgt_bool lb ub then true else false - | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub) - end) pf (Zopp z1) z2 + | nil => if Z.gtb lb ub then true else false + | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Z.add lb 1%Z) ub) + end) pf (Z.opp z1) z2 else false | _ , _ => true end @@ -710,12 +701,12 @@ Proof. unfold makeCuttingPlane in H0. revert H0. case_eq (Zgcd_pol e) ; intros g c0. - generalize (Zgt_cases g 0) ; destruct (Zgt_bool g 0). + generalize (Zgt_cases g 0) ; destruct (Z.gtb g 0). intros. inv H2. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in *. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *. apply Zgcd_pol_correct_lt with (env:=env) in H1. - generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Zminus e c0) g)) H0). + generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0). auto with zarith. auto with zarith. (* g <= 0 *) @@ -733,7 +724,7 @@ Proof. (* Equal *) destruct p as [[e' z] op]. case_eq (Zgcd_pol e) ; intros g c. - case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|]. + case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))) ; [discriminate|]. case_eq (makeCuttingPlane e). intros. inv H3. @@ -741,7 +732,7 @@ Proof. rewrite H1 in H. revert H. change (eval_pol env e = 0) in H2. - case_eq (Zgt_bool g 0). + case_eq (Z.gtb g 0). intros. rewrite <- Zgt_is_gt_bool in H. rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith. @@ -749,7 +740,7 @@ Proof. change (eval_pol env (padd e' (Pc z)) = 0). inv H3. rewrite eval_pol_add. - set (x:=eval_pol env (Zdiv_pol (PsubC Zminus e c) g)) in *; clearbody x. + set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub e c) g)) in *; clearbody x. simpl. rewrite andb_false_iff in H0. destruct H0. @@ -759,8 +750,7 @@ Proof. rewrite negb_false_iff in H0. apply Zeq_bool_eq in H0. subst. simpl. - rewrite Zplus_0_r in H2. - apply Zmult_integral in H2. + rewrite Z.add_0_r, Z.mul_eq_0 in H2. intuition auto with zarith. rewrite negb_false_iff in H0. apply Zeq_bool_eq in H0. @@ -769,7 +759,7 @@ Proof. inv HH. apply Zdivide_opp_r in H4. rewrite Zdivide_ceiling ; auto. - apply Zeq_minus. + apply Z.sub_move_0_r. apply Z.div_unique_exact ; auto with zarith. intros. unfold nformula_of_cutting_plane. @@ -789,7 +779,7 @@ Proof. simpl. auto with zarith. (* Strict *) destruct p as [[e' z] op]. - case_eq (makeCuttingPlane (PsubC Zminus e 1)). + case_eq (makeCuttingPlane (PsubC Z.sub e 1)). intros. inv H1. apply makeCuttingPlane_ns_sound with (env:=env) (2:= H). @@ -813,7 +803,7 @@ Proof. destruct f. destruct o. case_eq (Zgcd_pol p) ; intros g c. - case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))). + case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))). intros. flatten_bool. rewrite negb_true_iff in H5. @@ -823,16 +813,16 @@ Proof. apply Zeq_bool_neq in H. change (eval_pol env p = 0) in H2. rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith. - set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x. + set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) in *; clearbody x. contradict H5. apply Zis_gcd_gcd; auto with zarith. constructor; auto with zarith. exists (-x). - rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith. + rewrite Z.mul_opp_l, Z.mul_comm; auto with zarith. (**) destruct (makeCuttingPlane p); discriminate. discriminate. - destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate. + destruct (makeCuttingPlane (PsubC Z.sub p 1)) ; discriminate. destruct (makeCuttingPlane p) ; discriminate. Qed. @@ -920,7 +910,7 @@ Proof. unfold nformula_of_cutting_plane in HCutR. unfold eval_nformula in HCutR. unfold RingMicromega.eval_nformula in HCutR. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutR. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutR. unfold eval_op1 in HCutR. destruct op1 ; simpl in Hop1 ; try discriminate; rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith. @@ -933,7 +923,7 @@ Proof. unfold nformula_of_cutting_plane in HCutL. unfold eval_nformula in HCutL. unfold RingMicromega.eval_nformula in HCutL. - change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutL. + change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutL. unfold eval_op1 in HCutL. rewrite eval_pol_add in HCutL. simpl in HCutL. destruct op2 ; simpl in Hop2 ; try discriminate ; omega. @@ -944,14 +934,14 @@ Proof. intros. assert (HH :forall x, -z1 <= x <= z2 -> exists pr, (In pr pf /\ - ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z). + ZChecker ((PsubC Z.sub p1 x,Equal) :: l) pr = true)%Z). clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1. revert Hfix. generalize (-z1). clear z1. intro z1. revert z1 z2. induction pf;simpl ;intros. generalize (Zgt_cases z1 z2). - destruct (Zgt_bool z1 z2). + destruct (Z.gtb z1 z2). intros. apply False_ind ; omega. discriminate. @@ -972,7 +962,7 @@ Proof. zify. omega. (*/asser *) destruct (HH _ H1) as [pr [Hin Hcheker]]. - assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False). + assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False). apply (H pr);auto. apply in_bdepth ; auto. rewrite <- make_conj_impl in H2. diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml index 540d1b9c..25579a87 100644 --- a/plugins/micromega/certificate.ml +++ b/plugins/micromega/certificate.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml index 8b7ee55b..2020447f 100644 --- a/plugins/micromega/coq_micromega.ml +++ b/plugins/micromega/coq_micromega.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -300,6 +300,8 @@ struct ["Coq";"Reals" ; "Rpow_def"] ; ] + let z_modules = [["Coq";"ZArith";"BinInt"]] + (** * Initialization : a large amount of Caml symbols are derived from * ZMicromega.v @@ -309,6 +311,7 @@ struct let constant = gen_constant_in_modules "ZMicromega" coq_modules let bin_constant = gen_constant_in_modules "ZMicromega" bin_module let r_constant = gen_constant_in_modules "ZMicromega" r_modules + let z_constant = gen_constant_in_modules "ZMicromega" z_modules (* let constant = gen_constant_in_modules "Omicron" coq_modules *) let coq_and = lazy (init_constant "and") @@ -371,17 +374,17 @@ struct let coq_cutProof = lazy (constant "CutProof") let coq_enumProof = lazy (constant "EnumProof") - let coq_Zgt = lazy (constant "Zgt") - let coq_Zge = lazy (constant "Zge") - let coq_Zle = lazy (constant "Zle") - let coq_Zlt = lazy (constant "Zlt") + let coq_Zgt = lazy (z_constant "Z.gt") + let coq_Zge = lazy (z_constant "Z.ge") + let coq_Zle = lazy (z_constant "Z.le") + let coq_Zlt = lazy (z_constant "Z.lt") let coq_Eq = lazy (init_constant "eq") - let coq_Zplus = lazy (constant "Zplus") - let coq_Zminus = lazy (constant "Zminus") - let coq_Zopp = lazy (constant "Zopp") - let coq_Zmult = lazy (constant "Zmult") - let coq_Zpower = lazy (constant "Zpower") + let coq_Zplus = lazy (z_constant "Z.add") + let coq_Zminus = lazy (z_constant "Z.sub") + let coq_Zopp = lazy (z_constant "Z.opp") + let coq_Zmult = lazy (z_constant "Z.mul") + let coq_Zpower = lazy (z_constant "Z.pow") let coq_Qgt = lazy (constant "Qgt") let coq_Qge = lazy (constant "Qge") diff --git a/plugins/micromega/csdpcert.ml b/plugins/micromega/csdpcert.ml index 1604b0eb..dfda5984 100644 --- a/plugins/micromega/csdpcert.ml +++ b/plugins/micromega/csdpcert.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/g_micromega.ml4 b/plugins/micromega/g_micromega.ml4 index 3b6b6987..0d888f85 100644 --- a/plugins/micromega/g_micromega.ml4 +++ b/plugins/micromega/g_micromega.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/mutils.ml b/plugins/micromega/mutils.ml index c4dbf6af..ccbf0406 100644 --- a/plugins/micromega/mutils.ml +++ b/plugins/micromega/mutils.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/persistent_cache.ml b/plugins/micromega/persistent_cache.ml index ed9fdcea..cb7a9280 100644 --- a/plugins/micromega/persistent_cache.ml +++ b/plugins/micromega/persistent_cache.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -95,14 +95,24 @@ let read_key_elem inch = | End_of_file -> None | _ -> raise InvalidTableFormat +(** In win32, it seems that we should unlock the exact zone + that has been locked, and not the whole file *) -let unlock fd = - try - let pos = lseek fd 0 SEEK_CUR in - ignore (lseek fd 0 SEEK_SET) ; - lockf fd F_ULOCK 0 ; +let locked_start = ref 0 + +let lock fd = + locked_start := lseek fd 0 SEEK_CUR; + lockf fd F_LOCK 0 + +let rlock fd = + locked_start := lseek fd 0 SEEK_CUR; + lockf fd F_RLOCK 0 + +let unlock fd = + let pos = lseek fd 0 SEEK_CUR in + ignore (lseek fd !locked_start SEEK_SET); + lockf fd F_ULOCK 0; ignore (lseek fd pos SEEK_SET) - with exc -> failwith (Printexc.to_string exc) let open_in f = let flags = [O_RDONLY ; O_CREAT] in @@ -118,7 +128,7 @@ let open_in f = xload () in try (* Locking of the (whole) file while reading *) - lockf finch F_RLOCK 0 ; + rlock finch; finally (fun () -> xload () ) (fun () -> @@ -136,7 +146,7 @@ let open_in f = let flags = [O_WRONLY; O_TRUNC;O_CREAT] in let out = (openfile f flags 0o666) in let outch = out_channel_of_descr out in - lockf out F_LOCK 0 ; + lock out; (try Table.iter (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl; @@ -168,8 +178,8 @@ let add t k e = let fd = descr_of_out_channel outch in begin Table.add tbl k e ; - lockf fd F_LOCK 0 ; - ignore (lseek fd 0 SEEK_END) ; + lock fd; + ignore (lseek fd 0 SEEK_END); Marshal.to_channel outch (k,e) [Marshal.No_sharing] ; flush outch ; unlock fd diff --git a/plugins/micromega/polynomial.ml b/plugins/micromega/polynomial.ml index 14d312a5..36b05a72 100644 --- a/plugins/micromega/polynomial.ml +++ b/plugins/micromega/polynomial.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/sos.mli b/plugins/micromega/sos.mli index 3d907e19..bc08d3c9 100644 --- a/plugins/micromega/sos.mli +++ b/plugins/micromega/sos.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/micromega/sos_types.ml b/plugins/micromega/sos_types.ml index 91aa5855..f9d2fb0b 100644 --- a/plugins/micromega/sos_types.ml +++ b/plugins/micromega/sos_types.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/nsatz/Nsatz.v b/plugins/nsatz/Nsatz.v index 9a0c9090..4f4f2039 100644 --- a/plugins/nsatz/Nsatz.v +++ b/plugins/nsatz/Nsatz.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -64,15 +64,15 @@ Definition PEZ := PExpr Z. Definition P0Z : PolZ := P0 (C:=Z) 0%Z. Definition PolZadd : PolZ -> PolZ -> PolZ := - @Padd Z 0%Z Zplus Zeq_bool. + @Padd Z 0%Z Z.add Zeq_bool. Definition PolZmul : PolZ -> PolZ -> PolZ := - @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool. + @Pmul Z 0%Z 1%Z Z.add Z.mul Zeq_bool. Definition PolZeq := @Peq Z Zeq_bool. Definition norm := - @norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool. + @norm_aux Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool. Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ := match la, lp with @@ -100,16 +100,16 @@ Definition PhiR : list R -> PolZ -> R := Definition PEevalR : list R -> PEZ -> R := PEeval ring0 add mul sub opp (gen_phiZ ring0 ring1 add mul opp) - nat_of_N pow. + N.to_nat pow. Lemma P0Z_correct : forall l, PhiR l P0Z = 0. Proof. trivial. Qed. Lemma Rext: ring_eq_ext add mul opp _==_. -apply mk_reqe. intros. rewrite H ; rewrite H0; cring. - intros. rewrite H; rewrite H0; cring. -intros. rewrite H; cring. Qed. - +Proof. +constructor; solve_proper. +Qed. + Lemma Rset : Setoid_Theory R _==_. apply ring_setoid. Qed. @@ -144,17 +144,15 @@ unfold PolZmul, PhiR. intros. Qed. Lemma R_power_theory - : Ring_theory.power_theory ring1 mul _==_ nat_of_N pow. -apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. + : Ring_theory.power_theory ring1 mul _==_ N.to_nat pow. +apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N2Nat.id. reflexivity. Qed. Lemma norm_correct : forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe). Proof. intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext Rtheory) - (gen_phiZ_morph Rset Rext Rtheory) R_power_theory) - with (lmp:= List.nil). - compute;trivial. + (gen_phiZ_morph Rset Rext Rtheory) R_power_theory). Qed. Lemma PolZeq_correct : forall P P' l, @@ -241,9 +239,9 @@ Fixpoint interpret3 t fv {struct t}: R := | (PEopp t1) => let v1 := interpret3 t1 fv in (-v1) | (PEpow t1 t2) => - let v1 := interpret3 t1 fv in pow v1 (nat_of_N t2) + let v1 := interpret3 t1 fv in pow v1 (N.to_nat t2) | (PEc t1) => (IZR1 t1) - | (PEX n) => List.nth (pred (nat_of_P n)) fv 0 + | (PEX n) => List.nth (pred (Pos.to_nat n)) fv 0 end. @@ -308,9 +306,9 @@ Ltac nsatz_call radicalmax info nparam p lp kont := lazymatch n with | 0%N => fail | _ => - (let r := eval compute in (Nminus radicalmax (Npred n)) in + (let r := eval compute in (N.sub radicalmax (N.pred n)) in nsatz_call_n info nparam p r lp kont) || - let n' := eval compute in (Npred n) in try_n n' + let n' := eval compute in (N.pred n) in try_n n' end in try_n radicalmax. @@ -343,7 +341,7 @@ Ltac get_lpol g := end. Ltac nsatz_generic radicalmax info lparam lvar := - let nparam := eval compute in (Z_of_nat (List.length lparam)) in + let nparam := eval compute in (Z.of_nat (List.length lparam)) in match goal with |- ?g => let lb := lterm_goal g in match (match lvar with @@ -397,7 +395,7 @@ Ltac nsatz_generic radicalmax info lparam lvar := (*simpl*) idtac; repeat (split;[assumption|idtac]); exact I | (*simpl in Hg2;*) (*simpl*) idtac; - apply Rintegral_domain_pow with (interpret3 c fv) (nat_of_N r); + apply Rintegral_domain_pow with (interpret3 c fv) (N.to_nat r); (*simpl*) idtac; try apply integral_domain_one_zero; try apply integral_domain_minus_one_zero; @@ -502,7 +500,7 @@ omega. Qed. Instance Zcri: (Cring (Rr:=Zr)). -red. exact Zmult_comm. Defined. +red. exact Z.mul_comm. Defined. Instance Zdi : (Integral_domain (Rcr:=Zcri)). constructor. diff --git a/plugins/nsatz/ideal.ml b/plugins/nsatz/ideal.ml index b635fd1f..996dbadd 100644 --- a/plugins/nsatz/ideal.ml +++ b/plugins/nsatz/ideal.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/nsatz/nsatz.ml4 b/plugins/nsatz/nsatz.ml4 index a317307e..14c7609d 100644 --- a/plugins/nsatz/nsatz.ml4 +++ b/plugins/nsatz/nsatz.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/nsatz/polynom.ml b/plugins/nsatz/polynom.ml index 45fcb2d2..0eea961d 100644 --- a/plugins/nsatz/polynom.ml +++ b/plugins/nsatz/polynom.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/nsatz/polynom.mli b/plugins/nsatz/polynom.mli index b82b43b1..0643327f 100644 --- a/plugins/nsatz/polynom.mli +++ b/plugins/nsatz/polynom.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/omega/Omega.v b/plugins/omega/Omega.v index 3f9d0f44..ea5a8cb7 100644 --- a/plugins/omega/Omega.v +++ b/plugins/omega/Omega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -19,9 +19,9 @@ Require Export OmegaLemmas. Require Export PreOmega. Declare ML Module "omega_plugin". -Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l - Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l - Zmult_plus_distr_r: zarith. +Hint Resolve Z.le_refl Z.add_comm Z.add_assoc Z.mul_comm Z.mul_assoc Z.add_0_l + Z.add_0_r Z.mul_1_l Z.add_opp_diag_l Z.add_opp_diag_r Z.mul_add_distr_r + Z.mul_add_distr_l: zarith. Require Export Zhints. diff --git a/plugins/omega/OmegaLemmas.v b/plugins/omega/OmegaLemmas.v index 5b6f4670..1872f576 100644 --- a/plugins/omega/OmegaLemmas.v +++ b/plugins/omega/OmegaLemmas.v @@ -6,232 +6,192 @@ (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) -Require Import ZArith_base. -Open Local Scope Z_scope. +Require Import BinInt Znat. +Local Open Scope Z_scope. (** Factorization lemmas *) -Theorem Zred_factor0 : forall n:Z, n = n * 1. - intro x; rewrite (Zmult_1_r x); reflexivity. +Theorem Zred_factor0 n : n = n * 1. +Proof. + now Z.nzsimpl. Qed. -Theorem Zred_factor1 : forall n:Z, n + n = n * 2. +Theorem Zred_factor1 n : n + n = n * 2. Proof. - exact Zplus_diag_eq_mult_2. + rewrite Z.mul_comm. apply Z.add_diag. Qed. -Theorem Zred_factor2 : forall n m:Z, n + n * m = n * (1 + m). +Theorem Zred_factor2 n m : n + n * m = n * (1 + m). Proof. - intros x y; pattern x at 1 in |- *; rewrite <- (Zmult_1_r x); - rewrite <- Zmult_plus_distr_r; trivial with arith. + rewrite Z.mul_add_distr_l; now Z.nzsimpl. Qed. -Theorem Zred_factor3 : forall n m:Z, n * m + n = n * (1 + m). +Theorem Zred_factor3 n m : n * m + n = n * (1 + m). Proof. - intros x y; pattern x at 2 in |- *; rewrite <- (Zmult_1_r x); - rewrite <- Zmult_plus_distr_r; rewrite Zplus_comm; - trivial with arith. + now Z.nzsimpl. Qed. -Theorem Zred_factor4 : forall n m p:Z, n * m + n * p = n * (m + p). +Theorem Zred_factor4 n m p : n * m + n * p = n * (m + p). Proof. - intros x y z; symmetry in |- *; apply Zmult_plus_distr_r. + symmetry; apply Z.mul_add_distr_l. Qed. -Theorem Zred_factor5 : forall n m:Z, n * 0 + m = m. +Theorem Zred_factor5 n m : n * 0 + m = m. Proof. - intros x y; rewrite <- Zmult_0_r_reverse; auto with arith. + now Z.nzsimpl. Qed. -Theorem Zred_factor6 : forall n:Z, n = n + 0. +Theorem Zred_factor6 n : n = n + 0. Proof. - intro; rewrite Zplus_0_r; trivial with arith. + now Z.nzsimpl. Qed. (** Other specific variants of theorems dedicated for the Omega tactic *) Lemma new_var : forall x : Z, exists y : Z, x = y. -intros x; exists x; trivial with arith. +Proof. +intros x; now exists x. Qed. -Lemma OMEGA1 : forall x y : Z, x = y -> 0 <= x -> 0 <= y. -intros x y H; rewrite H; auto with arith. +Lemma OMEGA1 x y : x = y -> 0 <= x -> 0 <= y. +Proof. +now intros ->. Qed. -Lemma OMEGA2 : forall x y : Z, 0 <= x -> 0 <= y -> 0 <= x + y. -exact Zplus_le_0_compat. +Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y. +Proof. +Z.order_pos. Qed. -Lemma OMEGA3 : forall x y k : Z, k > 0 -> x = y * k -> x = 0 -> y = 0. - -intros x y k H1 H2 H3; apply (Zmult_integral_l k); - [ unfold not in |- *; intros H4; absurd (k > 0); - [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate - | assumption ] - | rewrite <- H2; assumption ]. +Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0. +Proof. +intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst. Qed. -Lemma OMEGA4 : forall x y z : Z, x > 0 -> y > x -> z * y + x <> 0. - -unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0); - [ intros H4; cut (0 <= z * y + x); - [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6; - absurd (z * y + x > 0); - [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate - | apply Zle_gt_trans with x; - [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x); - apply Zplus_le_compat_r; rewrite Zmult_comm; - generalize H4; unfold Zgt in |- *; case y; - [ simpl in |- *; intros H7; discriminate H7 - | intros p H7; rewrite <- (Zmult_0_r (Zpos p)); - unfold Zle in |- *; rewrite Zcompare_mult_compat; - exact H6 - | simpl in |- *; intros p H7; discriminate H7 ] - | assumption ] ] - | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ] - | apply Zgt_trans with x; [ assumption | assumption ] ]. +Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0. +Proof. +Z.swap_greater. intros Hx Hxy. +rewrite Z.add_move_0_l, <- Z.mul_opp_l. +destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]]. +- intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0). + apply Z.mul_pos_cancel_r with y; Z.order. +- Z.nzsimpl. Z.order. +- rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order. Qed. -Lemma OMEGA5 : forall x y z : Z, x = 0 -> y = 0 -> x + y * z = 0. - -intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith. +Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0. +Proof. +now intros -> ->. Qed. -Lemma OMEGA6 : forall x y z : Z, 0 <= x -> y = 0 -> 0 <= x + y * z. - -intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption. +Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z. +Proof. +intros H ->. now Z.nzsimpl. Qed. -Lemma OMEGA7 : - forall x y z t : Z, z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t. - -intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat; - apply Zmult_gt_0_le_0_compat; assumption. +Lemma OMEGA7 x y z t : + z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t. +Proof. +intros. Z.swap_greater. Z.order_pos. Qed. -Lemma OMEGA8 : forall x y : Z, 0 <= x -> 0 <= y -> x = - y -> x = 0. - -intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1); - [ intros H4; absurd (0 < x); - [ change (0 >= x) in |- *; apply Zle_ge; apply Zplus_le_reg_l with y; - rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r; - assumption - | assumption ] - | intros H4; rewrite H4; trivial with arith ]. +Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0. +Proof. +intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order. Qed. -Lemma OMEGA9 : forall x y z t : Z, y = 0 -> x = z -> y + (- x + z) * t = 0. - -intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l; - rewrite Zplus_0_r; assumption. +Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0. +Proof. +intros. subst. now rewrite Z.add_opp_diag_l. Qed. -Lemma OMEGA10 : - forall v c1 c2 l1 l2 k1 k2 : Z, +Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 : (v * c1 + l1) * k1 + (v * c2 + l2) * k2 = v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3. Qed. -Lemma OMEGA11 : - forall v1 c1 l1 l2 k1 : Z, +Lemma OMEGA11 v1 c1 l1 l2 k1 : (v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +now rewrite Z.add_assoc. Qed. -Lemma OMEGA12 : - forall v2 c2 l1 l2 k2 : Z, +Lemma OMEGA12 v2 c2 l1 l2 k2 : l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2). - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite Zplus_permute; trivial with arith. +Proof. +rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. +apply Z.add_shuffle3. Qed. -Lemma OMEGA13 : - forall (v l1 l2 : Z) (x : positive), +Lemma OMEGA13 (v l1 l2 : Z) (x : positive) : v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2. - -intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1); - rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; - rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x)); - rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r; - trivial with arith. +Proof. + rewrite Z.add_shuffle1. + rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. + now Z.nzsimpl. Qed. -Lemma OMEGA14 : - forall (v l1 l2 : Z) (x : positive), +Lemma OMEGA14 (v l1 l2 : Z) (x : positive) : v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2. - -intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1); - rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r; - rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r; - rewrite Zplus_0_r; trivial with arith. +Proof. + rewrite Z.add_shuffle1. + rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r. + now Z.nzsimpl. Qed. -Lemma OMEGA15 : - forall v c1 c2 l1 l2 k2 : Z, - v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2). -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith. +Lemma OMEGA15 v c1 c2 l1 l2 k2 : + v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2). +Proof. + rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. + apply Z.add_shuffle1. Qed. -Lemma OMEGA16 : forall v c l k : Z, (v * c + l) * k = v * (c * k) + l * k. - -intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r; - repeat rewrite Zmult_assoc; repeat elim Zplus_assoc; - trivial with arith. +Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k. +Proof. + now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc. Qed. -Lemma OMEGA17 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0. - -unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; - apply Zplus_reg_l with (y * z); rewrite Zplus_comm; - rewrite H3; rewrite H2; auto with arith. +Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. +Proof. + unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl. Qed. -Lemma OMEGA18 : forall x y k : Z, x = y * k -> Zne x 0 -> Zne y 0. - -unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1; - rewrite H3; auto with arith. +Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0. +Proof. + unfold Zne, not. intros. subst; auto. Qed. -Lemma OMEGA19 : forall x : Z, Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1. - -unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x); - [ intros H1; elim Zle_lt_or_eq with (1 := H1); - [ intros H2; left; change (0 <= Zpred x) in |- *; apply Zsucc_le_reg; - rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption - | intros H2; absurd (x = 0); auto with arith ] - | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm; - apply Zle_left; apply Zsucc_le_reg; simpl in |- *; - apply Zlt_le_succ; auto with arith ]. +Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1. +Proof. + unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx. + destruct Hx as [LT|GT]. + - right. change (-1) with (-(1)). + rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl. + rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l. + - left. now apply Z.lt_le_pred. Qed. -Lemma OMEGA20 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0. - -unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3; - simpl in H3; rewrite Zplus_0_r in H3; trivial with arith. +Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0. +Proof. + unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3; + simpl in H3; rewrite Z.add_0_r in H3; trivial with arith. Qed. Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop) - (H : P (y + x)) := eq_ind_r P H (Zplus_comm x y). + (H : P (y + x)) := eq_ind_r P H (Z.add_comm x y). Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p). Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop) - (H : P (n + m + p)) := eq_ind_r P H (Zplus_assoc n m p). + (H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p). Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop) - (H : P (m + (n + p))) := eq_ind_r P H (Zplus_permute n m p). + (H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p). Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop) (H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) := @@ -259,24 +219,24 @@ Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop) (H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x). Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop) - (H : P (x * -1)) := eq_ind_r P H (Zopp_eq_mult_neg_1 x). + (H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x). Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop) - (H : P (y * x)) := eq_ind_r P H (Zmult_comm x y). + (H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y). Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop) - (H : P (- x + - y)) := eq_ind_r P H (Zopp_plus_distr x y). + (H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y). Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) := - eq_ind_r P H (Zopp_involutive x). + eq_ind_r P H (Z.opp_involutive x). Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop) (H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y). Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop) - (H : P (n * p + m * p)) := eq_ind_r P H (Zmult_plus_distr_l n m p). + (H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p). Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop) - (H : P (x * - y)) := eq_ind_r P H (Zmult_opp_comm x y). + (H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y). Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop) (H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p). @@ -300,8 +260,8 @@ Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop) (H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x). Theorem intro_Z : - forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0. + forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0. Proof. - intros n; exists (Z_of_nat n); split; trivial. - rewrite Zmult_1_r, Zplus_0_r. apply Zle_0_nat. + intros n; exists (Z.of_nat n); split; trivial. + rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg. Qed. diff --git a/plugins/omega/OmegaPlugin.v b/plugins/omega/OmegaPlugin.v index a3ab34a9..433db414 100644 --- a/plugins/omega/OmegaPlugin.v +++ b/plugins/omega/OmegaPlugin.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/omega/PreOmega.v b/plugins/omega/PreOmega.v index 46fd5682..60e606a6 100644 --- a/plugins/omega/PreOmega.v +++ b/plugins/omega/PreOmega.v @@ -1,6 +1,14 @@ -Require Import Arith Max Min ZArith_base NArith Nnat. +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) -Open Local Scope Z_scope. +Require Import Arith Max Min BinInt BinNat Znat Nnat. + +Local Open Scope Z_scope. (** * zify: the Z-ification tactic *) @@ -15,16 +23,16 @@ Open Local Scope Z_scope. - { eq, le, lt, ge, gt } on { Z, positive, N, nat } Recognized operations: - - on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < = - - on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat - - on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat - - on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N + - on Z: Z.min, Z.max, Z.abs, Z.sgn are translated in term of <= < = + - on nat: + * - S O pred min max Pos.to_nat N.to_nat Z.abs_nat + - on positive: Zneg Zpos xI xO xH + * - Pos.succ Pos.pred Pos.min Pos.max Pos.of_succ_nat + - on N: N0 Npos + * - N.succ N.min N.max N.of_nat Z.abs_N *) -(** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *) +(** I) translation of Z.max, Z.min, Z.abs, Z.sgn into recognized equations *) Ltac zify_unop_core t thm a := (* Let's introduce the specification theorem for t *) @@ -48,7 +56,7 @@ Ltac zify_unop t thm a := end. Ltac zify_unop_nored t thm a := - (* in this version, we don't try to reduce the unop (that can be (Zplus x)) *) + (* in this version, we don't try to reduce the unop (that can be (Z.add x)) *) let isz := isZcst a in match isz with | true => zify_unop_core t thm a @@ -72,14 +80,14 @@ Ltac zify_binop t thm a b:= Ltac zify_op_1 := match goal with - | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b - | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b - | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b - | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b - | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a - | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a - | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a - | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a + | |- context [ Z.max ?a ?b ] => zify_binop Z.max Z.max_spec a b + | H : context [ Z.max ?a ?b ] |- _ => zify_binop Z.max Z.max_spec a b + | |- context [ Z.min ?a ?b ] => zify_binop Z.min Z.min_spec a b + | H : context [ Z.min ?a ?b ] |- _ => zify_binop Z.min Z.min_spec a b + | |- context [ Z.sgn ?a ] => zify_unop Z.sgn Z.sgn_spec a + | H : context [ Z.sgn ?a ] |- _ => zify_unop Z.sgn Z.sgn_spec a + | |- context [ Z.abs ?a ] => zify_unop Z.abs Z.abs_spec a + | H : context [ Z.abs ?a ] |- _ => zify_unop Z.abs Z.abs_spec a end. Ltac zify_op := repeat zify_op_1. @@ -91,100 +99,95 @@ Ltac zify_op := repeat zify_op_1. (** II) Conversion from nat to Z *) -Definition Z_of_nat' := Z_of_nat. +Definition Z_of_nat' := Z.of_nat. Ltac hide_Z_of_nat t := - let z := fresh "z" in set (z:=Z_of_nat t) in *; - change Z_of_nat with Z_of_nat' in z; + let z := fresh "z" in set (z:=Z.of_nat t) in *; + change Z.of_nat with Z_of_nat' in z; unfold z in *; clear z. Ltac zify_nat_rel := match goal with (* I: equalities *) - | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H - | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b) - | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H - | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b) + | |- (@eq nat ?a ?b) => apply (Nat2Z.inj a b) (* shortcut *) + | H : context [ @eq nat ?a ?b ] |- _ => rewrite <- (Nat2Z.inj_iff a b) in H + | |- context [ @eq nat ?a ?b ] => rewrite <- (Nat2Z.inj_iff a b) (* II: less than *) - | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H - | |- (lt ?a ?b) => apply (inj_lt_rev a b) - | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H - | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b) + | H : context [ lt ?a ?b ] |- _ => rewrite (Nat2Z.inj_lt a b) in H + | |- context [ lt ?a ?b ] => rewrite (Nat2Z.inj_lt a b) (* III: less or equal *) - | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H - | |- (le ?a ?b) => apply (inj_le_rev a b) - | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H - | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b) + | H : context [ le ?a ?b ] |- _ => rewrite (Nat2Z.inj_le a b) in H + | |- context [ le ?a ?b ] => rewrite (Nat2Z.inj_le a b) (* IV: greater than *) - | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H - | |- (gt ?a ?b) => apply (inj_gt_rev a b) - | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H - | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b) + | H : context [ gt ?a ?b ] |- _ => rewrite (Nat2Z.inj_gt a b) in H + | |- context [ gt ?a ?b ] => rewrite (Nat2Z.inj_gt a b) (* V: greater or equal *) - | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H - | |- (ge ?a ?b) => apply (inj_ge_rev a b) - | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H - | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b) + | H : context [ ge ?a ?b ] |- _ => rewrite (Nat2Z.inj_ge a b) in H + | |- context [ ge ?a ?b ] => rewrite (Nat2Z.inj_ge a b) end. Ltac zify_nat_op := match goal with (* misc type conversions: positive/N/Z to nat *) - | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H - | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) - | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H - | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a) - | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H - | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a) - - (* plus -> Zplus *) - | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H - | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b) - - (* min -> Zmin *) - | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H - | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b) - - (* max -> Zmax *) - | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H - | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b) - - (* minus -> Zmax (Zminus ... ...) 0 *) - | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H - | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b) - - (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *) - | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H - | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a) - - (* mult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_nat (mult ?a ?b) ] |- _ => - pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * - | |- context [ Z_of_nat (mult ?a ?b) ] => - pose proof (Zle_0_nat (mult a b)); rewrite (inj_mult a b) in * + | H : context [ Z.of_nat (Pos.to_nat ?a) ] |- _ => rewrite (positive_nat_Z a) in H + | |- context [ Z.of_nat (Pos.to_nat ?a) ] => rewrite (positive_nat_Z a) + | H : context [ Z.of_nat (N.to_nat ?a) ] |- _ => rewrite (N_nat_Z a) in H + | |- context [ Z.of_nat (N.to_nat ?a) ] => rewrite (N_nat_Z a) + | H : context [ Z.of_nat (Z.abs_nat ?a) ] |- _ => rewrite (Zabs2Nat.id_abs a) in H + | |- context [ Z.of_nat (Z.abs_nat ?a) ] => rewrite (Zabs2Nat.id_abs a) + + (* plus -> Z.add *) + | H : context [ Z.of_nat (plus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_add a b) in H + | |- context [ Z.of_nat (plus ?a ?b) ] => rewrite (Nat2Z.inj_add a b) + + (* min -> Z.min *) + | H : context [ Z.of_nat (min ?a ?b) ] |- _ => rewrite (Nat2Z.inj_min a b) in H + | |- context [ Z.of_nat (min ?a ?b) ] => rewrite (Nat2Z.inj_min a b) + + (* max -> Z.max *) + | H : context [ Z.of_nat (max ?a ?b) ] |- _ => rewrite (Nat2Z.inj_max a b) in H + | |- context [ Z.of_nat (max ?a ?b) ] => rewrite (Nat2Z.inj_max a b) + + (* minus -> Z.max (Z.sub ... ...) 0 *) + | H : context [ Z.of_nat (minus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_sub_max a b) in H + | |- context [ Z.of_nat (minus ?a ?b) ] => rewrite (Nat2Z.inj_sub_max a b) + + (* pred -> minus ... -1 -> Z.max (Z.sub ... -1) 0 *) + | H : context [ Z.of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H + | |- context [ Z.of_nat (pred ?a) ] => rewrite (pred_of_minus a) + + (* mult -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_nat (mult ?a ?b) ] |- _ => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * + | |- context [ Z.of_nat (mult ?a ?b) ] => + pose proof (Nat2Z.is_nonneg (mult a b)); + rewrite (Nat2Z.inj_mul a b) in * (* O -> Z0 *) - | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H - | |- context [ Z_of_nat O ] => simpl (Z_of_nat O) + | H : context [ Z.of_nat O ] |- _ => simpl (Z.of_nat O) in H + | |- context [ Z.of_nat O ] => simpl (Z.of_nat O) - (* S -> number or Zsucc *) - | H : context [ Z_of_nat (S ?a) ] |- _ => + (* S -> number or Z.succ *) + | H : context [ Z.of_nat (S ?a) ] |- _ => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) in H - | _ => rewrite (inj_S a) in H + | true => simpl (Z.of_nat (S a)) in H + | _ => rewrite (Nat2Z.inj_succ a) in H end - | |- context [ Z_of_nat (S ?a) ] => + | |- context [ Z.of_nat (S ?a) ] => let isnat := isnatcst a in match isnat with - | true => simpl (Z_of_nat (S a)) - | _ => rewrite (inj_S a) + | true => simpl (Z.of_nat (S a)) + | _ => rewrite (Nat2Z.inj_succ a) end (* atoms of type nat : we add a positivity condition (if not already there) *) - | _ : 0 <= Z_of_nat ?a |- _ => hide_Z_of_nat a - | _ : context [ Z_of_nat ?a ] |- _ => pose proof (Zle_0_nat a); hide_Z_of_nat a - | |- context [ Z_of_nat ?a ] => pose proof (Zle_0_nat a); hide_Z_of_nat a + | _ : 0 <= Z.of_nat ?a |- _ => hide_Z_of_nat a + | _ : context [ Z.of_nat ?a ] |- _ => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a + | |- context [ Z.of_nat ?a ] => + pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a end. Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *. @@ -205,10 +208,9 @@ Ltac hide_Zpos t := Ltac zify_positive_rel := match goal with (* I: equalities *) - | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H - | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b) - | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H - | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b) + | |- (@eq positive ?a ?b) => apply Pos2Z.inj + | H : context [ @eq positive ?a ?b ] |- _ => rewrite <- (Pos2Z.inj_iff a b) in H + | |- context [ @eq positive ?a ?b ] => rewrite <- (Pos2Z.inj_iff a b) (* II: less than *) | H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H | |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b) @@ -240,64 +242,66 @@ Ltac zify_positive_op := end (* misc type conversions: nat to positive *) - | H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H - | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) + | H : context [ Zpos (Pos.of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H + | |- context [ Zpos (Pos.of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a) - (* Pplus -> Zplus *) - | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H - | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) + (* Pos.add -> Z.add *) + | H : context [ Zpos (?a + ?b) ] |- _ => change (Zpos (a+b)) with (Zpos a + Zpos b) in H + | |- context [ Zpos (?a + ?b) ] => change (Zpos (a+b)) with (Zpos a + Zpos b) - (* Pmin -> Zmin *) - | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H - | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b) + (* Pos.min -> Z.min *) + | H : context [ Zpos (Pos.min ?a ?b) ] |- _ => rewrite (Pos2Z.inj_min a b) in H + | |- context [ Zpos (Pos.min ?a ?b) ] => rewrite (Pos2Z.inj_min a b) - (* Pmax -> Zmax *) - | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H - | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b) + (* Pos.max -> Z.max *) + | H : context [ Zpos (Pos.max ?a ?b) ] |- _ => rewrite (Pos2Z.inj_max a b) in H + | |- context [ Zpos (Pos.max ?a ?b) ] => rewrite (Pos2Z.inj_max a b) - (* Pminus -> Zmax 1 (Zminus ... ...) *) - | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H - | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b) + (* Pos.sub -> Z.max 1 (Z.sub ... ...) *) + | H : context [ Zpos (Pos.sub ?a ?b) ] |- _ => rewrite (Pos2Z.inj_sub a b) in H + | |- context [ Zpos (Pos.sub ?a ?b) ] => rewrite (Pos2Z.inj_sub a b) - (* Psucc -> Zsucc *) - | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H - | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a) + (* Pos.succ -> Z.succ *) + | H : context [ Zpos (Pos.succ ?a) ] |- _ => rewrite (Pos2Z.inj_succ a) in H + | |- context [ Zpos (Pos.succ ?a) ] => rewrite (Pos2Z.inj_succ a) - (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *) - | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H - | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a) + (* Pos.pred -> Pos.sub ... -1 -> Z.max 1 (Z.sub ... - 1) *) + | H : context [ Zpos (Pos.pred ?a) ] |- _ => rewrite <- (Pos.sub_1_r a) in H + | |- context [ Zpos (Pos.pred ?a) ] => rewrite <- (Pos.sub_1_r a) - (* Pmult -> Zmult and a positivity hypothesis *) - | H : context [ Zpos (Pmult ?a ?b) ] |- _ => - pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * - | |- context [ Zpos (Pmult ?a ?b) ] => - pose proof (Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in * + (* Pos.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Zpos (?a * ?b) ] |- _ => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * + | |- context [ Zpos (?a * ?b) ] => + pose proof (Pos2Z.is_pos (Pos.mul a b)); + change (Zpos (a*b)) with (Zpos a * Zpos b) in * (* xO *) | H : context [ Zpos (xO ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) in H - | _ => rewrite (Zpos_xO a) in H + | _ => rewrite (Pos2Z.inj_xO a) in H end | |- context [ Zpos (xO ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xO a)) with (Zpos' (xO a)) - | _ => rewrite (Zpos_xO a) + | _ => rewrite (Pos2Z.inj_xO a) end (* xI *) | H : context [ Zpos (xI ?a) ] |- _ => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) in H - | _ => rewrite (Zpos_xI a) in H + | _ => rewrite (Pos2Z.inj_xI a) in H end | |- context [ Zpos (xI ?a) ] => let isp := isPcst a in match isp with | true => change (Zpos (xI a)) with (Zpos' (xI a)) - | _ => rewrite (Zpos_xI a) + | _ => rewrite (Pos2Z.inj_xI a) end (* xI : nothing to do, just prevent adding a useless positivity condition *) @@ -305,9 +309,9 @@ Ltac zify_positive_op := | |- context [ Zpos xH ] => hide_Zpos xH (* atoms of type positive : we add a positivity condition (if not already there) *) - | _ : Zpos ?a > 0 |- _ => hide_Zpos a - | _ : context [ Zpos ?a ] |- _ => pose proof (Zgt_pos_0 a); hide_Zpos a - | |- context [ Zpos ?a ] => pose proof (Zgt_pos_0 a); hide_Zpos a + | _ : 0 < Zpos ?a |- _ => hide_Zpos a + | _ : context [ Zpos ?a ] |- _ => pose proof (Pos2Z.is_pos a); hide_Zpos a + | |- context [ Zpos ?a ] => pose proof (Pos2Z.is_pos a); hide_Zpos a end. Ltac zify_positive := @@ -319,84 +323,75 @@ Ltac zify_positive := (* IV) conversion from N to Z *) -Definition Z_of_N' := Z_of_N. +Definition Z_of_N' := Z.of_N. Ltac hide_Z_of_N t := - let z := fresh "z" in set (z:=Z_of_N t) in *; - change Z_of_N with Z_of_N' in z; + let z := fresh "z" in set (z:=Z.of_N t) in *; + change Z.of_N with Z_of_N' in z; unfold z in *; clear z. Ltac zify_N_rel := match goal with (* I: equalities *) - | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H - | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b) - | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H - | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b) + | |- (@eq N ?a ?b) => apply (N2Z.inj a b) (* shortcut *) + | H : context [ @eq N ?a ?b ] |- _ => rewrite <- (N2Z.inj_iff a b) in H + | |- context [ @eq N ?a ?b ] => rewrite <- (N2Z.inj_iff a b) (* II: less than *) - | H : (?a < ?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H - | |- (?a < ?b)%N => apply (Z_of_N_lt_rev a b) - | H : context [ (?a < ?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H - | |- context [ (?a < ?b)%N ] => rewrite (Z_of_N_lt_iff a b) + | H : context [ (?a < ?b)%N ] |- _ => rewrite (N2Z.inj_lt a b) in H + | |- context [ (?a < ?b)%N ] => rewrite (N2Z.inj_lt a b) (* III: less or equal *) - | H : (?a <= ?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H - | |- (?a <= ?b)%N => apply (Z_of_N_le_rev a b) - | H : context [ (?a <= ?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H - | |- context [ (?a <= ?b)%N ] => rewrite (Z_of_N_le_iff a b) + | H : context [ (?a <= ?b)%N ] |- _ => rewrite (N2Z.inj_le a b) in H + | |- context [ (?a <= ?b)%N ] => rewrite (N2Z.inj_le a b) (* IV: greater than *) - | H : (?a > ?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H - | |- (?a > ?b)%N => apply (Z_of_N_gt_rev a b) - | H : context [ (?a > ?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H - | |- context [ (?a > ?b)%N ] => rewrite (Z_of_N_gt_iff a b) + | H : context [ (?a > ?b)%N ] |- _ => rewrite (N2Z.inj_gt a b) in H + | |- context [ (?a > ?b)%N ] => rewrite (N2Z.inj_gt a b) (* V: greater or equal *) - | H : (?a >= ?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H - | |- (?a >= ?b)%N => apply (Z_of_N_ge_rev a b) - | H : context [ (?a >= ?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H - | |- context [ (?a >= ?b)%N ] => rewrite (Z_of_N_ge_iff a b) + | H : context [ (?a >= ?b)%N ] |- _ => rewrite (N2Z.inj_ge a b) in H + | |- context [ (?a >= ?b)%N ] => rewrite (N2Z.inj_ge a b) end. Ltac zify_N_op := match goal with (* misc type conversions: nat to positive *) - | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H - | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a) - | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H - | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a) - | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H - | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a) - | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H - | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0 - - (* Nplus -> Zplus *) - | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H - | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b) - - (* Nmin -> Zmin *) - | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H - | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b) - - (* Nmax -> Zmax *) - | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H - | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b) - - (* Nminus -> Zmax 0 (Zminus ... ...) *) - | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H - | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b) - - (* Nsucc -> Zsucc *) - | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H - | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a) - - (* Nmult -> Zmult and a positivity hypothesis *) - | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ => - pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * - | |- context [ Z_of_N (Nmult ?a ?b) ] => - pose proof (Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in * + | H : context [ Z.of_N (N.of_nat ?a) ] |- _ => rewrite (nat_N_Z a) in H + | |- context [ Z.of_N (N.of_nat ?a) ] => rewrite (nat_N_Z a) + | H : context [ Z.of_N (Z.abs_N ?a) ] |- _ => rewrite (N2Z.inj_abs_N a) in H + | |- context [ Z.of_N (Z.abs_N ?a) ] => rewrite (N2Z.inj_abs_N a) + | H : context [ Z.of_N (Npos ?a) ] |- _ => rewrite (N2Z.inj_pos a) in H + | |- context [ Z.of_N (Npos ?a) ] => rewrite (N2Z.inj_pos a) + | H : context [ Z.of_N N0 ] |- _ => change (Z.of_N N0) with Z0 in H + | |- context [ Z.of_N N0 ] => change (Z.of_N N0) with Z0 + + (* N.add -> Z.add *) + | H : context [ Z.of_N (N.add ?a ?b) ] |- _ => rewrite (N2Z.inj_add a b) in H + | |- context [ Z.of_N (N.add ?a ?b) ] => rewrite (N2Z.inj_add a b) + + (* N.min -> Z.min *) + | H : context [ Z.of_N (N.min ?a ?b) ] |- _ => rewrite (N2Z.inj_min a b) in H + | |- context [ Z.of_N (N.min ?a ?b) ] => rewrite (N2Z.inj_min a b) + + (* N.max -> Z.max *) + | H : context [ Z.of_N (N.max ?a ?b) ] |- _ => rewrite (N2Z.inj_max a b) in H + | |- context [ Z.of_N (N.max ?a ?b) ] => rewrite (N2Z.inj_max a b) + + (* N.sub -> Z.max 0 (Z.sub ... ...) *) + | H : context [ Z.of_N (N.sub ?a ?b) ] |- _ => rewrite (N2Z.inj_sub_max a b) in H + | |- context [ Z.of_N (N.sub ?a ?b) ] => rewrite (N2Z.inj_sub_max a b) + + (* N.succ -> Z.succ *) + | H : context [ Z.of_N (N.succ ?a) ] |- _ => rewrite (N2Z.inj_succ a) in H + | |- context [ Z.of_N (N.succ ?a) ] => rewrite (N2Z.inj_succ a) + + (* N.mul -> Z.mul and a positivity hypothesis *) + | H : context [ Z.of_N (N.mul ?a ?b) ] |- _ => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * + | |- context [ Z.of_N (N.mul ?a ?b) ] => + pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in * (* atoms of type N : we add a positivity condition (if not already there) *) - | _ : 0 <= Z_of_N ?a |- _ => hide_Z_of_N a - | _ : context [ Z_of_N ?a ] |- _ => pose proof (Z_of_N_le_0 a); hide_Z_of_N a - | |- context [ Z_of_N ?a ] => pose proof (Z_of_N_le_0 a); hide_Z_of_N a + | _ : 0 <= Z.of_N ?a |- _ => hide_Z_of_N a + | _ : context [ Z.of_N ?a ] |- _ => pose proof (N2Z.is_nonneg a); hide_Z_of_N a + | |- context [ Z.of_N ?a ] => pose proof (N2Z.is_nonneg a); hide_Z_of_N a end. Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *. diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml index d7dfe149..028ef95d 100644 --- a/plugins/omega/coq_omega.ml +++ b/plugins/omega/coq_omega.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -170,6 +170,9 @@ let init_constant = gen_constant_in_modules "Omega" init_modules let constant = gen_constant_in_modules "Omega" coq_modules let z_constant = gen_constant_in_modules "Omega" [["Coq";"ZArith"]] +let zbase_constant = + gen_constant_in_modules "Omega" [["Coq";"ZArith";"BinInt"]] + (* Zarith *) let coq_xH = lazy (constant "xH") @@ -181,20 +184,20 @@ let coq_Zneg = lazy (constant "Zneg") let coq_Z = lazy (constant "Z") let coq_comparison = lazy (constant "comparison") let coq_Gt = lazy (constant "Gt") -let coq_Zplus = lazy (constant "Zplus") -let coq_Zmult = lazy (constant "Zmult") -let coq_Zopp = lazy (constant "Zopp") -let coq_Zminus = lazy (constant "Zminus") -let coq_Zsucc = lazy (constant "Zsucc") -let coq_Zpred = lazy (constant "Zpred") -let coq_Zgt = lazy (constant "Zgt") -let coq_Zle = lazy (constant "Zle") -let coq_Z_of_nat = lazy (constant "Z_of_nat") -let coq_inj_plus = lazy (constant "inj_plus") -let coq_inj_mult = lazy (constant "inj_mult") -let coq_inj_minus1 = lazy (constant "inj_minus1") +let coq_Zplus = lazy (zbase_constant "Z.add") +let coq_Zmult = lazy (zbase_constant "Z.mul") +let coq_Zopp = lazy (zbase_constant "Z.opp") +let coq_Zminus = lazy (zbase_constant "Z.sub") +let coq_Zsucc = lazy (zbase_constant "Z.succ") +let coq_Zpred = lazy (zbase_constant "Z.pred") +let coq_Zgt = lazy (zbase_constant "Z.gt") +let coq_Zle = lazy (zbase_constant "Z.le") +let coq_Z_of_nat = lazy (zbase_constant "Z.of_nat") +let coq_inj_plus = lazy (z_constant "Nat2Z.inj_add") +let coq_inj_mult = lazy (z_constant "Nat2Z.inj_mul") +let coq_inj_minus1 = lazy (z_constant "Nat2Z.inj_sub") let coq_inj_minus2 = lazy (constant "inj_minus2") -let coq_inj_S = lazy (z_constant "inj_S") +let coq_inj_S = lazy (z_constant "Nat2Z.inj_succ") let coq_inj_le = lazy (z_constant "Znat.inj_le") let coq_inj_lt = lazy (z_constant "Znat.inj_lt") let coq_inj_ge = lazy (z_constant "Znat.inj_ge") @@ -250,10 +253,10 @@ let coq_Zle_left = lazy (constant "Zle_left") let coq_new_var = lazy (constant "new_var") let coq_intro_Z = lazy (constant "intro_Z") -let coq_dec_eq = lazy (constant "dec_eq") +let coq_dec_eq = lazy (zbase_constant "Z.eq_decidable") let coq_dec_Zne = lazy (constant "dec_Zne") -let coq_dec_Zle = lazy (constant "dec_Zle") -let coq_dec_Zlt = lazy (constant "dec_Zlt") +let coq_dec_Zle = lazy (zbase_constant "Z.le_decidable") +let coq_dec_Zlt = lazy (zbase_constant "Z.lt_decidable") let coq_dec_Zgt = lazy (constant "dec_Zgt") let coq_dec_Zge = lazy (constant "dec_Zge") @@ -265,10 +268,10 @@ let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt") let coq_Znot_gt_le = lazy (constant "Znot_gt_le") let coq_neq = lazy (constant "neq") let coq_Zne = lazy (constant "Zne") -let coq_Zle = lazy (constant "Zle") -let coq_Zgt = lazy (constant "Zgt") -let coq_Zge = lazy (constant "Zge") -let coq_Zlt = lazy (constant "Zlt") +let coq_Zle = lazy (zbase_constant "Z.le") +let coq_Zgt = lazy (zbase_constant "Z.gt") +let coq_Zge = lazy (zbase_constant "Z.ge") +let coq_Zlt = lazy (zbase_constant "Z.lt") (* Peano/Datatypes *) let coq_le = lazy (init_constant "le") @@ -326,13 +329,13 @@ let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with EvalConstRef kn | _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant") -let sp_Zsucc = lazy (evaluable_ref_of_constr "Zsucc" coq_Zsucc) -let sp_Zpred = lazy (evaluable_ref_of_constr "Zpred" coq_Zpred) -let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus) -let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle) -let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt) -let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge) -let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt) +let sp_Zsucc = lazy (evaluable_ref_of_constr "Z.succ" coq_Zsucc) +let sp_Zpred = lazy (evaluable_ref_of_constr "Z.pred" coq_Zpred) +let sp_Zminus = lazy (evaluable_ref_of_constr "Z.sub" coq_Zminus) +let sp_Zle = lazy (evaluable_ref_of_constr "Z.le" coq_Zle) +let sp_Zgt = lazy (evaluable_ref_of_constr "Z.gt" coq_Zgt) +let sp_Zge = lazy (evaluable_ref_of_constr "Z.ge" coq_Zge) +let sp_Zlt = lazy (evaluable_ref_of_constr "Z.lt" coq_Zlt) let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ()))) let mk_var v = mkVar (id_of_string v) diff --git a/plugins/omega/g_omega.ml4 b/plugins/omega/g_omega.ml4 index 84cc8464..1542b60c 100644 --- a/plugins/omega/g_omega.ml4 +++ b/plugins/omega/g_omega.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/omega/omega.ml b/plugins/omega/omega.ml index 3a5aece7..98cad09e 100644 --- a/plugins/omega/omega.ml +++ b/plugins/omega/omega.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/quote/Quote.v b/plugins/quote/Quote.v index e2d8e67e..2206aedf 100644 --- a/plugins/quote/Quote.v +++ b/plugins/quote/Quote.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -67,7 +67,7 @@ Fixpoint index_lt (n m:index) {struct m} : bool := end. Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m. - simple induction n; simple induction m; simpl in |- *; intros. + simple induction n; simple induction m; simpl; intros. rewrite (H i0 H1); reflexivity. discriminate. discriminate. diff --git a/plugins/quote/g_quote.ml4 b/plugins/quote/g_quote.ml4 index 1f4ea97f..09b780fd 100644 --- a/plugins/quote/g_quote.ml4 +++ b/plugins/quote/g_quote.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/quote/quote.ml b/plugins/quote/quote.ml index fbb75420..f0ca3bb9 100644 --- a/plugins/quote/quote.ml +++ b/plugins/quote/quote.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v index fd5bcd93..089dec02 100644 --- a/plugins/ring/LegacyArithRing.v +++ b/plugins/ring/LegacyArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -13,7 +13,7 @@ Require Export LegacyRing. Require Export Arith. Require Import Eqdep_dec. -Open Local Scope nat_scope. +Local Open Scope nat_scope. Fixpoint nateq (n m:nat) {struct m} : bool := match n, m with @@ -75,14 +75,14 @@ Ltac rewrite_S_to_plus := (**) (**) rewrite_S_to_plus_term X1 with t2 := rewrite_S_to_plus_term X2 in - change (t1 = t2) in |- * + change (t1 = t2) | |- (?X1 = ?X2) => try let t1 := (**) (**) rewrite_S_to_plus_term X1 with t2 := rewrite_S_to_plus_term X2 in - change (t1 = t2) in |- * + change (t1 = t2) end. Ltac ring_nat := rewrite_S_to_plus; ring. diff --git a/plugins/ring/LegacyNArithRing.v b/plugins/ring/LegacyNArithRing.v index 5dcd6d84..7f1597a1 100644 --- a/plugins/ring/LegacyNArithRing.v +++ b/plugins/ring/LegacyNArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -22,23 +22,22 @@ Definition Neq (n m:N) := Lemma Neq_prop : forall n m:N, Is_true (Neq n m) -> n = m. intros n m H; unfold Neq in H. - apply Ncompare_Eq_eq. + apply N.compare_eq. destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ]. Qed. -Definition NTheory : Semi_Ring_Theory Nplus Nmult 1%N 0%N Neq. +Definition NTheory : Semi_Ring_Theory N.add N.mul 1%N 0%N Neq. split. - apply Nplus_comm. - apply Nplus_assoc. - apply Nmult_comm. - apply Nmult_assoc. - apply Nplus_0_l. - apply Nmult_1_l. - apply Nmult_0_l. - apply Nmult_plus_distr_r. -(* apply Nplus_reg_l.*) + apply N.add_comm. + apply N.add_assoc. + apply N.mul_comm. + apply N.mul_assoc. + apply N.add_0_l. + apply N.mul_1_l. + apply N.mul_0_l. + apply N.mul_add_distr_r. apply Neq_prop. Qed. Add Legacy Semi Ring - N Nplus Nmult 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. + N N.add N.mul 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ]. diff --git a/plugins/ring/LegacyRing.v b/plugins/ring/LegacyRing.v index d19e9f58..d4f40081 100644 --- a/plugins/ring/LegacyRing.v +++ b/plugins/ring/LegacyRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -19,7 +19,7 @@ Declare ML Module "ring_plugin". Definition BoolTheory : Ring_Theory xorb andb true false (fun b:bool => b) eqb. -split; simpl in |- *. +split; simpl. destruct n; destruct m; reflexivity. destruct n; destruct m; destruct p; reflexivity. destruct n; destruct m; reflexivity. @@ -28,7 +28,7 @@ destruct n; reflexivity. destruct n; reflexivity. destruct n; reflexivity. destruct n; destruct m; destruct p; reflexivity. -destruct x; destruct y; reflexivity || simpl in |- *; tauto. +destruct x; destruct y; reflexivity || simpl; tauto. Defined. Add Legacy Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v index ca3355a6..09de1bb4 100644 --- a/plugins/ring/LegacyRing_theory.v +++ b/plugins/ring/LegacyRing_theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -58,22 +58,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_mult_one_left2 : forall n:A, n = 1 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p). intros. @@ -100,7 +100,7 @@ eauto. Qed. Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p). -symmetry in |- *; apply SR_distr_right. Qed. +symmetry ; apply SR_distr_right. Qed. Lemma SR_mult_zero_right : forall n:A, n * 0 = 0. intro; rewrite mult_comm; eauto. @@ -176,22 +176,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_one_left2 : forall n:A, n = 1 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_opp_def2 : forall n:A, 0 = n + - n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p). intros. @@ -214,7 +214,7 @@ Hint Resolve Th_plus_permute Th_mult_permute. Lemma aux1 : forall a:A, a + a = a -> a = 0. intros. generalize (opp_def a). -pattern a at 1 in |- *. +pattern a at 1. rewrite <- H. rewrite <- plus_assoc. rewrite opp_def. @@ -233,7 +233,7 @@ Qed. Hint Resolve Th_mult_zero_left. Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z. intros. @@ -255,7 +255,7 @@ Qed. Hint Resolve Th_opp_mult_left. Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_zero_right : forall n:A, n * 0 = 0. intro; elim mult_comm; eauto. @@ -306,14 +306,14 @@ Qed. Hint Resolve Th_opp_opp. Lemma Th_opp_opp2 : forall n:A, n = - - n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y. intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto. Qed. Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y. -symmetry in |- *; apply Th_mult_opp_opp. Qed. +symmetry ; apply Th_mult_opp_opp. Qed. Lemma Th_opp_zero : - 0 = 0. rewrite <- (plus_zero_left (- 0)). @@ -342,7 +342,7 @@ eauto. Qed. Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p). -symmetry in |- *; apply Th_distr_right. +symmetry ; apply Th_distr_right. Qed. End Theory_of_rings. @@ -357,7 +357,7 @@ Definition Semi_Ring_Theory_of : Ring_Theory Aplus Amult Aone Azero Aopp Aeq -> Semi_Ring_Theory Aplus Amult Aone Azero Aeq. intros until 1; case H. -split; intros; simpl in |- *; eauto. +split; intros; simpl; eauto. Defined. (* Every ring can be viewed as a semi-ring : this property will be used diff --git a/plugins/ring/LegacyZArithRing.v b/plugins/ring/LegacyZArithRing.v index 5845062d..3f01a5c3 100644 --- a/plugins/ring/LegacyZArithRing.v +++ b/plugins/ring/LegacyZArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -21,15 +21,15 @@ Definition Zeq (x y:Z) := Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y. intros x y H; unfold Zeq in H. - apply Zcompare_Eq_eq. + apply Z.compare_eq. destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ]. Qed. -Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq. +Definition ZTheory : Ring_Theory Z.add Z.mul 1%Z 0%Z Z.opp Zeq. split; intros; eauto with zarith. apply Zeq_prop; assumption. Qed. (* NatConstants and NatTheory are defined in Ring_theory.v *) -Add Legacy Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory +Add Legacy Ring Z Z.add Z.mul 1%Z 0%Z Z.opp Zeq ZTheory [ Zpos Zneg 0%Z xO xI 1%positive ]. diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v index 1763d70a..a00b7bcd 100644 --- a/plugins/ring/Ring_abstract.v +++ b/plugins/ring/Ring_abstract.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -137,14 +137,13 @@ Hint Resolve (SR_plus_zero_right2 T). Hint Resolve (SR_mult_one_right T). Hint Resolve (SR_mult_one_right2 T). (*Hint Resolve (SR_plus_reg_right T).*) -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. Remark iacs_aux_ok : forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. trivial. reflexivity. Qed. @@ -159,8 +158,8 @@ Lemma abstract_varlist_insert_ok : simple induction s. trivial. - simpl in |- *; intros. - elim (varlist_lt l v); simpl in |- *. + simpl; intros. + elim (varlist_lt l v); simpl. eauto. rewrite iacs_aux_ok. rewrite H; auto. @@ -178,13 +177,13 @@ Proof. auto. - simpl in |- *; elim (varlist_lt v v0); simpl in |- *. + simpl; elim (varlist_lt v v0); simpl. repeat rewrite iacs_aux_ok. - rewrite H; simpl in |- *; auto. + rewrite H; simpl; auto. simpl in H0. repeat rewrite iacs_aux_ok. - rewrite H0. simpl in |- *; auto. + rewrite H0. simpl; auto. Qed. Lemma abstract_sum_scalar_ok : @@ -193,9 +192,9 @@ Lemma abstract_sum_scalar_ok : Amult (interp_vl Amult Aone Azero vm l) (interp_acs s). Proof. simple induction s. - simpl in |- *; eauto. + simpl; eauto. - simpl in |- *; intros. + simpl; intros. rewrite iacs_aux_ok. rewrite abstract_varlist_insert_ok. rewrite H. @@ -209,22 +208,22 @@ Lemma abstract_sum_prod_ok : Proof. simple induction x. - intros; simpl in |- *; eauto. + intros; simpl; eauto. destruct y as [| v0 a0]; intros. - simpl in |- *; rewrite H; eauto. + simpl; rewrite H; eauto. - unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *. + unfold abstract_sum_prod; fold abstract_sum_prod. rewrite abstract_sum_merge_ok. rewrite abstract_sum_scalar_ok. - rewrite H; simpl in |- *; auto. + rewrite H; simpl; auto. Qed. Theorem aspolynomial_normalize_ok : forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x). Proof. - simple induction x; simpl in |- *; intros; trivial. + simple induction x; simpl; intros; trivial. rewrite abstract_sum_merge_ok. rewrite H; rewrite H0; eauto. rewrite abstract_sum_prod_ok. @@ -446,14 +445,13 @@ Hint Resolve (Th_plus_zero_right2 T). Hint Resolve (Th_mult_one_right T). Hint Resolve (Th_mult_one_right2 T). (*Hint Resolve (Th_plus_reg_right T).*) -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. Lemma isacs_aux_ok : forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. trivial. reflexivity. reflexivity. @@ -462,15 +460,15 @@ Qed. Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core. Ltac solve1 v v0 H H0 := - simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok; - [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ]. + simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok; + [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ]. Lemma signed_sum_merge_ok : forall x y:signed_sum, interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y). simple induction x. - intro; simpl in |- *; auto. + intro; simpl; auto. simple induction y; intros. @@ -478,8 +476,8 @@ Lemma signed_sum_merge_ok : solve1 v v0 H H0. - simpl in |- *; generalize (varlist_eq_prop v v0). - elim (varlist_eq v v0); simpl in |- *. + simpl; generalize (varlist_eq_prop v v0). + elim (varlist_eq v v0); simpl. intro Heq; rewrite (Heq I). rewrite H. @@ -499,8 +497,8 @@ Lemma signed_sum_merge_ok : auto. - simpl in |- *; generalize (varlist_eq_prop v v0). - elim (varlist_eq v v0); simpl in |- *. + simpl; generalize (varlist_eq_prop v v0). + elim (varlist_eq v v0); simpl. intro Heq; rewrite (Heq I). rewrite H. @@ -518,7 +516,7 @@ Lemma signed_sum_merge_ok : Qed. Ltac solve2 l v H := - elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok; + elim (varlist_lt l v); simpl; rewrite isacs_aux_ok; [ auto | rewrite H; auto ]. Lemma plus_varlist_insert_ok : @@ -530,12 +528,12 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. solve2 l v H. - simpl in |- *; intros. + simpl; intros. generalize (varlist_eq_prop l v). - elim (varlist_eq l v); simpl in |- *. + elim (varlist_eq l v); simpl. intro Heq; rewrite (Heq I). repeat rewrite isacs_aux_ok. @@ -557,9 +555,9 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. generalize (varlist_eq_prop l v). - elim (varlist_eq l v); simpl in |- *. + elim (varlist_eq l v); simpl. intro Heq; rewrite (Heq I). repeat rewrite isacs_aux_ok. @@ -570,10 +568,10 @@ Proof. rewrite (Th_opp_def T). auto. - simpl in |- *; intros. + simpl; intros. solve2 l v H. - simpl in |- *; intros; solve2 l v H. + simpl; intros; solve2 l v H. Qed. @@ -581,9 +579,9 @@ Lemma signed_sum_opp_ok : forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. - symmetry in |- *; apply (Th_opp_zero T). + symmetry ; apply (Th_opp_zero T). repeat rewrite isacs_aux_ok. rewrite H. @@ -607,14 +605,14 @@ Proof. simple induction s. trivial. - simpl in |- *; intros. + simpl; intros. rewrite plus_varlist_insert_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). repeat rewrite isacs_aux_ok. rewrite H. auto. - simpl in |- *; intros. + simpl; intros. rewrite minus_varlist_insert_ok. repeat rewrite isacs_aux_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). @@ -631,11 +629,11 @@ Lemma minus_sum_scalar_ok : Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. - rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T). + rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T). - simpl in |- *; intros. + simpl; intros. rewrite minus_varlist_insert_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). repeat rewrite isacs_aux_ok. @@ -644,7 +642,7 @@ Proof. rewrite (Th_plus_opp_opp T). reflexivity. - simpl in |- *; intros. + simpl; intros. rewrite plus_varlist_insert_ok. repeat rewrite isacs_aux_ok. rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T). @@ -664,16 +662,16 @@ Proof. simple induction x. - simpl in |- *; eauto 1. + simpl; eauto 1. - intros; simpl in |- *. + intros; simpl. rewrite signed_sum_merge_ok. rewrite plus_sum_scalar_ok. repeat rewrite isacs_aux_ok. rewrite H. auto. - intros; simpl in |- *. + intros; simpl. repeat rewrite isacs_aux_ok. rewrite signed_sum_merge_ok. rewrite minus_sum_scalar_ok. @@ -687,7 +685,7 @@ Qed. Theorem apolynomial_normalize_ok : forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p. Proof. - simple induction p; simpl in |- *; auto 1. + simple induction p; simpl; auto 1. intros. rewrite signed_sum_merge_ok. rewrite H; rewrite H0; reflexivity. diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v index c6dff3e0..d286208a 100644 --- a/plugins/ring/Ring_normalize.v +++ b/plugins/ring/Ring_normalize.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -16,7 +16,7 @@ Proof. intros. apply index_eq_prop. generalize H. - case (index_eq n m); simpl in |- *; trivial; intros. + case (index_eq n m); simpl; trivial; intros. contradiction. Qed. @@ -365,14 +365,13 @@ Hint Resolve (SR_plus_zero_right2 T). Hint Resolve (SR_mult_one_right T). Hint Resolve (SR_mult_one_right2 T). (*Hint Resolve (SR_plus_reg_right T).*) -Hint Resolve refl_equal sym_equal trans_equal. -(* Hints Resolve refl_eqT sym_eqT trans_eqT. *) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y. Proof. simple induction x; simple induction y; contradiction || (try reflexivity). - simpl in |- *; intros. + simpl; intros. generalize (andb_prop2 _ _ H1); intros; elim H2; intros. rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity. Qed. @@ -381,7 +380,7 @@ Remark ivl_aux_ok : forall (v:varlist) (i:index), ivl_aux i v = Amult (interp_var i) (interp_vl v). Proof. - simple induction v; simpl in |- *; intros. + simple induction v; simpl; intros. trivial. rewrite H; trivial. Qed. @@ -391,14 +390,14 @@ Lemma varlist_merge_ok : interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y). Proof. simple induction x. - simpl in |- *; trivial. + simpl; trivial. simple induction y. - simpl in |- *; trivial. - simpl in |- *; intros. - elim (index_lt i i0); simpl in |- *; intros. + simpl; trivial. + simpl; intros. + elim (index_lt i i0); simpl; intros. repeat rewrite ivl_aux_ok. - rewrite H. simpl in |- *. + rewrite H. simpl. rewrite ivl_aux_ok. eauto. @@ -411,7 +410,7 @@ Qed. Remark ics_aux_ok : forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s). Proof. - simple induction s; simpl in |- *; intros. + simple induction s; simpl; intros. trivial. reflexivity. reflexivity. @@ -421,7 +420,7 @@ Remark interp_m_ok : forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l). Proof. destruct l as [| i v]. - simpl in |- *; trivial. + simpl; trivial. reflexivity. Qed. @@ -429,10 +428,10 @@ Lemma canonical_sum_merge_ok : forall x y:canonical_sum, interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y). -simple induction x; simpl in |- *. +simple induction x; simpl. trivial. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. (* monom and nil *) eauto. @@ -440,25 +439,25 @@ eauto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). apply f_equal with (f := Aplus (Amult a (interp_vl v0))). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. +rewrite H; simpl; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. (* monom and varlist *) generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -466,13 +465,13 @@ apply f_equal with (f := Aplus (Amult a (interp_vl v0))). rewrite (SR_mult_one_left T). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. (* varlist and nil *) trivial. @@ -480,7 +479,7 @@ trivial. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -488,17 +487,17 @@ rewrite (SR_mult_one_left T). apply f_equal with (f := Aplus (interp_vl v0)). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. (* varlist and varlist *) generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *; repeat rewrite ics_aux_ok; rewrite H. +simpl; repeat rewrite ics_aux_ok; rewrite H. repeat rewrite interp_m_ok. rewrite (SR_distr_left T). repeat rewrite <- (SR_plus_assoc T). @@ -506,10 +505,10 @@ rewrite (SR_mult_one_left T). apply f_equal with (f := Aplus (interp_vl v0)). trivial. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. repeat rewrite ics_aux_ok. -rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto. -rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *; +rewrite H; simpl; rewrite ics_aux_ok; eauto. +rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl; eauto. Qed. @@ -519,24 +518,24 @@ Lemma monom_insert_ok : Aplus (Amult a (interp_vl l)) (interp_cs s). intros; generalize s; simple induction s0. -simpl in |- *; rewrite interp_m_ok; trivial. +simpl; rewrite interp_m_ok; trivial. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. @@ -547,24 +546,24 @@ Lemma varlist_insert_ok : interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s). intros; generalize s; simple induction s0. -simpl in |- *; trivial. +simpl; trivial. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. -simpl in |- *; intros. +simpl; intros. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok; +intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok; repeat rewrite ics_aux_ok; rewrite (SR_distr_left T); rewrite (SR_mult_one_left T); eauto. -elim (varlist_lt l v); simpl in |- *; +elim (varlist_lt l v); simpl; [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H; rewrite ics_aux_ok; eauto ]. @@ -574,9 +573,9 @@ Lemma canonical_sum_scalar_ok : forall (a:A) (s:canonical_sum), interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s). simple induction s. -simpl in |- *; eauto. +simpl; eauto. -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. rewrite H. @@ -584,7 +583,7 @@ rewrite (SR_distr_right T). repeat rewrite <- (SR_mult_assoc T). reflexivity. -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. rewrite H. @@ -597,9 +596,9 @@ Lemma canonical_sum_scalar2_ok : forall (l:varlist) (s:canonical_sum), interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s). simple induction s. -simpl in |- *; trivial. +simpl; trivial. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -611,7 +610,7 @@ repeat rewrite <- (SR_plus_assoc T). rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)). reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite varlist_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -628,9 +627,9 @@ Lemma canonical_sum_scalar3_ok : interp_cs (canonical_sum_scalar3 c l s) = Amult c (Amult (interp_vl l) (interp_cs s)). simple induction s. -simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity. +simpl; repeat rewrite (SR_mult_zero_right T); reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -642,7 +641,7 @@ repeat rewrite <- (SR_plus_assoc T). rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)). reflexivity. -simpl in |- *; intros. +simpl; intros. rewrite monom_insert_ok. repeat rewrite ics_aux_ok. repeat rewrite interp_m_ok. @@ -658,7 +657,7 @@ Qed. Lemma canonical_sum_prod_ok : forall x y:canonical_sum, interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y). -simple induction x; simpl in |- *; intros. +simple induction x; simpl; intros. trivial. rewrite canonical_sum_merge_ok. @@ -667,7 +666,7 @@ rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)). -symmetry in |- *. +symmetry . eauto. rewrite canonical_sum_merge_ok. @@ -679,7 +678,7 @@ Qed. Theorem spolynomial_normalize_ok : forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p. -simple induction p; simpl in |- *; intros. +simple induction p; simpl; intros. reflexivity. reflexivity. @@ -700,7 +699,7 @@ simple induction s. reflexivity. (* cons_monom *) -simpl in |- *; intros. +simpl; intros. generalize (SR_eq_prop T a Azero). elim (Aeq a Azero). intro Heq; rewrite (Heq I). @@ -710,25 +709,25 @@ rewrite interp_m_ok. rewrite (SR_mult_zero_left T). trivial. -intros; simpl in |- *. +intros; simpl. generalize (SR_eq_prop T a Aone). elim (Aeq a Aone). intro Heq; rewrite (Heq I). -simpl in |- *. +simpl. repeat rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. rewrite (SR_mult_one_left T). reflexivity. -simpl in |- *. +simpl. repeat rewrite ics_aux_ok. rewrite interp_m_ok. rewrite H. reflexivity. (* cons_varlist *) -simpl in |- *; intros. +simpl; intros. repeat rewrite ics_aux_ok. rewrite H. reflexivity. @@ -738,7 +737,7 @@ Qed. Theorem spolynomial_simplify_ok : forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p. intro. -unfold spolynomial_simplify in |- *. +unfold spolynomial_simplify. rewrite canonical_sum_simplify_ok. apply spolynomial_normalize_ok. Qed. @@ -794,8 +793,7 @@ Hint Resolve (Th_plus_zero_right2 T). Hint Resolve (Th_mult_one_right T). Hint Resolve (Th_mult_one_right2 T). (*Hint Resolve (Th_plus_reg_right T).*) -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. (*** Definitions *) @@ -852,7 +850,7 @@ Unset Implicit Arguments. Lemma spolynomial_of_ok : forall p:polynomial, interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p). -simple induction p; reflexivity || (simpl in |- *; intros). +simple induction p; reflexivity || (simpl; intros). rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. rewrite H. @@ -865,23 +863,23 @@ Theorem polynomial_normalize_ok : forall p:polynomial, polynomial_normalize p = spolynomial_normalize Aplus Amult Aone (spolynomial_of p). -simple induction p; reflexivity || (simpl in |- *; intros). +simple induction p; reflexivity || (simpl; intros). rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. -rewrite H; simpl in |- *. +rewrite H; simpl. elim (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0))); [ reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity ]. + | simpl; intros; rewrite H0; reflexivity + | simpl; intros; rewrite H0; reflexivity ]. Qed. Theorem polynomial_simplify_ok : forall p:polynomial, interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p. intro. -unfold polynomial_simplify in |- *. +unfold polynomial_simplify. rewrite spolynomial_of_ok. rewrite polynomial_normalize_ok. rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T). diff --git a/plugins/ring/Setoid_ring.v b/plugins/ring/Setoid_ring.v index 106a946d..4717edc9 100644 --- a/plugins/ring/Setoid_ring.v +++ b/plugins/ring/Setoid_ring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/ring/Setoid_ring_normalize.v b/plugins/ring/Setoid_ring_normalize.v index ad75a8a4..b0d790e0 100644 --- a/plugins/ring/Setoid_ring_normalize.v +++ b/plugins/ring/Setoid_ring_normalize.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -13,7 +13,7 @@ Set Implicit Arguments. Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m. Proof. - simple induction n; simple induction m; simpl in |- *; + simple induction n; simple induction m; simpl; try reflexivity || contradiction. intros; rewrite (H i0); trivial. intros; rewrite (H i0); trivial. @@ -387,14 +387,13 @@ Hint Resolve (SSR_plus_zero_right2 S T). Hint Resolve (SSR_mult_one_right S T). Hint Resolve (SSR_mult_one_right2 S T). Hint Resolve (SSR_plus_reg_right S T). -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y. Proof. simple induction x; simple induction y; contradiction || (try reflexivity). - simpl in |- *; intros. + simpl; intros. generalize (andb_prop2 _ _ H1); intros; elim H2; intros. rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity. Qed. @@ -403,7 +402,7 @@ Remark ivl_aux_ok : forall (v:varlist) (i:index), Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)). Proof. - simple induction v; simpl in |- *; intros. + simple induction v; simpl; intros. trivial. rewrite (H i); trivial. Qed. @@ -413,17 +412,17 @@ Lemma varlist_merge_ok : Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)). Proof. simple induction x. - simpl in |- *; trivial. + simpl; trivial. simple induction y. - simpl in |- *; trivial. - simpl in |- *; intros. - elim (index_lt i i0); simpl in |- *; intros. + simpl; trivial. + simpl; intros. + elim (index_lt i i0); simpl; intros. rewrite (ivl_aux_ok v i). rewrite (ivl_aux_ok v0 i0). rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i). rewrite (H (Cons_var i0 v0)). - simpl in |- *. + simpl. rewrite (ivl_aux_ok v0 i0). eauto. @@ -448,7 +447,7 @@ Remark ics_aux_ok : forall (x:A) (s:canonical_sum), Aequiv (ics_aux x s) (Aplus x (interp_setcs s)). Proof. - simple induction s; simpl in |- *; intros; trivial. + simple induction s; simpl; intros; trivial. Qed. Remark interp_m_ok : @@ -468,16 +467,16 @@ Lemma canonical_sum_merge_ok : Aequiv (interp_setcs (canonical_sum_merge x y)) (Aplus (interp_setcs x) (interp_setcs y)). Proof. -simple induction x; simpl in |- *. +simple induction x; simpl. trivial. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. eauto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m a v0) c). rewrite (ics_aux_ok (interp_m a0 v0) c0). rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)). @@ -504,14 +503,14 @@ setoid_replace [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. intro. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0))) . rewrite (ics_aux_ok (interp_m a v) c). rewrite (ics_aux_ok (interp_m a0 v0) c0). -rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *. +rewrite (H (Cons_monom a0 v0 c0)); simpl. rewrite (ics_aux_ok (interp_m a0 v0) c0); auto. intro. @@ -537,13 +536,13 @@ rewrite end) c0)). rewrite H0. rewrite (ics_aux_ok (interp_m a v) c); - rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *; + rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl; auto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0)); rewrite (ics_aux_ok (interp_m a v0) c); rewrite (ics_aux_ok (interp_vl v0) c0). @@ -570,13 +569,13 @@ setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. intro. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0))) ; rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0). -rewrite (H (Cons_varlist v0 c0)); simpl in |- *. +rewrite (H (Cons_varlist v0 c0)); simpl. rewrite (ics_aux_ok (interp_vl v0) c0). auto. @@ -602,16 +601,16 @@ rewrite else Cons_varlist l2 (csm_aux t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0); - simpl in |- *. + simpl. auto. -simple induction y; simpl in |- *; intros. +simple induction y; simpl; intros. trivial. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0). intros; rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0)); rewrite (ics_aux_ok (interp_vl v0) c); rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0). @@ -635,12 +634,12 @@ setoid_replace [ idtac | trivial ]. auto. -elim (varlist_lt v v0); simpl in |- *; intros. +elim (varlist_lt v v0); simpl; intros. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0))) ; rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0). -rewrite (H (Cons_monom a v0 c0)); simpl in |- *. +rewrite (H (Cons_monom a v0 c0)); simpl. rewrite (ics_aux_ok (interp_m a v0) c0); auto. rewrite @@ -664,11 +663,11 @@ rewrite else Cons_varlist l2 (csm_aux2 t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0); - simpl in |- *; auto. + simpl; auto. generalize (varlist_eq_prop v v0). elim (varlist_eq v v0); intros. -rewrite (H1 I); simpl in |- *. +rewrite (H1 I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0)) ; rewrite (ics_aux_ok (interp_vl v0) c); @@ -692,12 +691,12 @@ setoid_replace [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto. -elim (varlist_lt v v0); simpl in |- *. +elim (varlist_lt v v0); simpl. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0))) ; rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0)); - simpl in |- *. + simpl. rewrite (ics_aux_ok (interp_vl v0) c0); auto. rewrite @@ -721,7 +720,7 @@ rewrite else Cons_varlist l2 (csm_aux2 t2) end) c0)); rewrite H0. rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0); - simpl in |- *; auto. + simpl; auto. Qed. Lemma monom_insert_ok : @@ -730,10 +729,10 @@ Lemma monom_insert_ok : (Aplus (Amult a (interp_vl l)) (interp_setcs s)). Proof. simple induction s; intros. -simpl in |- *; rewrite (interp_m_ok a l); trivial. +simpl; rewrite (interp_m_ok a l); trivial. -simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v). +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c); rewrite (ics_aux_ok (interp_m a0 v) c). rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v). @@ -742,7 +741,7 @@ setoid_replace (Amult (Aplus a a0) (interp_vl v)) with [ idtac | trivial ]. auto. -elim (varlist_lt l v); simpl in |- *; intros. +elim (varlist_lt l v); simpl; intros. rewrite (ics_aux_ok (interp_m a0 v) c). rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l). auto. @@ -751,9 +750,9 @@ rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c)); rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H. auto. -simpl in |- *. +simpl. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c); rewrite (ics_aux_ok (interp_vl v) c). rewrite (interp_m_ok (Aplus a Aone) v). @@ -764,7 +763,7 @@ setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); [ idtac | trivial ]. auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H. rewrite (ics_aux_ok (interp_vl v) c); auto. Qed. @@ -774,11 +773,11 @@ Lemma varlist_insert_ok : Aequiv (interp_setcs (varlist_insert l s)) (Aplus (interp_vl l) (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c); rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v). @@ -787,14 +786,14 @@ setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c)); rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). rewrite H; auto. generalize (varlist_eq_prop l v); elim (varlist_eq l v). -intro Hr; rewrite (Hr I); simpl in |- *. +intro Hr; rewrite (Hr I); simpl. rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c); rewrite (ics_aux_ok (interp_vl v) c). rewrite (interp_m_ok (Aplus Aone Aone) v). @@ -803,7 +802,7 @@ setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with [ idtac | trivial ]. setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto. -elim (varlist_lt l v); simpl in |- *; intros; auto. +elim (varlist_lt l v); simpl; intros; auto. rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)). rewrite H. rewrite (ics_aux_ok (interp_vl v) c); auto. @@ -814,7 +813,7 @@ Lemma canonical_sum_scalar_ok : Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c)); @@ -837,7 +836,7 @@ Lemma canonical_sum_scalar2_ok : Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s)). Proof. -simple induction s; simpl in |- *; intros; auto. +simple induction s; simpl; intros; auto. rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)). rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). @@ -862,7 +861,7 @@ Lemma canonical_sum_scalar3_ok : Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s))). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. rewrite (SSR_mult_zero_right S T (interp_vl l)). auto. @@ -911,7 +910,7 @@ Lemma canonical_sum_prod_ok : Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y)). Proof. -simple induction x; simpl in |- *; intros. +simple induction x; simpl; intros. trivial. rewrite @@ -945,7 +944,7 @@ Theorem setspolynomial_normalize_ok : forall p:setspolynomial, Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p). Proof. -simple induction p; simpl in |- *; intros; trivial. +simple induction p; simpl; intros; trivial. rewrite (canonical_sum_merge_ok (setspolynomial_normalize s) (setspolynomial_normalize s0)). @@ -961,12 +960,12 @@ Lemma canonical_sum_simplify_ok : forall s:canonical_sum, Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s). Proof. -simple induction s; simpl in |- *; intros. +simple induction s; simpl; intros. trivial. generalize (SSR_eq_prop T a Azero). elim (Aeq a Azero). -simpl in |- *. +simpl. intros. rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). @@ -976,19 +975,19 @@ setoid_replace (Amult Azero (interp_vl v)) with Azero; rewrite H. trivial. -intros; simpl in |- *. +intros; simpl. generalize (SSR_eq_prop T a Aone). elim (Aeq a Aone). intros. rewrite (ics_aux_ok (interp_m a v) c). rewrite (interp_m_ok a v). rewrite (H1 I). -simpl in |- *. +simpl. rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)). rewrite H. auto. -simpl in |- *. +simpl. intros. rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)). rewrite (ics_aux_ok (interp_m a v) c). @@ -1004,7 +1003,7 @@ Theorem setspolynomial_simplify_ok : Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p). Proof. intro. -unfold setspolynomial_simplify in |- *. +unfold setspolynomial_simplify. rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)). exact (setspolynomial_normalize_ok p). Qed. @@ -1052,8 +1051,7 @@ Hint Resolve (STh_plus_zero_right2 S T). Hint Resolve (STh_mult_one_right S T). Hint Resolve (STh_mult_one_right2 S T). Hint Resolve (STh_plus_reg_right S plus_morph T). -Hint Resolve refl_equal sym_equal trans_equal. -(*Hints Resolve refl_eqT sym_eqT trans_eqT.*) +Hint Resolve eq_refl eq_sym eq_trans. Hint Immediate T. @@ -1110,7 +1108,7 @@ Unset Implicit Arguments. Lemma setspolynomial_of_ok : forall p:setpolynomial, Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)). -simple induction p; trivial; simpl in |- *; intros. +simple induction p; trivial; simpl; intros. rewrite H; rewrite H0; trivial. rewrite H; rewrite H0; trivial. rewrite H. @@ -1124,23 +1122,23 @@ Qed. Theorem setpolynomial_normalize_ok : forall p:setpolynomial, setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p). -simple induction p; trivial; simpl in |- *; intros. +simple induction p; trivial; simpl; intros. rewrite H; rewrite H0; reflexivity. rewrite H; rewrite H0; reflexivity. -rewrite H; simpl in |- *. +rewrite H; simpl. elim (canonical_sum_scalar3 (Aopp Aone) Nil_var (setspolynomial_normalize (setspolynomial_of s))); [ reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity - | simpl in |- *; intros; rewrite H0; reflexivity ]. + | simpl; intros; rewrite H0; reflexivity + | simpl; intros; rewrite H0; reflexivity ]. Qed. Theorem setpolynomial_simplify_ok : forall p:setpolynomial, Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p). intro. -unfold setpolynomial_simplify in |- *. +unfold setpolynomial_simplify. rewrite (setspolynomial_of_ok p). rewrite setpolynomial_normalize_ok. rewrite diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v index dd722f80..52f5968b 100644 --- a/plugins/ring/Setoid_ring_theory.v +++ b/plugins/ring/Setoid_ring_theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -406,7 +406,7 @@ Unset Implicit Arguments. Definition Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory. intros until 1; case H. -split; intros; simpl in |- *; eauto. +split; intros; simpl; eauto. Defined. Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >-> diff --git a/plugins/ring/g_ring.ml4 b/plugins/ring/g_ring.ml4 index e306a531..8953b88f 100644 --- a/plugins/ring/g_ring.ml4 +++ b/plugins/ring/g_ring.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/ring/ring.ml b/plugins/ring/ring.ml index 98d6361c..ae73069d 100644 --- a/plugins/ring/ring.ml +++ b/plugins/ring/ring.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -449,7 +449,7 @@ let build_polynom gl th lc = mkLApp(coq_Pplus, [|th.th_a; aux c1; aux c2 |]) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult -> mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) -> @@ -567,7 +567,7 @@ let build_apolynom gl th lc = mkLApp(coq_APplus, [| aux c1; aux c2 |]) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult -> mkLApp(coq_APmult, [| aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) -> @@ -628,7 +628,7 @@ let build_setpolynom gl th lc = mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |]) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult -> mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |]) - (* The special case of Zminus *) + (* The special case of Z.sub *) | App (binop, [|c1; c2|]) when safe_pf_conv_x gl c (mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) -> diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v index 56ae921e..11d9a071 100644 --- a/plugins/romega/ReflOmegaCore.v +++ b/plugins/romega/ReflOmegaCore.v @@ -86,73 +86,50 @@ Module Z_as_Int <: Int. Definition int := Z. Definition zero := 0. Definition one := 1. - Definition plus := Zplus. - Definition opp := Zopp. - Definition minus := Zminus. - Definition mult := Zmult. + Definition plus := Z.add. + Definition opp := Z.opp. + Definition minus := Z.sub. + Definition mult := Z.mul. Lemma ring : @ring_theory int zero one plus mult minus opp (@eq int). Proof. constructor. - exact Zplus_0_l. - exact Zplus_comm. - exact Zplus_assoc. - exact Zmult_1_l. - exact Zmult_comm. - exact Zmult_assoc. - exact Zmult_plus_distr_l. - unfold minus, Zminus; auto. - exact Zplus_opp_r. + exact Z.add_0_l. + exact Z.add_comm. + exact Z.add_assoc. + exact Z.mul_1_l. + exact Z.mul_comm. + exact Z.mul_assoc. + exact Z.mul_add_distr_r. + unfold minus, Z.sub; auto. + exact Z.add_opp_diag_r. Qed. - Definition le := Zle. - Definition lt := Zlt. - Definition ge := Zge. - Definition gt := Zgt. - Lemma le_lt_iff : forall i j, (i<=j) <-> ~(j<i). - Proof. - split; intros. - apply Zle_not_lt; auto. - rewrite <- Zge_iff_le. - apply Znot_lt_ge; auto. - Qed. - Definition ge_le_iff := Zge_iff_le. - Definition gt_lt_iff := Zgt_iff_lt. + Definition le := Z.le. + Definition lt := Z.lt. + Definition ge := Z.ge. + Definition gt := Z.gt. + Definition le_lt_iff := Z.le_ngt. + Definition ge_le_iff := Z.ge_le_iff. + Definition gt_lt_iff := Z.gt_lt_iff. - Definition lt_trans := Zlt_trans. - Definition lt_not_eq := Zlt_not_eq. + Definition lt_trans := Z.lt_trans. + Definition lt_not_eq := Z.lt_neq. - Definition lt_0_1 := Zlt_0_1. - Definition plus_le_compat := Zplus_le_compat. + Definition lt_0_1 := Z.lt_0_1. + Definition plus_le_compat := Z.add_le_mono. Definition mult_lt_compat_l := Zmult_lt_compat_l. - Lemma opp_le_compat : forall i j, i<=j -> (-j)<=(-i). - Proof. - unfold Zle; intros; rewrite <- Zcompare_opp; auto. - Qed. + Lemma opp_le_compat i j : i<=j -> (-j)<=(-i). + Proof. apply -> Z.opp_le_mono. Qed. - Definition compare := Zcompare. - Definition compare_Eq := Zcompare_Eq_iff_eq. - Lemma compare_Lt : forall i j, compare i j = Lt <-> i<j. - Proof. intros; unfold compare, Zlt; intuition. Qed. - Lemma compare_Gt : forall i j, compare i j = Gt <-> i>j. - Proof. intros; unfold compare, Zgt; intuition. Qed. + Definition compare := Z.compare. + Definition compare_Eq := Z.compare_eq_iff. + Lemma compare_Lt i j : compare i j = Lt <-> i<j. + Proof. reflexivity. Qed. + Lemma compare_Gt i j : compare i j = Gt <-> i>j. + Proof. reflexivity. Qed. - Lemma le_lt_int : forall x y, x<y <-> x<=y+-(1). - Proof. - intros; split; intros. - generalize (Zlt_left _ _ H); simpl; intros. - apply Zle_left_rev; auto. - apply Zlt_0_minus_lt. - generalize (Zplus_le_lt_compat x (y+-1) (-x) (-x+1) H). - rewrite Zplus_opp_r. - rewrite <-Zplus_assoc. - rewrite (Zplus_permute (-1)). - simpl in *. - rewrite Zplus_0_r. - intro H'; apply H'. - replace (-x+1) with (Zsucc (-x)); auto. - apply Zlt_succ. - Qed. + Definition le_lt_int := Z.lt_le_pred. End Z_as_Int. @@ -363,7 +340,7 @@ Module IntProperties (I:Int). Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d. Proof. - intros; elim H; elim H0; simpl in |- *; auto. + intros; elim H; elim H0; simpl; auto. now rewrite mult_0_l, mult_0_l, plus_0_l. Qed. @@ -1076,34 +1053,34 @@ Proof. | intros; elim beq_nat_true with (1 := H); trivial ]. Qed. -Ltac trivial_case := unfold not in |- *; intros; discriminate. +Ltac trivial_case := unfold not; intros; discriminate. Theorem eq_term_false : forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2. Proof. simple induction t1; - [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *; + [ intros z t2; case t2; try trivial_case; simpl; unfold not; intros; elim beq_false with (1 := H); simplify_eq H0; auto - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *; - intros t21 t22 H3; unfold not in |- *; intro H4; + | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl; + intros t21 t22 H3; unfold not; intro H4; elim andb_false_elim with (1 := H3); intros H5; [ elim H1 with (1 := H5); simplify_eq H4; auto | elim H2 with (1 := H5); simplify_eq H4; auto ] - | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3; - unfold not in |- *; intro H4; elim H1 with (1 := H3); + | intros t11 H1 t2; case t2; try trivial_case; simpl; intros t21 H3; + unfold not; intro H4; elim H1 with (1 := H3); simplify_eq H4; auto - | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *; + | intros n t2; case t2; try trivial_case; simpl; unfold not; intros; elim beq_nat_false with (1 := H); simplify_eq H0; auto ]. Qed. @@ -1123,17 +1100,17 @@ Qed. avait utilisé le test précédent et fait une elimination dessus. *) Ltac elim_eq_term t1 t2 := - pattern (eq_term t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux; [ generalize (eq_term_true t1 t2 Aux); clear Aux | generalize (eq_term_false t1 t2 Aux); clear Aux ]. Ltac elim_beq t1 t2 := - pattern (beq t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (beq t1 t2); apply bool_eq_ind; intro Aux; [ generalize (beq_true t1 t2 Aux); clear Aux | generalize (beq_false t1 t2 Aux); clear Aux ]. Ltac elim_bgt t1 t2 := - pattern (bgt t1 t2) in |- *; apply bool_eq_ind; intro Aux; + pattern (bgt t1 t2); apply bool_eq_ind; intro Aux; [ generalize (bgt_true t1 t2 Aux); clear Aux | generalize (bgt_false t1 t2 Aux); clear Aux ]. @@ -1209,15 +1186,15 @@ Theorem goal_to_hyps : (interp_hyps envp env l -> False) -> interp_goal envp env l. Proof. simple induction l; - [ simpl in |- *; auto - | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ]. + [ simpl; auto + | simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ]. Qed. Theorem hyps_to_goal : forall (envp : list Prop) (env : list int) (l : hyps), interp_goal envp env l -> interp_hyps envp env l -> False. Proof. - simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ]. + simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ]. Qed. (* \subsection{Manipulations sur les hypothèses} *) @@ -1257,7 +1234,7 @@ Theorem valid_goal : forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps), valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l. Proof. - intros; simpl in |- *; apply goal_to_hyps; intro H1; + intros; simpl; apply goal_to_hyps; intro H1; apply (hyps_to_goal ep env (a l) H0); apply H; assumption. Qed. @@ -1282,7 +1259,7 @@ Theorem list_goal_to_hyps : forall (envp : list Prop) (env : list int) (l : lhyps), (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l. Proof. - simple induction l; simpl in |- *; + simple induction l; simpl; [ auto | intros h1 l1 H H1; split; [ apply goal_to_hyps; intro H2; apply H1; auto @@ -1293,7 +1270,7 @@ Theorem list_hyps_to_goal : forall (envp : list Prop) (env : list int) (l : lhyps), interp_list_goal envp env l -> interp_list_hyps envp env l -> False. Proof. - simple induction l; simpl in |- *; + simple induction l; simpl; [ auto | intros h1 l1 H (H1, H2) H3; elim H3; intro H4; [ apply hyps_to_goal with (1 := H1); assumption | auto ] ]. @@ -1310,7 +1287,7 @@ Definition valid_list_goal (f : hyps -> lhyps) := Theorem goal_valid : forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f. Proof. - unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps; + unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps; intro H2; apply list_hyps_to_goal with (1 := H1); apply (H ep e lp); assumption. Qed. @@ -1321,8 +1298,8 @@ Theorem append_valid : interp_list_hyps ep e (l1 ++ l2). Proof. intros ep e; simple induction l1; - [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ] - | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H]; + [ simpl; intros l2 [H| H]; [ contradiction | trivial ] + | simpl; intros h1 t1 HR l2 [[H| H]| H]; [ auto | right; apply (HR l2); left; trivial | right; apply (HR l2); right; trivial ] ]. @@ -1338,11 +1315,11 @@ Theorem nth_valid : forall (ep : list Prop) (e : list int) (i : nat) (l : hyps), interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l). Proof. - unfold nth_hyps in |- *; simple induction i; - [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ] + unfold nth_hyps; simple induction i; + [ simple induction l; simpl; [ auto | intros; elim H0; auto ] | intros n H; simple induction l; - [ simpl in |- *; trivial - | intros; simpl in |- *; apply H; elim H1; auto ] ]. + [ simpl; trivial + | intros; simpl; apply H; elim H1; auto ] ]. Qed. (* Appliquer une opération (valide) sur deux hypothèses extraites de @@ -1355,7 +1332,7 @@ Theorem apply_oper_2_valid : forall (i j : nat) (f : proposition -> proposition -> proposition), valid2 f -> valid_hyps (apply_oper_2 i j f). Proof. - intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *; + intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl; intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ]. Qed. @@ -1376,14 +1353,14 @@ Theorem apply_oper_1_valid : forall (i : nat) (f : proposition -> proposition), valid1 f -> valid_hyps (apply_oper_1 i f). Proof. - unfold valid_hyps in |- *; intros i f Hf ep e; elim i; + unfold valid_hyps; intros i f Hf ep e; elim i; [ intro lp; case lp; - [ simpl in |- *; trivial - | simpl in |- *; intros p l' (H1, H2); split; + [ simpl; trivial + | simpl; intros p l' (H1, H2); split; [ apply Hf with (1 := H1) | assumption ] ] | intros n Hrec lp; case lp; - [ simpl in |- *; auto - | simpl in |- *; intros p l' (H1, H2); split; + [ simpl; auto + | simpl; intros p l' (H1, H2); split; [ assumption | apply Hrec; assumption ] ] ]. Qed. @@ -1421,14 +1398,14 @@ Definition apply_both (f g : term -> term) (t : term) := Theorem apply_left_stable : forall f : term -> term, term_stable f -> term_stable (apply_left f). Proof. - unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *; + unfold term_stable; intros f H e t; case t; auto; simpl; intros; elim H; trivial. Qed. Theorem apply_right_stable : forall f : term -> term, term_stable f -> term_stable (apply_right f). Proof. - unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *; + unfold term_stable; intros f H e t; case t; auto; simpl; intros t0 t1; elim H; trivial. Qed. @@ -1436,7 +1413,7 @@ Theorem apply_both_stable : forall f g : term -> term, term_stable f -> term_stable g -> term_stable (apply_both f g). Proof. - unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *; + unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl; intros t0 t1; elim H1; elim H2; trivial. Qed. @@ -1444,7 +1421,7 @@ Theorem compose_term_stable : forall f g : term -> term, term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)). Proof. - unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg. + unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg. Qed. (* \subsection{Les règles de réécriture} *) @@ -1522,14 +1499,14 @@ Ltac loop t := | (if beq ?X1 ?X2 then _ else _) => let H := fresh "H" in elim_beq X1 X2; intro H; try (rewrite H in *; clear H); - simpl in |- *; auto; Simplify + simpl; auto; Simplify | (if bgt ?X1 ?X2 then _ else _) => let H := fresh "H" in - elim_bgt X1 X2; intro H; simpl in |- *; auto; Simplify + elim_bgt X1 X2; intro H; simpl; auto; Simplify | (if eq_term ?X1 ?X2 then _ else _) => let H := fresh "H" in elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H); - simpl in |- *; auto; Simplify + simpl; auto; Simplify | (if _ && _ then _ else _) => rewrite andb_if; Simplify | (if negb _ then _ else _) => rewrite negb_if; Simplify | _ => fail @@ -1543,7 +1520,7 @@ with Simplify := match goal with Ltac prove_stable x th := match constr:x with | ?X1 => - unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *; + unfold term_stable, X1; intros; Simplify; simpl; apply th end. @@ -1663,7 +1640,7 @@ Definition T_OMEGA13 (t : term) := Theorem T_OMEGA13_stable : term_stable T_OMEGA13. Proof. - unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *; + unfold term_stable, T_OMEGA13; intros; Simplify; simpl; apply OMEGA13. Qed. @@ -1910,16 +1887,16 @@ Fixpoint reduce (t : term) : term := Theorem reduce_stable : term_stable reduce. Proof. - unfold term_stable in |- *; intros e t; elim t; auto; + unfold term_stable; intros e t; elim t; auto; try - (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1; + (intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1; (case (reduce t0); [ intro z0; case (reduce t1); intros; auto | intros; auto | intros; auto | intros; auto | intros; auto - | intros; auto ])); intros t0 H0; simpl in |- *; + | intros; auto ])); intros t0 H0; simpl; rewrite H0; case (reduce t0); intros; auto. Qed. @@ -1944,12 +1921,12 @@ Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term := Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t). Proof. - simple induction t; simpl in |- *; + simple induction t; simpl; [ exact reduce_stable | intros stp l H; case stp; [ apply compose_term_stable; [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ] - | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable; + | unfold term_stable; intros e t1; rewrite T_OMEGA10_stable; rewrite Tred_factor5_stable; apply H | apply compose_term_stable; [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ] @@ -1982,7 +1959,7 @@ Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term := Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t). Proof. - unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace; + unfold term_stable, fusion_cancel; intros trace e; elim trace; [ exact (reduce_stable e) | intros n H t; elim H; exact (T_OMEGA13_stable e t) ]. Qed. @@ -1999,7 +1976,7 @@ Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term := Theorem scalar_norm_add_stable : forall t : nat, term_stable (scalar_norm_add t). Proof. - unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace; + unfold term_stable, scalar_norm_add; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (T_OMEGA11_stable e t) | exact H ] ]. @@ -2014,7 +1991,7 @@ Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term := Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t). Proof. - unfold term_stable, scalar_norm in |- *; intros trace; elim trace; + unfold term_stable, scalar_norm; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (T_OMEGA16_stable e t) | exact H ] ]. @@ -2029,7 +2006,7 @@ Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term := Theorem add_norm_stable : forall t : nat, term_stable (add_norm t). Proof. - unfold term_stable, add_norm in |- *; intros trace; elim trace; + unfold term_stable, add_norm; intros trace; elim trace; [ exact reduce_stable | intros n H e t; elim apply_right_stable; [ exact (Tplus_assoc_r_stable e t) | exact H ] ]. @@ -2071,12 +2048,12 @@ Fixpoint t_rewrite (s : step) : term -> term := Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s). Proof. - simple induction s; simpl in |- *; + simple induction s; simpl; [ intros; apply apply_both_stable; auto | intros; apply apply_left_stable; auto | intros; apply apply_right_stable; auto - | unfold term_stable in |- *; intros; elim H0; apply H - | unfold term_stable in |- *; auto + | unfold term_stable; intros; elim H0; apply H + | unfold term_stable; auto | exact Topp_plus_stable | exact Topp_opp_stable | exact Topp_mult_r_stable @@ -2116,11 +2093,11 @@ Definition constant_not_nul (i : nat) (h : hyps) := Theorem constant_not_nul_valid : forall i : nat, valid_hyps (constant_not_nul i). Proof. - unfold valid_hyps, constant_not_nul in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *. + unfold valid_hyps, constant_not_nul; intros; + generalize (nth_valid ep e i lp); Simplify; simpl. - elim_beq i1 i0; auto; simpl in |- *; intros H1 H2; - elim H1; symmetry in |- *; auto. + elim_beq i1 i0; auto; simpl; intros H1 H2; + elim H1; symmetry ; auto. Qed. (* \paragraph{[O_CONSTANT_NEG]} *) @@ -2134,8 +2111,8 @@ Definition constant_neg (i : nat) (h : hyps) := Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i). Proof. - unfold valid_hyps, constant_neg in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *. + unfold valid_hyps, constant_neg; intros; + generalize (nth_valid ep e i lp); Simplify; simpl. rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition. Qed. @@ -2157,7 +2134,7 @@ Theorem not_exact_divide_valid : forall (k1 k2 : int) (body : term) (t i : nat), valid_hyps (not_exact_divide k1 k2 body t i). Proof. - unfold valid_hyps, not_exact_divide in |- *; intros; + unfold valid_hyps, not_exact_divide; intros; generalize (nth_valid ep e i lp); Simplify. rewrite (scalar_norm_add_stable t e), <-H1. do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros. @@ -2186,16 +2163,16 @@ Definition contradiction (t i j : nat) (l : hyps) := Theorem contradiction_valid : forall t i j : nat, valid_hyps (contradiction t i j). Proof. - unfold valid_hyps, contradiction in |- *; intros t i j ep e l H; + unfold valid_hyps, contradiction; intros t i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; - simpl in |- *; intros z z' H1 H2; - generalize (refl_equal (interp_term e (fusion_cancel t (t2 + t4)%term))); - pattern (fusion_cancel t (t2 + t4)%term) at 2 3 in |- *; - case (fusion_cancel t (t2 + t4)%term); simpl in |- *; - auto; intro k; elim (fusion_cancel_stable t); simpl in |- *. + simpl; intros z z' H1 H2; + generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term))); + pattern (fusion_cancel t (t2 + t4)%term) at 2 3; + case (fusion_cancel t (t2 + t4)%term); simpl; + auto; intro k; elim (fusion_cancel_stable t); simpl. Simplify; intro H3. generalize (OMEGA2 _ _ H2 H1); rewrite H3. rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition. @@ -2250,23 +2227,23 @@ Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) := Theorem negate_contradict_valid : forall i j : nat, valid_hyps (negate_contradict i j). Proof. - unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H; + unfold valid_hyps, negate_contradict; intros i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; intros z; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; intros z'; - auto; simpl in |- *; intros H1 H2; Simplify. + auto; simpl; intros H1 H2; Simplify. Qed. Theorem negate_contradict_inv_valid : forall t i j : nat, valid_hyps (negate_contradict_inv t i j). Proof. - unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H; + unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H; generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H); case (nth_hyps i l); auto; intros t1 t2; case t1; auto; intros z; auto; case (nth_hyps j l); auto; intros t3 t4; case t3; auto; intros z'; - auto; simpl in |- *; intros H1 H2; Simplify; + auto; simpl; intros H1 H2; Simplify; [ rewrite <- scalar_norm_stable in H2; simpl in *; elim (mult_integral (interp_term e t4) (-(1))); intuition; @@ -2333,9 +2310,9 @@ Definition sum (k1 k2 : int) (trace : list t_fusion) Theorem sum_valid : forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t). Proof. - unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *; - Simplify; simpl in |- *; auto; try elim (fusion_stable t); - simpl in |- *; intros; + unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum; + Simplify; simpl; auto; try elim (fusion_stable t); + simpl; intros; [ apply sum1; assumption | apply sum2; try assumption; apply sum4; assumption | rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption @@ -2367,10 +2344,10 @@ Definition exact_divide (k : int) (body : term) (t : nat) Theorem exact_divide_valid : forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n). Proof. - unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1; + unfold valid1, exact_divide; intros k1 k2 t ep e p1; Simplify; simpl; auto; subst; rewrite <- scalar_norm_stable; simpl; intros; - [ destruct (mult_integral _ _ (sym_eq H0)); intuition + [ destruct (mult_integral _ _ (eq_sym H0)); intuition | contradict H0; rewrite <- H0, mult_0_l; auto ]. Qed. @@ -2397,9 +2374,9 @@ Theorem divide_and_approx_valid : forall (k1 k2 : int) (body : term) (t : nat), valid1 (divide_and_approx k1 k2 body t). Proof. - unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1; + unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1; Simplify; simpl; auto; subst; - elim (scalar_norm_add_stable t e); simpl in |- *. + elim (scalar_norm_add_stable t e); simpl. intro H2; apply mult_le_approx with (3 := H2); assumption. Qed. @@ -2421,9 +2398,9 @@ Definition merge_eq (t : nat) (prop1 prop2 : proposition) := Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n). Proof. - unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *; - auto; elim (scalar_norm_stable n e); simpl in |- *; - intros; symmetry in |- *; apply OMEGA8 with (2 := H0); + unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl; + auto; elim (scalar_norm_stable n e); simpl; + intros; symmetry ; apply OMEGA8 with (2 := H0); [ assumption | elim opp_eq_mult_neg_1; trivial ]. Qed. @@ -2440,8 +2417,8 @@ Definition constant_nul (i : nat) (h : hyps) := Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i). Proof. - unfold valid_hyps, constant_nul in |- *; intros; - generalize (nth_valid ep e i lp); Simplify; simpl in |- *; + unfold valid_hyps, constant_nul; intros; + generalize (nth_valid ep e i lp); Simplify; simpl; intro H1; absurd (0 = 0); intuition. Qed. @@ -2462,8 +2439,8 @@ Definition state (m : int) (s : step) (prop1 prop2 : proposition) := Theorem state_valid : forall (m : int) (s : step), valid2 (state m s). Proof. - unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify; - simpl in |- *; auto; elim (t_rewrite_stable s e); simpl in |- *; + unfold valid2; intros m s ep e p1 p2; unfold state; Simplify; + simpl; auto; elim (t_rewrite_stable s e); simpl; intros H1 H2; elim H1. now rewrite H2, plus_opp_l, plus_0_l, mult_0_l. Qed. @@ -2490,18 +2467,18 @@ Theorem split_ineq_valid : valid_list_hyps f1 -> valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2). Proof. - unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H; + unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H; generalize (nth_valid _ _ i _ H); case (nth_hyps i lp); - simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *; - auto; intros z; simpl in |- *; auto; intro H3. + simpl; auto; intros t1 t2; case t1; simpl; + auto; intros z; simpl; auto; intro H3. Simplify. apply append_valid; elim (OMEGA19 (interp_term e t2)); - [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t); - simpl in |- *; auto - | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t); - simpl in |- *; auto - | generalize H3; unfold not in |- *; intros E1 E2; apply E1; - symmetry in |- *; trivial ]. + [ intro H4; left; apply H1; simpl; elim (add_norm_stable t); + simpl; auto + | intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t); + simpl; auto + | generalize H3; unfold not; intros E1 E2; apply E1; + symmetry ; trivial ]. Qed. @@ -2534,47 +2511,47 @@ Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps := Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t). Proof. - simple induction t; simpl in |- *; - [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + simple induction t; simpl; + [ unfold valid_list_hyps; simpl; intros; left; apply (constant_not_nul_valid n ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (constant_neg_valid n ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k1 k2 body n t' Ht' m ep e lp H; apply Ht'; apply (apply_oper_1_valid m (divide_and_approx k1 k2 body n) (divide_and_approx_valid k1 k2 body n) ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k body n t' Ht' m ep e lp H; apply Ht'; apply (apply_oper_1_valid m (exact_divide k body n) (exact_divide_valid k body n) ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros; left; + | unfold valid_list_hyps; simpl; intros; left; apply (contradiction_valid n n0 n1 ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros trace i1 i2 t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e lp H) - | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *; + | intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl; intros ep e lp H; apply (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left; + | unfold valid_list_hyps; simpl; intros i ep e lp H; left; apply (constant_nul_valid i ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left; + | unfold valid_list_hyps; simpl; intros i j ep e lp H; left; apply (negate_contradict_valid i j ep e lp H) - | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H; + | unfold valid_list_hyps; simpl; intros n i j ep e lp H; left; apply (negate_contradict_inv_valid n i j ep e lp H) - | unfold valid_list_hyps, valid_hyps in |- *; + | unfold valid_list_hyps, valid_hyps; intros m s i1 i2 t' Ht' ep e lp H; apply Ht'; apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ]. Qed. @@ -2596,9 +2573,9 @@ Definition move_right (s : step) (p : proposition) := Theorem move_right_valid : forall s : step, valid1 (move_right s). Proof. - unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *; - elim (t_rewrite_stable s e); simpl in |- *; - [ symmetry in |- *; apply egal_left; assumption + unfold valid1, move_right; intros s ep e p; Simplify; simpl; + elim (t_rewrite_stable s e); simpl; + [ symmetry ; apply egal_left; assumption | intro; apply le_left; assumption | intro; apply le_left; rewrite <- ge_le_iff; assumption | intro; apply lt_left; rewrite <- gt_lt_iff; assumption @@ -2611,7 +2588,7 @@ Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s). Theorem do_normalize_valid : forall (i : nat) (s : step), valid_hyps (do_normalize i s). Proof. - intros; unfold do_normalize in |- *; apply apply_oper_1_valid; + intros; unfold do_normalize; apply apply_oper_1_valid; apply move_right_valid. Qed. @@ -2625,7 +2602,7 @@ Fixpoint do_normalize_list (l : list step) (i : nat) Theorem do_normalize_list_valid : forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i). Proof. - simple induction l; simpl in |- *; unfold valid_hyps in |- *; + simple induction l; simpl; unfold valid_hyps; [ auto | intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl'; apply (do_normalize_valid i a ep e lp); assumption ]. @@ -2654,8 +2631,8 @@ Theorem append_goal : interp_list_goal ep e (l1 ++ l2). Proof. intros ep e; simple induction l1; - [ simpl in |- *; intros l2 (H1, H2); assumption - | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ]. + [ simpl; intros l2 (H1, H2); assumption + | simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ]. Qed. (* A simple decidability checker : if the proposition belongs to the @@ -2684,11 +2661,11 @@ Theorem decidable_correct : forall (ep : list Prop) (e : list int) (p : proposition), decidability p = true -> decidable (interp_proposition ep e p). Proof. - simple induction p; simpl in |- *; intros; + simple induction p; simpl; intros; [ apply dec_eq | apply dec_le | left; auto - | right; unfold not in |- *; auto + | right; unfold not; auto | apply dec_not; auto | apply dec_ge | apply dec_gt @@ -2724,7 +2701,7 @@ Theorem interp_full_false : forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition), (interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c). Proof. - simple induction l; unfold interp_full in |- *; simpl in |- *; + simple induction l; unfold interp_full; simpl; [ auto | intros a l1 H1 c H2 H3; apply H1; auto ]. Qed. @@ -2744,12 +2721,12 @@ Theorem to_contradict_valid : forall (ep : list Prop) (e : list int) (lc : hyps * proposition), interp_goal ep e (to_contradict lc) -> interp_full ep e lc. Proof. - intros ep e lc; case lc; intros l c; simpl in |- *; - pattern (decidability c) in |- *; apply bool_eq_ind; - [ simpl in |- *; intros H H1; apply interp_full_false; intros H2; + intros ep e lc; case lc; intros l c; simpl; + pattern (decidability c); apply bool_eq_ind; + [ simpl; intros H H1; apply interp_full_false; intros H2; apply not_not; [ apply decidable_correct; assumption - | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2); + | unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2); auto ] | intros H1 H2; apply interp_full_false; intro H3; elim hyps_to_goal with (1 := H2); assumption ]. @@ -2813,7 +2790,7 @@ Theorem map_cons_val : interp_proposition ep e p -> interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l). Proof. - simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ]. + simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ]. Qed. Hint Resolve map_cons_val append_valid decidable_correct. @@ -2822,43 +2799,43 @@ Theorem destructure_hyps_valid : forall n : nat, valid_list_hyps (destructure_hyps n). Proof. simple induction n; - [ unfold valid_list_hyps in |- *; simpl in |- *; auto - | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp; - [ simpl in |- *; auto + [ unfold valid_list_hyps; simpl; auto + | unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp; + [ simpl; auto | intros p l; case p; try - (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0; + (simpl; intros; apply map_cons_val; simpl; elim H0; auto); [ intro p'; case p'; try - (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0; + (simpl; intros; apply map_cons_val; simpl; elim H0; auto); - [ simpl in |- *; intros p1 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + [ simpl; intros p1 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; - [ apply H; simpl in |- *; split; + [ apply H; simpl; split; [ apply not_not; auto | assumption ] | auto ] - | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *; + | simpl; intros p1 p2 (H1, H2); apply H; simpl; elim not_or with (1 := H1); auto - | simpl in |- *; intros p1 p2 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + | simpl; intros p1 p2 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; [ apply append_valid; elim not_and with (2 := H1); - [ intro; left; apply H; simpl in |- *; auto - | intro; right; apply H; simpl in |- *; auto + [ intro; left; apply H; simpl; auto + | intro; right; apply H; simpl; auto | auto ] | auto ] ] - | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid; - (elim H1; intro H3; simpl in |- *; [ left | right ]); - apply H; simpl in |- *; auto - | simpl in |- *; intros; apply H; simpl in |- *; tauto - | simpl in |- *; intros p1 p2 (H1, H2); - pattern (decidability p1) in |- *; apply bool_eq_ind; + | simpl; intros p1 p2 (H1, H2); apply append_valid; + (elim H1; intro H3; simpl; [ left | right ]); + apply H; simpl; auto + | simpl; intros; apply H; simpl; tauto + | simpl; intros p1 p2 (H1, H2); + pattern (decidability p1); apply bool_eq_ind; intro H3; [ apply append_valid; elim imp_simp with (2 := H1); - [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto - | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto + [ intro H4; left; simpl; apply H; simpl; auto + | intro H4; right; simpl; apply H; simpl; auto | auto ] | auto ] ] ] ]. Qed. @@ -2881,8 +2858,8 @@ Theorem p_apply_left_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_apply_left f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto). + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; intros p1; elim (H ep e p1); tauto). Qed. Definition p_apply_right (f : proposition -> proposition) @@ -2899,8 +2876,8 @@ Theorem p_apply_right_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_apply_right f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; [ intros p1; elim (H ep e p1); tauto | intros p1 p2; elim (H ep e p2); tauto | intros p1 p2; elim (H ep e p2); tauto @@ -2923,42 +2900,42 @@ Theorem p_invert_stable : forall f : proposition -> proposition, prop_stable f -> prop_stable (p_invert f). Proof. - unfold prop_stable in |- *; intros f H ep e p; split; - (case p; simpl in |- *; auto; - [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *; + unfold prop_stable; intros f H ep e p; split; + (case p; simpl; auto; + [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl; generalize (dec_eq (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; tauto - | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *; + unfold decidable; tauto + | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl; generalize (dec_gt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; rewrite le_lt_iff, <- gt_lt_iff; tauto - | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *; + unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto + | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl; generalize (dec_lt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; rewrite ge_le_iff, le_lt_iff; tauto - | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *; + unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto + | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl; generalize (dec_gt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; repeat rewrite le_lt_iff; + unfold decidable; repeat rewrite le_lt_iff; repeat rewrite gt_lt_iff; tauto - | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *; + | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl; generalize (dec_lt (interp_term e t1) (interp_term e t2)); - unfold decidable in |- *; repeat rewrite ge_le_iff; + unfold decidable; repeat rewrite ge_le_iff; repeat rewrite le_lt_iff; tauto - | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *; + | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl; generalize (dec_eq (interp_term e t1) (interp_term e t2)); unfold decidable; tauto ]). Qed. Theorem move_right_stable : forall s : step, prop_stable (move_right s). Proof. - unfold move_right, prop_stable in |- *; intros s ep e p; split; - [ Simplify; simpl in |- *; elim (t_rewrite_stable s e); simpl in |- *; - [ symmetry in |- *; apply egal_left; assumption + unfold move_right, prop_stable; intros s ep e p; split; + [ Simplify; simpl; elim (t_rewrite_stable s e); simpl; + [ symmetry ; apply egal_left; assumption | intro; apply le_left; assumption | intro; apply le_left; rewrite <- ge_le_iff; assumption | intro; apply lt_left; rewrite <- gt_lt_iff; assumption | intro; apply lt_left; assumption | intro; apply ne_left_2; assumption ] - | case p; simpl in |- *; intros; auto; generalize H; elim (t_rewrite_stable s); - simpl in |- *; intro H1; + | case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s); + simpl; intro H1; [ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1; rewrite plus_permute; rewrite plus_opp_r; rewrite plus_0_r; trivial @@ -2969,7 +2946,7 @@ Proof. rewrite plus_opp_r; assumption | rewrite gt_lt_iff; apply lt_left_inv; assumption | apply lt_left_inv; assumption - | unfold not in |- *; intro H2; apply H1; + | unfold not; intro H2; apply H1; rewrite H2; rewrite plus_opp_r; trivial ] ]. Qed. @@ -2985,12 +2962,12 @@ Fixpoint p_rewrite (s : p_step) : proposition -> proposition := Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s). Proof. - simple induction s; simpl in |- *; + simple induction s; simpl; [ intros; apply p_apply_left_stable; trivial | intros; apply p_apply_right_stable; trivial | intros; apply p_invert_stable; apply move_right_stable | apply move_right_stable - | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ]. + | unfold prop_stable; simpl; intros; split; auto ]. Qed. Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps := @@ -3002,11 +2979,11 @@ Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps := Theorem normalize_hyps_valid : forall l : list h_step, valid_hyps (normalize_hyps l). Proof. - simple induction l; unfold valid_hyps in |- *; simpl in |- *; + simple induction l; unfold valid_hyps; simpl; [ auto | intros n_s r; case n_s; intros n s H ep e lp H1; apply H; apply apply_oper_1_valid; - [ unfold valid1 in |- *; intros ep1 e1 p1 H2; + [ unfold valid1; intros ep1 e1 p1 H2; elim (p_rewrite_stable s ep1 e1 p1); auto | assumption ] ]. Qed. @@ -3073,21 +3050,21 @@ Theorem extract_valid : forall s : list direction, valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s). Proof. - unfold valid1, co_valid1 in |- *; simple induction s; + unfold valid1, co_valid1; simple induction s; [ split; - [ simpl in |- *; auto - | intros ep e p1; case p1; simpl in |- *; auto; intro p; - pattern (decidability p) in |- *; apply bool_eq_ind; + [ simpl; auto + | intros ep e p1; case p1; simpl; auto; intro p; + pattern (decidability p); apply bool_eq_ind; [ intro H; generalize (decidable_correct ep e p H); - unfold decidable in |- *; tauto - | simpl in |- *; auto ] ] + unfold decidable; tauto + | simpl; auto ] ] | intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto; - case p; auto; simpl in |- *; intros; + case p; auto; simpl; intros; (apply H1; tauto) || (apply H2; tauto) || - (pattern (decidability p0) in |- *; apply bool_eq_ind; + (pattern (decidability p0); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e p0 H3); - unfold decidable in |- *; intro H4; apply H1; + unfold decidable; intro H4; apply H1; tauto | intro; tauto ]) ]. Qed. @@ -3117,29 +3094,29 @@ Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps := Theorem decompose_solve_valid : forall s : e_step, valid_list_goal (decompose_solve s). Proof. - intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s; - simpl in |- *; intros; + intro s; apply goal_valid; unfold valid_list_hyps; elim s; + simpl; intros; [ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp))); - [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto; - [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2; - pattern (decidability p1) in |- *; apply bool_eq_ind; + [ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto; + [ intro p; case p; simpl; auto; intros p1 p2 H2; + pattern (decidability p1); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4; apply append_valid; elim H4; intro H5; - [ right; apply H0; simpl in |- *; tauto - | left; apply H; simpl in |- *; tauto ] - | simpl in |- *; auto ] - | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2; - [ intros H3; left; apply H; simpl in |- *; auto - | intros H3; right; apply H0; simpl in |- *; auto ] + [ right; apply H0; simpl; tauto + | left; apply H; simpl; tauto ] + | simpl; auto ] + | intros p1 p2 H2; apply append_valid; simpl; elim H2; + [ intros H3; left; apply H; simpl; auto + | intros H3; right; apply H0; simpl; auto ] | intros p1 p2 H2; - pattern (decidability p1) in |- *; apply bool_eq_ind; + pattern (decidability p1); apply bool_eq_ind; [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4; apply append_valid; elim H4; intro H5; - [ right; apply H0; simpl in |- *; tauto - | left; apply H; simpl in |- *; tauto ] - | simpl in |- *; auto ] ] + [ right; apply H0; simpl; tauto + | left; apply H; simpl; tauto ] + | simpl; auto ] ] | elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ] - | intros; apply H; simpl in |- *; split; + | intros; apply H; simpl; split; [ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto | auto ] | apply omega_valid with (1 := H) ]. @@ -3160,11 +3137,11 @@ Fixpoint reduce_lhyps (lp : lhyps) : lhyps := Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps. Proof. - unfold valid_lhyps in |- *; intros ep e lp; elim lp; - [ simpl in |- *; auto + unfold valid_lhyps; intros ep e lp; elim lp; + [ simpl; auto | intros a l HR; elim a; - [ simpl in |- *; tauto - | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ]. + [ simpl; tauto + | intros a1 l1; case l1; case a1; simpl; try tauto ] ]. Qed. Theorem do_reduce_lhyps : @@ -3184,13 +3161,13 @@ Definition do_concl_to_hyp : interp_goal envp env (concl_to_hyp c :: l) -> interp_goal_concl c envp env l. Proof. - simpl in |- *; intros envp env c l; induction l as [| a l Hrecl]; - [ simpl in |- *; unfold concl_to_hyp in |- *; - pattern (decidability c) in |- *; apply bool_eq_ind; + simpl; intros envp env c l; induction l as [| a l Hrecl]; + [ simpl; unfold concl_to_hyp; + pattern (decidability c); apply bool_eq_ind; [ intro H; generalize (decidable_correct envp env c H); - unfold decidable in |- *; simpl in |- *; tauto - | simpl in |- *; intros H1 H2; elim H2; trivial ] - | simpl in |- *; tauto ]. + unfold decidable; simpl; tauto + | simpl; intros H1 H2; elim H2; trivial ] + | simpl; tauto ]. Qed. Definition omega_tactic (t1 : e_step) (t2 : list h_step) @@ -3203,7 +3180,7 @@ Theorem do_omega : interp_list_goal envp env (omega_tactic t1 t2 c l) -> interp_goal_concl c envp env l. Proof. - unfold omega_tactic in |- *; intros; apply do_concl_to_hyp; + unfold omega_tactic; intros; apply do_concl_to_hyp; apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1); apply do_reduce_lhyps; assumption. Qed. diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v index 77f8f834..98dd257d 100644 --- a/plugins/rtauto/Bintree.v +++ b/plugins/rtauto/Bintree.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -15,14 +15,14 @@ Open Scope positive_scope. Ltac clean := try (simpl; congruence). Lemma Gt_Psucc: forall p q, - (p ?= Psucc q) = Gt -> (p ?= q) = Gt. + (p ?= Pos.succ q) = Gt -> (p ?= q) = Gt. Proof. intros. rewrite <- Pos.compare_succ_succ. now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt. Qed. Lemma Psucc_Gt : forall p, - (Psucc p ?= p) = Gt. + (Pos.succ p ?= p) = Gt. Proof. intros. apply Pos.lt_gt, Pos.lt_succ_diag_r. Qed. @@ -181,7 +181,7 @@ mkStore {index:positive;contents:Tree}. Definition empty := mkStore xH Tempty. Definition push a S := -mkStore (Psucc (index S)) (Tadd (index S) a (contents S)). +mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)). Definition get i S := Tget i (contents S). @@ -214,7 +214,7 @@ intros a S. rewrite Tget_Tadd. rewrite Psucc_Gt. intro W. -change (get (Psucc (index S)) S =PNone). +change (get (Pos.succ (index S)) S =PNone). apply get_Full_Gt; auto. apply Psucc_Gt. Qed. @@ -248,7 +248,7 @@ forall x, get i S = PSome x -> Proof. intros i a S F x H. case_eq (i ?= index S);intro test. -rewrite (Pcompare_Eq_eq _ _ test) in H. +rewrite (Pos.compare_eq _ _ test) in H. rewrite (get_Full_Eq _ F) in H;congruence. rewrite <- H. rewrite (get_push_Full i a). @@ -260,13 +260,13 @@ Qed. Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty. intros [ind cont] F one; inversion F. reflexivity. -simpl index in one;assert (h:=Psucc_not_one (index S)). +simpl index in one;assert (h:=Pos.succ_not_1 (index S)). congruence. Qed. Lemma push_not_empty: forall a S, (push a S) <> empty. intros a [ind cont];unfold push,empty. -simpl;intro H;injection H; intros _ ; apply Psucc_not_one. +simpl;intro H;injection H; intros _ ; apply Pos.succ_not_1. Qed. Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop := diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v index 9cae7a44..3b596238 100644 --- a/plugins/rtauto/Rtauto.v +++ b/plugins/rtauto/Rtauto.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/rtauto/g_rtauto.ml4 b/plugins/rtauto/g_rtauto.ml4 index 8d103d1b..96277e65 100644 --- a/plugins/rtauto/g_rtauto.ml4 +++ b/plugins/rtauto/g_rtauto.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/rtauto/proof_search.ml b/plugins/rtauto/proof_search.ml index 576f7d4e..c1e83004 100644 --- a/plugins/rtauto/proof_search.ml +++ b/plugins/rtauto/proof_search.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/rtauto/proof_search.mli b/plugins/rtauto/proof_search.mli index 275e94cd..2adda33f 100644 --- a/plugins/rtauto/proof_search.mli +++ b/plugins/rtauto/proof_search.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/rtauto/refl_tauto.ml b/plugins/rtauto/refl_tauto.ml index 4a9a0e47..e8909f08 100644 --- a/plugins/rtauto/refl_tauto.ml +++ b/plugins/rtauto/refl_tauto.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -32,7 +32,7 @@ let data_constant = Coqlib.gen_constant "refl_tauto" ["Init";"Datatypes"] let l_true_equals_true = - lazy (mkApp(logic_constant "refl_equal", + lazy (mkApp(logic_constant "eq_refl", [|data_constant "bool";data_constant "true"|])) let pos_constant = diff --git a/plugins/rtauto/refl_tauto.mli b/plugins/rtauto/refl_tauto.mli index 643433b0..e5fb646a 100644 --- a/plugins/rtauto/refl_tauto.mli +++ b/plugins/rtauto/refl_tauto.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/setoid_ring/ArithRing.v b/plugins/setoid_ring/ArithRing.v index 06822ae1..ed35bb46 100644 --- a/plugins/setoid_ring/ArithRing.v +++ b/plugins/setoid_ring/ArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -21,17 +21,17 @@ Lemma natSRth : semi_ring_theory O (S O) plus mult (@eq nat). Lemma nat_morph_N : semi_morph 0 1 plus mult (eq (A:=nat)) - 0%N 1%N N.add N.mul N.eqb nat_of_N. + 0%N 1%N N.add N.mul N.eqb N.to_nat. Proof. constructor;trivial. - exact nat_of_Nplus. - exact nat_of_Nmult. + exact N2Nat.inj_add. + exact N2Nat.inj_mul. intros x y H. apply N.eqb_eq in H. now subst. Qed. Ltac natcst t := match isnatcst t with - true => constr:(N_of_nat t) + true => constr:(N.of_nat t) | _ => constr:InitialRing.NotConstant end. diff --git a/plugins/setoid_ring/BinList.v b/plugins/setoid_ring/BinList.v index 7128280a..b3c59457 100644 --- a/plugins/setoid_ring/BinList.v +++ b/plugins/setoid_ring/BinList.v @@ -1,16 +1,15 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Set Implicit Arguments. Require Import BinPos. Require Export List. -Require Export ListTactics. -Open Local Scope positive_scope. +Set Implicit Arguments. +Local Open Scope positive_scope. Section MakeBinList. Variable A : Type. @@ -18,76 +17,64 @@ Section MakeBinList. Fixpoint jump (p:positive) (l:list A) {struct p} : list A := match p with - | xH => tail l + | xH => tl l | xO p => jump p (jump p l) - | xI p => jump p (jump p (tail l)) + | xI p => jump p (jump p (tl l)) end. Fixpoint nth (p:positive) (l:list A) {struct p} : A:= match p with | xH => hd default l | xO p => nth p (jump p l) - | xI p => nth p (jump p (tail l)) + | xI p => nth p (jump p (tl l)) end. - Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l). + Lemma jump_tl : forall j l, tl (jump j l) = jump j (tl l). Proof. - induction j;simpl;intros. - repeat rewrite IHj;trivial. - repeat rewrite IHj;trivial. - trivial. + induction j;simpl;intros; now rewrite ?IHj. Qed. - Lemma jump_Psucc : forall j l, - (jump (Psucc j) l) = (jump 1 (jump j l)). + Lemma jump_succ : forall j l, + jump (Pos.succ j) l = jump 1 (jump j l). Proof. induction j;simpl;intros. - repeat rewrite IHj;simpl;repeat rewrite jump_tl;trivial. - repeat rewrite jump_tl;trivial. - trivial. + - rewrite !IHj; simpl; now rewrite !jump_tl. + - now rewrite !jump_tl. + - trivial. Qed. - Lemma jump_Pplus : forall i j l, - (jump (i + j) l) = (jump i (jump j l)). + Lemma jump_add : forall i j l, + jump (i + j) l = jump i (jump j l). Proof. - induction i;intros. - rewrite xI_succ_xO;rewrite Pplus_one_succ_r. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi;trivial. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial. + induction i using Pos.peano_ind; intros. + - now rewrite Pos.add_1_l, jump_succ. + - now rewrite Pos.add_succ_l, !jump_succ, IHi. Qed. - Lemma jump_Pdouble_minus_one : forall i l, - (jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)). + Lemma jump_pred_double : forall i l, + jump (Pos.pred_double i) (tl l) = jump i (jump i l). Proof. induction i;intros;simpl. - repeat rewrite jump_tl;trivial. - rewrite IHi. do 2 rewrite <- jump_tl;rewrite IHi;trivial. - trivial. + - now rewrite !jump_tl. + - now rewrite IHi, <- 2 jump_tl, IHi. + - trivial. Qed. - - Lemma nth_jump : forall p l, nth p (tail l) = hd default (jump p l). + Lemma nth_jump : forall p l, nth p (tl l) = hd default (jump p l). Proof. induction p;simpl;intros. - rewrite <-jump_tl;rewrite IHp;trivial. - rewrite <-jump_tl;rewrite IHp;trivial. - trivial. + - now rewrite <-jump_tl, IHp. + - now rewrite <-jump_tl, IHp. + - trivial. Qed. - Lemma nth_Pdouble_minus_one : - forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l). + Lemma nth_pred_double : + forall p l, nth (Pos.pred_double p) (tl l) = nth p (jump p l). Proof. induction p;simpl;intros. - repeat rewrite jump_tl;trivial. - rewrite jump_Pdouble_minus_one. - repeat rewrite <- jump_tl;rewrite IHp;trivial. - trivial. + - now rewrite !jump_tl. + - now rewrite jump_pred_double, <- !jump_tl, IHp. + - trivial. Qed. End MakeBinList. - - diff --git a/plugins/setoid_ring/Cring.v b/plugins/setoid_ring/Cring.v index 3d6e53fc..02194d4f 100644 --- a/plugins/setoid_ring/Cring.v +++ b/plugins/setoid_ring/Cring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -42,10 +42,9 @@ Section cring. Context {R:Type}`{Rr:Cring R}. Lemma cring_eq_ext: ring_eq_ext _+_ _*_ -_ _==_. -intros. apply mk_reqe;intros. -rewrite H. rewrite H0. reflexivity. -rewrite H. rewrite H0. reflexivity. - rewrite H. reflexivity. Defined. +Proof. +intros. apply mk_reqe; solve_proper. +Defined. Lemma cring_almost_ring_theory: almost_ring_theory (R:=R) zero one _+_ _*_ _-_ -_ _==_. @@ -64,11 +63,11 @@ rewrite ring_sub_def ; reflexivity. Defined. Lemma cring_morph: ring_morph zero one _+_ _*_ _-_ -_ _==_ - 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool + 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Ncring_initial.gen_phiZ. intros. apply mkmorph ; intros; simpl; try reflexivity. rewrite Ncring_initial.gen_phiZ_add; reflexivity. -rewrite ring_sub_def. unfold Zminus. rewrite Ncring_initial.gen_phiZ_add. +rewrite ring_sub_def. unfold Z.sub. rewrite Ncring_initial.gen_phiZ_add. rewrite Ncring_initial.gen_phiZ_opp; reflexivity. rewrite Ncring_initial.gen_phiZ_mul; reflexivity. rewrite Ncring_initial.gen_phiZ_opp; reflexivity. @@ -80,7 +79,7 @@ Lemma cring_power_theory : intros; apply Ring_theory.mkpow_th. reflexivity. Defined. Lemma cring_div_theory: - div_theory _==_ Zplus Zmult Ncring_initial.gen_phiZ Z.quotrem. + div_theory _==_ Z.add Z.mul Ncring_initial.gen_phiZ Z.quotrem. intros. apply InitialRing.Ztriv_div_th. unfold Setoid_Theory. simpl. apply ring_setoid. Defined. @@ -102,7 +101,7 @@ Ltac cring_gen := ring_setoid cring_eq_ext cring_almost_ring_theory - Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Ncring_initial.gen_phiZ cring_morph N @@ -126,7 +125,7 @@ Ltac cring:= cring_compute. Instance Zcri: (Cring (Rr:=Zr)). -red. exact Zmult_comm. Defined. +red. exact Z.mul_comm. Defined. (* Cring_simplify *) @@ -136,7 +135,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := match lexpr with | ?e::?le => let t := constr:(@Ring_polynom.norm_subst - Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool Z.quotrem O nil e) in + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Z.quotrem O nil e) in let te := constr:(@Ring_polynom.Pphi_dev _ 0 1 _+_ _*_ _-_ -_ @@ -149,7 +148,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := let t':= fresh "t" in pose (t' := nft); assert (eq1 : t = t'); - [vm_cast_no_check (refl_equal t')| + [vm_cast_no_check (eq_refl t')| let eq2 := fresh "ring" in assert (eq2:(@Ring_polynom.PEeval _ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n) @@ -159,7 +158,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := ring_setoid cring_eq_ext cring_almost_ring_theory - Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Ncring_initial.gen_phiZ cring_morph N @@ -169,7 +168,7 @@ Ltac cring_simplify_aux lterm fv lexpr hyp := Z.quotrem cring_div_theory get_signZ get_signZ_th - O nil fv I nil (refl_equal nil) ); + O nil fv I nil (eq_refl nil) ); intro eq3; apply eq3; reflexivity| match hyp with | 1%nat => rewrite eq2 diff --git a/plugins/setoid_ring/Field.v b/plugins/setoid_ring/Field.v index 90f2f497..6d454ba8 100644 --- a/plugins/setoid_ring/Field.v +++ b/plugins/setoid_ring/Field.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/setoid_ring/Field_tac.v b/plugins/setoid_ring/Field_tac.v index da42bbd9..8ac952c0 100644 --- a/plugins/setoid_ring/Field_tac.v +++ b/plugins/setoid_ring/Field_tac.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -447,7 +447,7 @@ Ltac prove_field_eqn ope FLD fv expr := pose (res' := res); let lemma := get_L1 FLD in let lemma := - constr:(lemma O fv List.nil expr' res' I List.nil (refl_equal _)) in + constr:(lemma O fv List.nil expr' res' I List.nil (eq_refl _)) in let ty := type of lemma in let lhs := match ty with forall _, ?lhs=_ -> _ => lhs @@ -487,7 +487,7 @@ Ltac reduce_field_expr ope kont FLD fv expr := kont c. (* Hack to let a Ltac return a term in the context of a primitive tactic *) -Ltac return_term x := generalize (refl_equal x). +Ltac return_term x := generalize (eq_refl x). Ltac get_term := match goal with | |- ?x = _ -> _ => x diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v index 40138526..bc05c252 100644 --- a/plugins/setoid_ring/Field_theory.v +++ b/plugins/setoid_ring/Field_theory.v @@ -1,13 +1,13 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) Require Ring. -Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List. +Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms. Require Import ZArith_base. (*Require Import Omega.*) Set Implicit Arguments. @@ -27,7 +27,7 @@ Section MakeFieldPol. Notation "x == y" := (req x y) (at level 70, no associativity). (* Equality properties *) - Variable Rsth : Setoid_Theory R req. + Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable SRinv_ext : forall p q, p == q -> / p == / q. @@ -75,7 +75,6 @@ Qed. (* Useful tactics *) - Add Setoid R req Rsth as R_set1. Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. @@ -116,16 +115,17 @@ Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi (* add abstract semi-ring to help with some proofs *) Add Ring Rring : (ARth_SRth ARth). +Local Hint Extern 2 (_ == _) => f_equiv. (* additional ring properties *) Lemma rsub_0_l : forall r, 0 - r == - r. -intros; rewrite (ARsub_def ARth) in |- *;ring. +intros; rewrite (ARsub_def ARth);ring. Qed. Lemma rsub_0_r : forall r, r - 0 == r. -intros; rewrite (ARsub_def ARth) in |- *. -rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring. +intros; rewrite (ARsub_def ARth). +rewrite (ARopp_zero Rsth Reqe ARth); ring. Qed. (*************************************************************************** @@ -135,42 +135,40 @@ Qed. ***************************************************************************) Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p. +Proof. intros p q H. -rewrite rdiv_def in |- *. +rewrite rdiv_def. transitivity (/ q * q * p); [ ring | idtac ]. -rewrite rinv_l in |- *; auto. +rewrite rinv_l; auto. Qed. Hint Resolve rdiv_simpl . -Theorem SRdiv_ext: - forall p1 p2, p1 == p2 -> forall q1 q2, q1 == q2 -> p1 / q1 == p2 / q2. -intros p1 p2 H q1 q2 H0. +Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv. +Proof. +intros p1 p2 Ep q1 q2 Eq. transitivity (p1 * / q1); auto. transitivity (p2 * / q2); auto. Qed. -Hint Resolve SRdiv_ext . - - Add Morphism rdiv : rdiv_ext. exact SRdiv_ext. Qed. +Hint Resolve SRdiv_ext. Lemma rmul_reg_l : forall p q1 q2, ~ p == 0 -> p * q1 == p * q2 -> q1 == q2. -intros. -rewrite <- (@rdiv_simpl q1 p) in |- *; trivial. -rewrite <- (@rdiv_simpl q2 p) in |- *; trivial. -repeat rewrite rdiv_def in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. -auto. +Proof. +intros p q1 q2 H EQ. +rewrite <- (@rdiv_simpl q1 p) by trivial. +rewrite <- (@rdiv_simpl q2 p) by trivial. +rewrite !rdiv_def, !(ARmul_assoc ARth). +now rewrite EQ. Qed. Theorem field_is_integral_domain : forall r1 r2, ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0. Proof. -red in |- *; intros. -apply H0. +intros r1 r2 H1 H2. contradict H2. transitivity (1 * r2); auto. transitivity (/ r1 * r1 * r2); auto. -rewrite <- (ARmul_assoc ARth) in |- *. -rewrite H1 in |- *. +rewrite <- (ARmul_assoc ARth). +rewrite H2. apply ARmul_0_r with (1 := Rsth) (2 := ARth). Qed. @@ -179,15 +177,15 @@ Theorem ropp_neq_0 : forall r, intros. setoid_replace (- r) with (- (1) * r). apply field_is_integral_domain; trivial. - rewrite <- (ARopp_mul_l ARth) in |- *. - rewrite (ARmul_1_l ARth) in |- *. + rewrite <- (ARopp_mul_l ARth). + rewrite (ARmul_1_l ARth). reflexivity. Qed. Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1. intros. -rewrite (AFdiv_def AFth) in |- *. -rewrite (ARmul_comm ARth) in |- *. +rewrite (AFdiv_def AFth). +rewrite (ARmul_comm ARth). apply (AFinv_l AFth). trivial. Qed. @@ -203,14 +201,14 @@ Theorem rdiv2: r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). +assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl in |- *; trivial. -rewrite (ARdistr_r Rsth Reqe ARth) in |- *. +rewrite rdiv_simpl; trivial. +rewrite (ARdistr_r Rsth Reqe ARth). apply (Radd_ext Reqe). - transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. - transitivity (r2 * (r4 * (r3 / r4))); auto. - transitivity (r2 * r3); auto. +- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. +- transitivity (r2 * (r4 * (r3 / r4))); auto. + transitivity (r2 * r3); auto. Qed. @@ -225,35 +223,36 @@ assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring). assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring). assert (HH4: ~ r2 * (r4 * r5) == 0) - by complete (repeat apply field_is_integral_domain; trivial). + by (repeat apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * (r4 * r5)); trivial. -rewrite rdiv_simpl in |- *; trivial. -rewrite (ARdistr_r Rsth Reqe ARth) in |- *. +rewrite rdiv_simpl; trivial. +rewrite (ARdistr_r Rsth Reqe ARth). apply (Radd_ext Reqe). transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ]. transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ]. Qed. Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2. +Proof. intros r1 r2. transitivity (- (r1 * / r2)); auto. transitivity (- r1 * / r2); auto. Qed. Hint Resolve rdiv5 . -Theorem rdiv3: - forall r1 r2 r3 r4, +Theorem rdiv3 r1 r2 r3 r4 : ~ r2 == 0 -> ~ r4 == 0 -> r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4). -intros r1 r2 r3 r4 H H0. +Proof. +intros H2 H4. assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). transitivity (r1 / r2 + - (r3 / r4)); auto. transitivity (r1 / r2 + - r3 / r4); auto. -transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)); auto. +transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)). apply rdiv2; auto. -apply SRdiv_ext; auto. -transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto. +f_equiv. +transitivity (r1 * r4 + - (r3 * r2)); auto. Qed. @@ -279,13 +278,13 @@ intros r1 r2 H H0. assert (~ r1 / r2 == 0) as Hk. intros H1; case H. transitivity (r2 * (r1 / r2)); auto. - rewrite H1 in |- *; ring. + rewrite H1; ring. apply rmul_reg_l with (r1 / r2); auto. transitivity (/ (r1 / r2) * (r1 / r2)); auto. transitivity 1; auto. - repeat rewrite rdiv_def in |- *. + repeat rewrite rdiv_def. transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ]. - repeat rewrite rinv_l in |- *; auto. + repeat rewrite rinv_l; auto. Qed. Hint Resolve rdiv6 . @@ -296,11 +295,11 @@ Hint Resolve rdiv6 . (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4). Proof. intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial). +assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl in |- *; trivial. +rewrite rdiv_simpl; trivial. transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ]. -repeat rewrite rdiv_simpl in |- *; trivial. +repeat rewrite rdiv_simpl; trivial. Qed. Theorem rdiv4b: @@ -334,8 +333,8 @@ Theorem rdiv7: (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3). Proof. intros. -rewrite (rdiv_def (r1 / r2)) in |- *. -rewrite rdiv6 in |- *; trivial. +rewrite (rdiv_def (r1 / r2)). +rewrite rdiv6; trivial. apply rdiv4; trivial. Qed. @@ -373,14 +372,14 @@ Theorem cross_product_eq : forall r1 r2 r3 r4, ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4. intros. transitivity (r1 / r2 * (r4 / r4)). - rewrite rdiv_r_r in |- *; trivial. - symmetry in |- *. + rewrite rdiv_r_r; trivial. + symmetry . apply (ARmul_1_r Rsth ARth). - rewrite rdiv4 in |- *; trivial. - rewrite H1 in |- *. - rewrite (ARmul_comm ARth r2 r4) in |- *. - rewrite <- rdiv4 in |- *; trivial. - rewrite rdiv_r_r in |- * by trivial. + rewrite rdiv4; trivial. + rewrite H1. + rewrite (ARmul_comm ARth r2 r4). + rewrite <- rdiv4; trivial. + rewrite rdiv_r_r by trivial. apply (ARmul_1_r Rsth ARth). Qed. @@ -410,14 +409,7 @@ Qed. Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph. intros x y H [|p];simpl;auto. apply pow_morph;trivial. Qed. -(* -Lemma rpow_morph : forall x y n, x == y ->rpow x (Cp_phi n) == rpow y (Cp_phi n). -Proof. - intros; repeat rewrite pow_th.(rpow_pow_N). - destruct n;simpl. apply eq_refl. - induction p;simpl;try rewrite IHp;try rewrite H; apply eq_refl. -Qed. -*) + Theorem PExpr_eq_semi_correct: forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2. intros l e1; elim e1. @@ -459,8 +451,8 @@ Theorem NPEadd_correct: forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2). Proof. intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;try apply eq_refl; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl; try (ring [(morph0 CRmorph)]). apply (morph_add CRmorph). Qed. @@ -511,9 +503,9 @@ Qed. Theorem NPEmul_correct : forall l e1 e2, NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2). -induction e1;destruct e2; simpl in |- *;try reflexivity; +induction e1;destruct e2; simpl;try reflexivity; repeat apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity; + try (intro eq_c; rewrite eq_c); simpl; try reflexivity; try ring [(morph0 CRmorph) (morph1 CRmorph)]. apply (morph_mul CRmorph). case N.eqb_spec; intros H; try rewrite <- H; clear H. @@ -537,9 +529,9 @@ Definition NPEsub e1 e2 := Theorem NPEsub_correct: forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2). intros l e1 e2. -destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; - try rewrite (morph0 CRmorph) in |- *; try reflexivity; +destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; + try (intro eq_c; rewrite eq_c); simpl; + try rewrite (morph0 CRmorph); try reflexivity; try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). apply (morph_sub CRmorph). Qed. @@ -659,8 +651,8 @@ destruct H; trivial. Qed. Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1. -intros l l1 l2; elim l1; simpl app in |- *. - simpl in |- *; auto. +intros l l1 l2; elim l1; simpl app. + simpl; auto. destruct l0; simpl in *. destruct l2; firstorder. firstorder. @@ -675,8 +667,8 @@ Qed. Definition absurd_PCond := cons (PEc cO) nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. -unfold absurd_PCond in |- *; simpl in |- *. -red in |- *; intros. +unfold absurd_PCond; simpl. +red; intros. apply H. apply (morph0 CRmorph). Qed. @@ -705,10 +697,10 @@ Fixpoint isIn (e1:PExpr C) (p1:positive) end end | PEpow e3 N0 => None - | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pmult p3 p2) + | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2) | _ => if PExpr_eq e1 e2 then - match Zminus (Zpos p1) (Zpos p2) with + match Z.pos_sub p1 p2 with | Zpos p => Some (Npos p, PEc cI) | Z0 => Some (N0, PEc cI) | Zneg p => Some (N0, NPEpow e2 (Npos p)) @@ -719,21 +711,19 @@ Fixpoint isIn (e1:PExpr C) (p1:positive) Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end. Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end. - Notation pow_pos_plus := (Ring_theory.pow_pos_Pplus _ Rsth Reqe.(Rmul_ext) - ARth.(ARmul_comm) ARth.(ARmul_assoc)). + Notation pow_pos_add := + (Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). - Lemma Z_pos_sub_gt : forall p q, (p > q)%positive -> + Lemma Z_pos_sub_gt p q : (p > q)%positive -> Z.pos_sub p q = Zpos (p - q). - Proof. - intros. apply Z.pos_sub_gt. now apply Pos.gt_lt. - Qed. + Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed. Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption. Lemma isIn_correct_aux : forall l e1 e2 p1 p2, match (if PExpr_eq e1 e2 then - match Zminus (Zpos p1) (Zpos p2) with + match Z.sub (Zpos p1) (Zpos p2) with | Zpos p => Some (Npos p, PEc cI) | Z0 => Some (N0, PEc cI) | Zneg p => Some (N0, NPEpow e2 (Npos p)) @@ -750,33 +740,28 @@ Proof. intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2); case (PExpr_eq e1 e2); simpl; auto; intros H. rewrite Z.pos_sub_spec. - case_eq ((p1 ?= p2)%positive);intros;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:refine (refl_equal _). - rewrite (Pcompare_Eq_eq _ _ H0). - rewrite H by trivial. ring [ (morph1 CRmorph)]. - fold (p2 - p1 =? 1)%positive. - fold (NPEpow e2 (Npos (p2 - p1))). - rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. split. 2:refine (refl_equal _). - rewrite <- pow_pos_plus; rewrite Pplus_minus;auto. apply ZC2;trivial. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. - change (Z.pos_sub p1 (p1-p2)) with (Zpos p1 - Zpos (p1 -p2))%Z. - replace (Zpos (p1 - p2)) with (Zpos p1 - Zpos p2)%Z. - split. - repeat rewrite Zth.(Rsub_def). rewrite (Ring_theory.Ropp_add Zsth Zeqe Zth). - rewrite Zplus_assoc, Z.add_opp_diag_r. simpl. - ring [ (morph1 CRmorph)]. - assert (Zpos p1 > 0 /\ Zpos p2 > 0)%Z. split;refine (refl_equal _). - apply Zplus_gt_reg_l with (Zpos p2). - rewrite Zplus_minus. change (Zpos p2 + Zpos p1 > 0 + Zpos p1)%Z. - apply Zplus_gt_compat_r. refine (refl_equal _). - simpl. now simpl_pos_sub. + case Pos.compare_spec;intros;simpl. + - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity. + subst. rewrite H by trivial. ring [ (morph1 CRmorph)]. + - fold (p2 - p1 =? 1)%positive. + fold (NPEpow e2 (Npos (p2 - p1))). + rewrite NPEpow_correct;simpl. + repeat rewrite pow_th.(rpow_pow_N);simpl. + rewrite H;trivial. split. 2:reflexivity. + rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add. + - repeat rewrite pow_th.(rpow_pow_N);simpl. + rewrite H;trivial. + rewrite Z.pos_sub_gt by now apply Pos.sub_decr. + replace (p1 - (p1 - p2))%positive with p2; + [| rewrite Pos.sub_sub_distr, Pos.add_comm; + auto using Pos.add_sub, Pos.sub_decr ]. + split. + simpl. ring [ (morph1 CRmorph)]. + now apply Z.lt_gt, Pos.sub_decr. Qed. Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2). -induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_plus;simpl. +induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl. ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto. Qed. @@ -808,8 +793,9 @@ destruct n. (pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) == pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H. - rewrite <- pow_pos_plus. rewrite Pplus_minus. - split. symmetry;apply ARth.(ARmul_assoc). refine (refl_equal _). trivial. + rewrite <- pow_pos_add. + rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4). + split. symmetry;apply ARth.(ARmul_assoc). reflexivity. repeat rewrite pow_th.(rpow_pow_N);simpl. intros (H1,H2) (H3,H4). simpl_pos_sub. simpl in H1, H3. @@ -822,15 +808,15 @@ destruct n. (pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) == pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0. - rewrite <- pow_pos_plus. + rewrite <- pow_pos_add. replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive. rewrite NPEmul_correct. simpl;ring. assert (Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z. change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z). - rewrite <- Zplus_assoc. rewrite (Zplus_assoc (- Zpos p4)). + rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)). simpl. rewrite Z.pos_sub_diag. simpl. reflexivity. - unfold Zminus, Zopp in H0. simpl in H0. + unfold Z.sub, Z.opp in H0. simpl in H0. simpl_pos_sub. inversion H0; trivial. simpl. repeat rewrite pow_th.(rpow_pow_N). intros H1 (H2,H3). simpl_pos_sub. @@ -875,7 +861,7 @@ Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit : (NPEmul (common r1) (common r2)) (right r2) | PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2 - | PEpow e3 (Npos p3) => split_aux e3 (Pmult p3 p) e2 + | PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2 | _ => match isIn e1 p e2 xH with | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3 @@ -903,7 +889,8 @@ Proof. repeat rewrite pow_th.(rpow_pow_N);simpl). intros (H, Hgt);split;try ring [H CRmorph.(morph1)]. intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H]. - rewrite <- pow_pos_plus. rewrite Pplus_minus. reflexivity. trivial. + apply Z.gt_lt in Hgt. + now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add. simpl;intros. repeat rewrite NPEmul_correct;simpl. rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)]. Qed. @@ -1025,13 +1012,13 @@ Theorem Pcond_Fnorm: forall l e, PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0. intros l e; elim e. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. - simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. + simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1042,9 +1029,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; case Hrec1; auto. apply PCond_app_inv_l with (1 := Hcond). @@ -1055,9 +1042,9 @@ intros l e; elim e. rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. apply PCond_app_inv_l with (1 := Hcond). @@ -1069,17 +1056,17 @@ intros l e; elim e. rewrite NPEmul_correct; simpl; rewrite HH; ring. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. auto. intros e1 Hrec1 Hcond. simpl condition in Hcond. - simpl denum in |- *. + simpl denum. apply PCond_cons_inv_l with (1:=Hcond). intros e1 Hrec1 e2 Hrec2 Hcond. simpl condition in Hcond. - simpl denum in |- *. - rewrite NPEmul_correct in |- *. - simpl in |- *. + simpl denum. + rewrite NPEmul_correct. + simpl. apply field_is_integral_domain. intros HH; apply Hrec1. specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1. @@ -1222,9 +1209,9 @@ Theorem Fnorm_crossproduct: PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2. -rewrite Fnorm_FEeval_PEeval in |- * by +rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_l with (1 := Hcond). - rewrite Fnorm_FEeval_PEeval in |- * by + rewrite Fnorm_FEeval_PEeval by apply PCond_app_inv_r with (1 := Hcond). apply cross_product_eq; trivial. apply Pcond_Fnorm. @@ -1319,9 +1306,9 @@ apply Fnorm_crossproduct; trivial. match goal with [ |- NPEeval l ?x == NPEeval l ?y] => rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I (refl_equal nil) x (refl_equal (Nnorm O nil x))); + O nil l I Logic.eq_refl x Logic.eq_refl); rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I (refl_equal nil) y (refl_equal (Nnorm O nil y))) + O nil l I Logic.eq_refl y Logic.eq_refl) end. trivial. Qed. @@ -1341,28 +1328,28 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. rewrite <-( let x := (PEmul (num (Fnorm fe2)) (rsplit_left (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1381,28 +1368,28 @@ Proof. intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; subst nfe1 nfe2 den lmp. apply Fnorm_crossproduct; trivial. -simpl in |- *. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *. -rewrite NPEmul_correct in |- *. -rewrite NPEmul_correct in |- *. -simpl in |- *. -repeat rewrite (ARmul_assoc ARth) in |- *. +simpl. +rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). +rewrite NPEmul_correct. +rewrite NPEmul_correct. +simpl. +repeat rewrite (ARmul_assoc ARth). rewrite <-( let x := PEmul (num (Fnorm fe1)) (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. rewrite <-( let x := (PEmul (num (Fnorm fe2)) (rsplit_left (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe (refl_equal (Nmk_monpol_list lpe)) - x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod. + Hlpe Logic.eq_refl + x Logic.eq_refl) in Hcrossprod. simpl in Hcrossprod. -rewrite Hcrossprod in |- *. +rewrite Hcrossprod. reflexivity. Qed. @@ -1522,7 +1509,7 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := Lemma fcons_correct : forall l l1, PCond l (Fapp l1 nil) -> PCond l l1. -induction l1; simpl in |- *; intros. +induction l1; simpl; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. destruct l1; auto. @@ -1603,7 +1590,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. simpl;intros. rewrite pow_th.(rpow_pow_N). destruct (H _ H0);split;auto. @@ -1631,7 +1618,7 @@ generalize (fun h => X (morph_eq CRmorph c1 c2 h)). generalize (@ceqb_complete c1 c2). case (c1 ?=! c2); auto; intros. apply X0. -red in |- *; intro. +red; intro. absurd (false = true); auto; discriminate. Qed. @@ -1647,18 +1634,18 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := Theorem PFcons1_fcons_inv: forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). - simpl in |- *; intros c l1. + simpl; intros c l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H0). split; trivial. - rewrite <- (morph0 CRmorph) in |- *; trivial. + rewrite <- (morph0 CRmorph); trivial. intros p H p0 H0 l1 H1. simpl in H1. case (H _ H1); intros H2 H3. case (H0 _ H3); intros H4 H5; split; auto. - simpl in |- *. + simpl. apply field_is_integral_domain; trivial. - simpl in |- *; intros p H l1. + simpl; intros p H l1. apply ceqb_rect_complete; intros. elim (@absurd_PCond_bottom l H1). destruct (H _ H1). @@ -1677,7 +1664,7 @@ Definition Fcons2 e l := Fcons1 (PExpr_simp e) l. Theorem PFcons2_fcons_inv: forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -unfold Fcons2 in |- *; intros l a l1 H; split; +unfold Fcons2; intros l a l1 H; split; case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto. intros H1 H2 H3; case H1. transitivity (NPEeval l a); trivial. @@ -1756,50 +1743,48 @@ Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Lemma add_inj_r : forall p x y, gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y. intros p x y. -elim p using Pind; simpl in |- *; intros. +elim p using Pos.peano_ind; simpl; intros. apply S_inj; trivial. apply H. apply S_inj. - repeat rewrite (ARadd_assoc ARth) in |- *. - rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial. + repeat rewrite (ARadd_assoc ARth). + rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial. Qed. Lemma gen_phiPOS_inj : forall x y, gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. intros x y. -repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *. +repeat rewrite <- (same_gen Rsth Reqe ARth). case (Pos.compare_spec x y). intros. trivial. intros. elim gen_phiPOS_not_0 with (y - x)%positive. apply add_inj_r with x. - symmetry in |- *. - rewrite (ARadd_0_r Rsth ARth) in |- *. - rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. - rewrite Pplus_minus in |- *; trivial. - now apply Pos.lt_gt. + symmetry. + rewrite (ARadd_0_r Rsth ARth). + rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). + now rewrite Pos.add_comm, Pos.sub_add. intros. elim gen_phiPOS_not_0 with (x - y)%positive. apply add_inj_r with y. - rewrite (ARadd_0_r Rsth ARth) in |- *. - rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. - rewrite Pplus_minus in |- *; trivial. - now apply Pos.lt_gt. + rewrite (ARadd_0_r Rsth ARth). + rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth). + now rewrite Pos.add_comm, Pos.sub_add. Qed. Lemma gen_phiN_inj : forall x y, gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. -destruct x; destruct y; simpl in |- *; intros; trivial. +destruct x; destruct y; simpl; intros; trivial. elim gen_phiPOS_not_0 with p. - symmetry in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. + symmetry . + rewrite (same_gen Rsth Reqe ARth); trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *; trivial. - rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth); trivial. + rewrite gen_phiPOS_inj with (1 := H); trivial. Qed. Lemma gen_phiN_complete : forall x y, @@ -1824,17 +1809,17 @@ Section Field. Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y. intros. transitivity (x + (1 + - (1))). - rewrite (Ropp_def Rth) in |- *. - symmetry in |- *. + rewrite (Ropp_def Rth). + symmetry . apply (ARadd_0_r Rsth ARth). transitivity (y + (1 + - (1))). - repeat rewrite <- (ARplus_assoc ARth) in |- *. - repeat rewrite (ARadd_assoc ARth) in |- *. + repeat rewrite <- (ARplus_assoc ARth). + repeat rewrite (ARadd_assoc ARth). apply (Radd_ext Reqe). - repeat rewrite <- (ARadd_comm ARth 1) in |- *. + repeat rewrite <- (ARadd_comm ARth 1). trivial. reflexivity. - rewrite (Ropp_def Rth) in |- *. + rewrite (Ropp_def Rth). apply (ARadd_0_r Rsth ARth). Qed. @@ -1846,14 +1831,14 @@ Let gen_phiPOS_inject := Lemma gen_phiPOS_discr_sgn : forall x y, ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. -red in |- *; intros. +red; intros. apply gen_phiPOS_not_0 with (y + x)%positive. -rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *. +rewrite (ARgen_phiPOS_add Rsth Reqe ARth). transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Radd_ext Reqe); trivial. reflexivity. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite (same_gen Rsth Reqe ARth). trivial. apply (Ropp_def Rth). Qed. @@ -1861,33 +1846,33 @@ Qed. Lemma gen_phiZ_inj : forall x y, gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. -destruct x; destruct y; simpl in |- *; intros. +destruct x; destruct y; simpl; intros. trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - symmetry in |- *; trivial. + rewrite (same_gen Rsth Reqe ARth). + symmetry ; trivial. elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. + rewrite (same_gen Rsth Reqe ARth). trivial. - rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial. + rewrite gen_phiPOS_inject with (1 := H); trivial. elim gen_phiPOS_discr_sgn with (1 := H). elim gen_phiPOS_not_0 with p. - rewrite (same_gen Rsth Reqe ARth) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite H in |- *. + rewrite (same_gen Rsth Reqe ARth). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite H. apply (ARopp_zero Rsth Reqe ARth). elim gen_phiPOS_discr_sgn with p0 p. - symmetry in |- *; trivial. + symmetry ; trivial. replace p0 with p; trivial. apply gen_phiPOS_inject. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *. - rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *. - rewrite H in |- *; trivial. + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)). + rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)). + rewrite H; trivial. reflexivity. Qed. @@ -1896,8 +1881,8 @@ Lemma gen_phiZ_complete : forall x y, Zeq_bool x y = true. intros. replace y with x. - unfold Zeq_bool in |- *. - rewrite Zcompare_refl in |- *; trivial. + unfold Zeq_bool. + rewrite Z.compare_refl; trivial. apply gen_phiZ_inj; trivial. Qed. diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v index 763dbe7b..e805151c 100644 --- a/plugins/setoid_ring/InitialRing.v +++ b/plugins/setoid_ring/InitialRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -27,14 +27,14 @@ Definition NotConstant := false. Lemma Zsth : Setoid_Theory Z (@eq Z). Proof (Eqsth Z). -Lemma Zeqe : ring_eq_ext Zplus Zmult Zopp (@eq Z). -Proof (Eq_ext Zplus Zmult Zopp). +Lemma Zeqe : ring_eq_ext Z.add Z.mul Z.opp (@eq Z). +Proof (Eq_ext Z.add Z.mul Z.opp). -Lemma Zth : ring_theory Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z). +Lemma Zth : ring_theory Z0 (Zpos xH) Z.add Z.mul Z.sub Z.opp (@eq Z). Proof. - constructor. exact Zplus_0_l. exact Zplus_comm. exact Zplus_assoc. - exact Zmult_1_l. exact Zmult_comm. exact Zmult_assoc. - exact Zmult_plus_distr_l. trivial. exact Zminus_diag. + constructor. exact Z.add_0_l. exact Z.add_comm. exact Z.add_assoc. + exact Z.mul_1_l. exact Z.mul_comm. exact Z.mul_assoc. + exact Z.mul_add_distr_r. trivial. exact Z.sub_diag. Qed. (** Two generic morphisms from Z to (abrbitrary) rings, *) @@ -92,12 +92,12 @@ Section ZMORPHISM. | _ => None end. - Lemma get_signZ_th : sign_theory Zopp Zeq_bool get_signZ. + Lemma get_signZ_th : sign_theory Z.opp Zeq_bool get_signZ. Proof. constructor. destruct c;intros;try discriminate. injection H;clear H;intros H1;subst c'. - simpl. unfold Zeq_bool. rewrite Zcompare_refl. trivial. + simpl. unfold Zeq_bool. rewrite Z.compare_refl. trivial. Qed. @@ -116,7 +116,7 @@ Section ZMORPHISM. Qed. Lemma ARgen_phiPOS_Psucc : forall x, - gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x). + gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x). Proof. induction x;simpl;norm. rewrite IHx;norm. @@ -127,7 +127,7 @@ Section ZMORPHISM. gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y). Proof. induction x;destruct y;simpl;norm. - rewrite Pplus_carry_spec. + rewrite Pos.add_carry_spec. rewrite ARgen_phiPOS_Psucc. rewrite IHx;norm. add_push (gen_phiPOS1 y);add_push 1;rrefl. @@ -208,10 +208,10 @@ Section ZMORPHISM. (*proof that [.] satisfies morphism specifications*) Lemma gen_phiZ_morph : ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH) - Zplus Zmult Zminus Zopp Zeq_bool gen_phiZ. + Z.add Z.mul Z.sub Z.opp Zeq_bool gen_phiZ. Proof. assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH) - Zplus Zmult Zeq_bool gen_phiZ). + Z.add Z.mul Zeq_bool gen_phiZ). apply mkRmorph;simpl;try rrefl. apply gen_phiZ_add. apply gen_phiZ_mul. apply gen_Zeqb_ok. apply (Smorph_morph Rsth Reqe Rth Zth SRmorph gen_phiZ_ext). @@ -396,14 +396,14 @@ Section NWORDMORPHISM. Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0. Proof. -induction w; simpl in |- *; intros; auto. +induction w; simpl; intros; auto. reflexivity. destruct a. destruct w. reflexivity. - rewrite IHw in |- *; trivial. + rewrite IHw; trivial. apply (ARopp_zero Rsth Reqe ARth). discriminate. @@ -412,7 +412,7 @@ Qed. Lemma gen_phiNword_cons : forall w n, gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w. induction w. - destruct n; simpl in |- *; norm. + destruct n; simpl; norm. intros. destruct n; norm. @@ -423,27 +423,27 @@ Qed. destruct w; intros. destruct n; norm. - unfold Nwcons in |- *. - rewrite gen_phiNword_cons in |- *. + unfold Nwcons. + rewrite gen_phiNword_cons. reflexivity. Qed. Lemma gen_phiNword_ok : forall w1 w2, Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2. induction w1; intros. - simpl in |- *. - rewrite (gen_phiNword0_ok _ H) in |- *. + simpl. + rewrite (gen_phiNword0_ok _ H). reflexivity. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. destruct w2. simpl in H. destruct a; try discriminate. - rewrite (gen_phiNword0_ok _ H) in |- *. + rewrite (gen_phiNword0_ok _ H). norm. simpl in H. - rewrite gen_phiNword_cons in |- *. + rewrite gen_phiNword_cons. case_eq (N.eqb a n); intros H0. rewrite H0 in H. apply N.eqb_eq in H0. rewrite <- H0. @@ -457,27 +457,27 @@ Qed. Lemma Nwadd_ok : forall x y, gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y. induction x; intros. - simpl in |- *. + simpl. norm. destruct y. simpl Nwadd; norm. - simpl Nwadd in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by + simpl Nwadd. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. add_push (- gen_phiNword x); reflexivity. Qed. Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x. -simpl in |- *. -unfold Nwopp in |- *; simpl in |- *. +simpl. +unfold Nwopp; simpl. intros. -rewrite gen_phiNword_Nwcons in |- *; norm. +rewrite gen_phiNword_Nwcons; norm. Qed. Lemma Nwscal_ok : forall n x, @@ -485,12 +485,12 @@ Lemma Nwscal_ok : forall n x, induction x; intros. norm. - simpl Nwscal in |- *. - repeat rewrite gen_phiNword_cons in |- *. - rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- * + simpl Nwscal. + repeat rewrite gen_phiNword_cons. + rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) by (destruct Reqe; constructor; trivial). - rewrite IHx in |- *. + rewrite IHx. norm. Qed. @@ -500,19 +500,19 @@ induction x; intros. norm. destruct a. - simpl Nwmul in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. - simpl Nwmul in |- *. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwscal_ok in |- *. - rewrite Nwopp_ok in |- *. - rewrite IHx in |- *. - rewrite gen_phiNword_cons in |- *. + simpl Nwmul. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwscal_ok. + rewrite Nwopp_ok. + rewrite IHx. + rewrite gen_phiNword_cons. norm. Qed. @@ -528,9 +528,9 @@ constructor. exact Nwadd_ok. intros. - unfold Nwsub in |- *. - rewrite Nwadd_ok in |- *. - rewrite Nwopp_ok in |- *. + unfold Nwsub. + rewrite Nwadd_ok. + rewrite Nwopp_ok. norm. exact Nwmul_ok. @@ -741,10 +741,10 @@ Ltac gen_ring_sign morph sspec := Ltac default_div_spec set reqe arth morph := match type of morph with | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req - Z ?c0 ?c1 Zplus Zmult ?csub ?copp ?ceq_b ?phi => + Z ?c0 ?c1 Z.add Z.mul ?csub ?copp ?ceq_b ?phi => constr:(mkhypo (Ztriv_div_th set phi)) | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req - N ?c0 ?c1 Nplus Nmult ?csub ?copp ?ceq_b ?phi => + N ?c0 ?c1 N.add N.mul ?csub ?copp ?ceq_b ?phi => constr:(mkhypo (Ntriv_div_th set phi)) | @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req ?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi => @@ -836,7 +836,7 @@ Ltac isPcst t := | xO ?p => isPcst p | xH => constr:true (* nat -> positive *) - | P_of_succ_nat ?n => isnatcst n + | Pos.of_succ_nat ?n => isnatcst n | _ => constr:false end. @@ -853,9 +853,9 @@ Ltac isZcst t := | Zpos ?p => isPcst p | Zneg ?p => isPcst p (* injection nat -> Z *) - | Z_of_nat ?n => isnatcst n + | Z.of_nat ?n => isnatcst n (* injection N -> Z *) - | Z_of_N ?n => isNcst n + | Z.of_N ?n => isNcst n (* *) | _ => constr:false end. diff --git a/plugins/setoid_ring/Integral_domain.v b/plugins/setoid_ring/Integral_domain.v index 5a224e38..0c16fe1a 100644 --- a/plugins/setoid_ring/Integral_domain.v +++ b/plugins/setoid_ring/Integral_domain.v @@ -19,7 +19,7 @@ rewrite H0. rewrite <- H. cring. Qed. -Definition pow (r : R) (n : nat) := Ring_theory.pow_N 1 mul r (N_of_nat n). +Definition pow (r : R) (n : nat) := Ring_theory.pow_N 1 mul r (N.of_nat n). Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0. induction n. unfold pow; simpl. intros. absurd (1 == 0). @@ -29,9 +29,8 @@ intros. case (integral_domain_product p (pow p n) H). trivial. trivial. unfold pow; simpl. clear IHn. induction n; simpl; try cring. - rewrite Ring_theory.pow_pos_Psucc. cring. apply ring_setoid. + rewrite Ring_theory.pow_pos_succ. cring. apply ring_setoid. apply ring_mult_comp. -apply cring_mul_comm. apply ring_mul_assoc. Qed. diff --git a/plugins/setoid_ring/NArithRing.v b/plugins/setoid_ring/NArithRing.v index fafd16ab..fae98d83 100644 --- a/plugins/setoid_ring/NArithRing.v +++ b/plugins/setoid_ring/NArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/setoid_ring/Ncring.v b/plugins/setoid_ring/Ncring.v index 9a30fa47..7789ba3e 100644 --- a/plugins/setoid_ring/Ncring.v +++ b/plugins/setoid_ring/Ncring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -106,9 +106,10 @@ Context {R:Type}`{Rr:Ring R}. (* Powers *) - Lemma pow_pos_comm : forall x j, x * pow_pos x j == pow_pos x j * x. +Lemma pow_pos_comm : forall x j, x * pow_pos x j == pow_pos x j * x. +Proof. induction j; simpl. rewrite <- ring_mul_assoc. -rewrite <- ring_mul_assoc. +rewrite <- ring_mul_assoc. rewrite <- IHj. rewrite (ring_mul_assoc (pow_pos x j) x (pow_pos x j)). rewrite <- IHj. rewrite <- ring_mul_assoc. reflexivity. rewrite <- ring_mul_assoc. rewrite <- IHj. @@ -116,10 +117,10 @@ rewrite ring_mul_assoc. rewrite IHj. rewrite <- ring_mul_assoc. rewrite IHj. reflexivity. reflexivity. Qed. - Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j. - Proof. - induction j; simpl. - rewrite IHj. +Lemma pow_pos_succ : forall x j, pow_pos x (Pos.succ j) == x * pow_pos x j. +Proof. +induction j; simpl. + rewrite IHj. rewrite <- (ring_mul_assoc x (pow_pos x j) (x * pow_pos x j)). rewrite (ring_mul_assoc (pow_pos x j) x (pow_pos x j)). rewrite <- pow_pos_comm. @@ -127,20 +128,20 @@ rewrite <- ring_mul_assoc. reflexivity. reflexivity. reflexivity. Qed. - Lemma pow_pos_Pplus : forall x i j, - pow_pos x (i + j) == pow_pos x i * pow_pos x j. - Proof. +Lemma pow_pos_add : forall x i j, + pow_pos x (i + j) == pow_pos x i * pow_pos x j. +Proof. intro x;induction i;intros. - rewrite xI_succ_xO;rewrite Pplus_one_succ_r. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. + rewrite Pos.xI_succ_xO;rewrite <- Pos.add_1_r. + rewrite <- Pos.add_diag;repeat rewrite <- Pos.add_assoc. repeat rewrite IHi. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r; - rewrite pow_pos_Psucc. + rewrite Pos.add_comm;rewrite Pos.add_1_r; + rewrite pow_pos_succ. simpl;repeat rewrite ring_mul_assoc. reflexivity. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. + rewrite <- Pos.add_diag;repeat rewrite <- Pos.add_assoc. repeat rewrite IHi. rewrite ring_mul_assoc. reflexivity. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc. - simpl. reflexivity. + rewrite Pos.add_comm;rewrite Pos.add_1_r;rewrite pow_pos_succ. + simpl. reflexivity. Qed. Definition id_phi_N (x:N) : N := x. diff --git a/plugins/setoid_ring/Ncring_initial.v b/plugins/setoid_ring/Ncring_initial.v index 3c79f7d9..528ad4f1 100644 --- a/plugins/setoid_ring/Ncring_initial.v +++ b/plugins/setoid_ring/Ncring_initial.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -27,20 +27,17 @@ Definition NotConstant := false. (** Z is a ring and a setoid*) -Lemma Zsth : Setoid_Theory Z (@eq Z). -constructor;red;intros;subst;trivial. -Qed. +Lemma Zsth : Equivalence (@eq Z). +Proof. exact Z.eq_equiv. Qed. -Instance Zops:@Ring_ops Z 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z). +Instance Zops:@Ring_ops Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z). Instance Zr: (@Ring _ _ _ _ _ _ _ _ Zops). -constructor; -try (try apply Zsth; - try (unfold respectful, Proper; unfold equality; unfold eq_notation in *; - intros; try rewrite H; try rewrite H0; reflexivity)). - exact Zplus_comm. exact Zplus_assoc. - exact Zmult_1_l. exact Zmult_1_r. exact Zmult_assoc. - exact Zmult_plus_distr_l. intros; apply Zmult_plus_distr_r. exact Zminus_diag. +Proof. +constructor; try apply Zsth; try solve_proper. + exact Z.add_comm. exact Z.add_assoc. + exact Z.mul_1_l. exact Z.mul_1_r. exact Z.mul_assoc. + exact Z.mul_add_distr_r. intros; apply Z.mul_add_distr_l. exact Z.sub_diag. Defined. (*Instance ZEquality: @Equality Z:= (@eq Z).*) @@ -102,7 +99,7 @@ Ltac rsimpl := simpl. Qed. Lemma ARgen_phiPOS_Psucc : forall x, - gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x). + gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x). Proof. induction x;rsimpl;norm. rewrite IHx. gen_rewrite. add_push 1. reflexivity. @@ -112,7 +109,7 @@ Ltac rsimpl := simpl. gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y). Proof. induction x;destruct y;simpl;norm. - rewrite Pplus_carry_spec. + rewrite Pos.add_carry_spec. rewrite ARgen_phiPOS_Psucc. rewrite IHx;norm. add_push (gen_phiPOS1 y);add_push 1;reflexivity. @@ -152,20 +149,13 @@ Ltac rsimpl := simpl. == gen_phiPOS1 x + -gen_phiPOS1 y. Proof. intros x y. - rewrite Z.pos_sub_spec. - assert (HH0 := Pminus_mask_Gt x y). unfold Pos.gt in HH0. - assert (HH1 := Pminus_mask_Gt y x). unfold Pos.gt in HH1. - rewrite Pos.compare_antisym in HH1. - destruct (Pos.compare_spec x y) as [HH|HH|HH]. - subst. rewrite ring_opp_def;reflexivity. - destruct HH1 as [h [HHeq1 [HHeq2 HHor]]];trivial. - unfold Pminus; rewrite HHeq1;rewrite <- HHeq2. - rewrite ARgen_phiPOS_add;simpl;norm. - rewrite ring_opp_def;norm. - destruct HH0 as [h [HHeq1 [HHeq2 HHor]]];trivial. - unfold Pminus; rewrite HHeq1;rewrite <- HHeq2. - rewrite ARgen_phiPOS_add;simpl;norm. - add_push (gen_phiPOS1 h). rewrite ring_opp_def ; norm. + generalize (Z.pos_sub_discr x y). + destruct (Z.pos_sub x y) as [|p|p]; intros; subst. + - now rewrite ring_opp_def. + - rewrite ARgen_phiPOS_add;simpl;norm. + add_push (gen_phiPOS1 p). rewrite ring_opp_def;norm. + - rewrite ARgen_phiPOS_add;simpl;norm. + rewrite ring_opp_def;norm. Qed. Lemma match_compOpp : forall x (B:Type) (be bl bg:B), @@ -206,16 +196,14 @@ Lemma gen_phiZ_opp : forall x, [- x] == - [x]. Global Instance gen_phiZ_morph : (@Ring_morphism (Z:Type) R _ _ _ _ _ _ _ Zops Zr _ _ _ _ _ _ _ _ _ gen_phiZ) . (* beurk!*) apply Build_Ring_morphism; simpl;try reflexivity. - apply gen_phiZ_add. intros. rewrite ring_sub_def. -replace (Zminus x y) with (x + (-y))%Z. rewrite gen_phiZ_add. -rewrite gen_phiZ_opp. rewrite ring_sub_def. reflexivity. + apply gen_phiZ_add. intros. rewrite ring_sub_def. +replace (x-y)%Z with (x + (-y))%Z. +now rewrite gen_phiZ_add, gen_phiZ_opp, ring_sub_def. reflexivity. - apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext. + apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext. Defined. End ZMORPHISM. Instance multiplication_phi_ring{R:Type}`{Ring R} : Multiplication := {multiplication x y := (gen_phiZ x) * y}. - - diff --git a/plugins/setoid_ring/Ncring_polynom.v b/plugins/setoid_ring/Ncring_polynom.v index c0d31587..8e4b613f 100644 --- a/plugins/setoid_ring/Ncring_polynom.v +++ b/plugins/setoid_ring/Ncring_polynom.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -52,7 +52,7 @@ Instance equalityb_coef : Equalityb C := match P, P' with | Pc c, Pc c' => c =? c' | PX P i n Q, PX P' i' n' Q' => - match Pcompare i i' Eq, Pcompare n n' Eq with + match Pos.compare i i', Pos.compare n n' with | Eq, Eq => if Peq P P' then Peq Q Q' else false | _,_ => false end @@ -67,7 +67,7 @@ Instance equalityb_pol : Equalityb Pol := match P with | Pc c => if c =? 0 then Q else PX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q | _ => PX P i n Q end @@ -109,13 +109,13 @@ Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:= match Q with | Pc c => mkPX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | (* i > i' *) Gt => mkPX P i n Q | (* i < i' *) Lt => mkPX P' i' n' (PaddX i n Q') | (* i = i' *) - Eq => match ZPminus n n' with + Eq => match Z.pos_sub n n' with | (* n > n' *) Zpos k => mkPX (PaddX i k P') i' n' Q' | (* n = n' *) @@ -178,61 +178,25 @@ Definition Psub(P P':Pol):= P ++ (--P'). Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub H := + match goal with |- context [Z.pos_sub ?x ?y] => + assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. - Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble; -rewrite Hh;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y)); -trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one; -rewrite Hh;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y)); -trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one; -rewrite Hh;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (Hh := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite Hh; -trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. - Qed. Lemma Peq_ok : forall P P', (P =? P') = true -> forall l, P@l == P'@ l. Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply ring_morphism_eq. - apply Ceqb_eq ;trivial. - assert (H1h := IHP1 P'1);assert (H2h := IHP2 P'2). - simpl in H1h. destruct (Peq P2 P'1). simpl in H2h; -destruct (Peq P3 P'2). - rewrite (H1h);trivial . rewrite (H2h);trivial. -assert (H3h := Pcompare_Eq_eq p p1); - destruct (Pos.compare_cont p p1 Eq); -assert (H4h := Pcompare_Eq_eq p0 p2); -destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H). - rewrite H3h;trivial. rewrite H4h;trivial. reflexivity. - destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq); - try (discriminate H). - destruct (Pos.compare_cont p p1 Eq); destruct (Pos.compare_cont p0 p2 Eq); - try (discriminate H). + induction P;destruct P';simpl;intros ;try easy. + - now apply ring_morphism_eq, Ceqb_eq. + - specialize (IHP1 P'1). specialize (IHP2 P'2). + simpl in IHP1, IHP2. + destruct (Pos.compare_spec p p1); try discriminate; + destruct (Pos.compare_spec p0 p2); try discriminate. + destruct (Peq P2 P'1); try discriminate. + subst; now rewrite IHP1, IHP2. Qed. Lemma Pphi0 : forall l, P0@l == 0. @@ -255,12 +219,12 @@ destruct (Pos.compare_cont p0 p2 Eq); try (discriminate H). simpl; case_eq (Ceqb c 0);simpl;try reflexivity. intros. rewrite Hh. rewrite ring_morphism0. - rsimpl. apply Ceqb_eq. trivial. assert (Hh1 := Pcompare_Eq_eq i p); -destruct (Pos.compare_cont i p Eq). + rsimpl. apply Ceqb_eq. trivial. + destruct (Pos.compare_spec i p). assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl. rewrite Hh. - rewrite Pphi0. rsimpl. rewrite Pplus_comm. rewrite pow_pos_Pplus;rsimpl. -rewrite Hh1;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity. + rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl. + subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity. simpl. reflexivity. Qed. @@ -331,13 +295,13 @@ Lemma PaddXPX: forall P i n Q, match Q with | Pc c => mkPX P i n Q | PX P' i' n' Q' => - match Pcompare i i' Eq with + match Pos.compare i i' with | (* i > i' *) Gt => mkPX P i n Q | (* i < i' *) Lt => mkPX P' i' n' (PaddX Padd P i n Q') | (* i = i' *) - Eq => match ZPminus n n' with + Eq => match Z.pos_sub n n' with | (* n > n' *) Zpos k => mkPX (PaddX Padd P i k P') i' n' Q' | (* n = n' *) @@ -359,17 +323,17 @@ Lemma PaddX_ok2 : forall P2, induction P2;simpl;intros. split. intros. apply PaddCl_ok. induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. rsimpl. -intros. simpl. assert (Hh := Pcompare_Eq_eq k p); - destruct (Pos.compare_cont k p Eq). - assert (H1h := ZPminus_spec n p0);destruct (ZPminus n p0). Esimpl2. +intros. simpl. + destruct (Pos.compare_spec k p) as [Hh|Hh|Hh]. + destr_pos_sub H1h. Esimpl2. rewrite Hh; trivial. rewrite H1h. reflexivity. simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2. - rewrite Pplus_comm in H1h. + rewrite Pos.add_comm in H1h. rewrite H1h. -rewrite pow_pos_Pplus. Esimpl2. +rewrite pow_pos_add. Esimpl2. rewrite Hh; trivial. reflexivity. -rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pplus_comm in H1h. -rewrite H1h. Esimpl2. rewrite pow_pos_Pplus. Esimpl2. +rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h. +rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2. rewrite Hh; trivial. reflexivity. rewrite mkPX_ok. rewrite IHP2. Esimpl2. rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) @@ -382,19 +346,18 @@ split. intros. rewrite H0. rewrite H1. Esimpl2. induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity. intros. rewrite PaddXPX. -assert (H3h := Pcompare_Eq_eq k p1); - destruct (Pos.compare_cont k p1 Eq). -assert (H4h := ZPminus_spec n p2);destruct (ZPminus n p2). +destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h]. +destr_pos_sub H4h. rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2. rewrite H4h. rewrite H3h;trivial. reflexivity. rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial. -rewrite Pplus_comm in H4h. -rewrite H4h. rewrite pow_pos_Pplus. Esimpl2. +rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. rewrite mkPX_ok. Esimpl2. rewrite H3h;trivial. - rewrite Pplus_comm in H4h. -rewrite H4h. rewrite pow_pos_Pplus. Esimpl2. + rewrite Pos.add_comm in H4h. +rewrite H4h. rewrite pow_pos_add. Esimpl2. rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2. gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity. rewrite mkPX_ok. simpl. reflexivity. diff --git a/plugins/setoid_ring/Ncring_tac.v b/plugins/setoid_ring/Ncring_tac.v index 34731eb3..44f8e7ff 100644 --- a/plugins/setoid_ring/Ncring_tac.v +++ b/plugins/setoid_ring/Ncring_tac.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -104,7 +104,7 @@ Instance reify_pow (R:Type) `{Ring R} Instance reify_var (R:Type) t lvar i `{nth R t lvar i} `{Rr: Ring (T:=R)} - : reify (Rr:= Rr) (PEX Z (P_of_succ_nat i))lvar t + : reify (Rr:= Rr) (PEX Z (Pos.of_succ_nat i))lvar t | 100. Class reifylist (R:Type)`{Rr:Ring (T:=R)} (lexpr:list (PExpr Z)) (lvar:list R) @@ -202,7 +202,7 @@ Ltac ring_simplify_aux lterm fv lexpr hyp := match lexpr with | ?e::?le => (* e:PExpr Z est la réification de t0:R *) let t := constr:(@Ncring_polynom.norm_subst - Z 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) Zops Zeq_bool e) in + Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) Zops Zeq_bool e) in (* t:Pol Z *) let te := constr:(@Ncring_polynom.Pphi Z @@ -212,13 +212,13 @@ Ltac ring_simplify_aux lterm fv lexpr hyp := let t':= fresh "t" in pose (t' := nft); assert (eq1 : t = t'); - [vm_cast_no_check (refl_equal t')| + [vm_cast_no_check (eq_refl t')| let eq2 := fresh "ring" in assert (eq2:(@Ncring_polynom.PEeval Z _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n) (@Ring_theory.pow_N _ 1 multiplication) fv e) == te); [apply (@Ncring_polynom.norm_subst_ok - Z _ 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) + Z _ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) _ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _ (@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok); apply mkpow_th; reflexivity diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v index 56473adb..29372212 100644 --- a/plugins/setoid_ring/RealField.v +++ b/plugins/setoid_ring/RealField.v @@ -5,21 +5,21 @@ Require Import Rdefinitions. Require Import Rpow_def. Require Import Raxioms. -Open Local Scope R_scope. +Local Open Scope R_scope. Lemma RTheory : ring_theory 0 1 Rplus Rmult Rminus Ropp (eq (A:=R)). Proof. constructor. intro; apply Rplus_0_l. exact Rplus_comm. - symmetry in |- *; apply Rplus_assoc. + symmetry ; apply Rplus_assoc. intro; apply Rmult_1_l. exact Rmult_comm. - symmetry in |- *; apply Rmult_assoc. + symmetry ; apply Rmult_assoc. intros m n p. - rewrite Rmult_comm in |- *. - rewrite (Rmult_comm n p) in |- *. - rewrite (Rmult_comm m p) in |- *. + rewrite Rmult_comm. + rewrite (Rmult_comm n p). + rewrite (Rmult_comm m p). apply Rmult_plus_distr_l. reflexivity. exact Rplus_opp_r. @@ -42,17 +42,17 @@ destruct H0. apply Rlt_trans with (IZR (up x)); trivial. replace (IZR (up x)) with (x + (IZR (up x) - x))%R. apply Rplus_lt_compat_l; trivial. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. apply Rplus_0_l. elim H0. - unfold Rminus in |- *. - rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *. - rewrite <- Rplus_assoc in |- *. - rewrite Rplus_opp_r in |- *. - rewrite Rplus_0_l in |- *; trivial. + unfold Rminus. + rewrite (Rplus_comm (IZR (up x)) (- x)). + rewrite <- Rplus_assoc. + rewrite Rplus_opp_r. + rewrite Rplus_0_l; trivial. Qed. Notation Rset := (Eqsth R). @@ -61,7 +61,7 @@ Notation Rext := (Eq_ext Rplus Rmult Ropp). Lemma Rlt_0_2 : 0 < 2. apply Rlt_trans with (0 + 1). apply Rlt_n_Sn. - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rplus_lt_compat_l. replace 1 with (0 + 1). apply Rlt_n_Sn. @@ -69,19 +69,19 @@ apply Rlt_trans with (0 + 1). Qed. Lemma Rgen_phiPOS : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x > 0. -unfold Rgt in |- *. -induction x; simpl in |- *; intros. +unfold Rgt. +induction x; simpl; intros. apply Rlt_trans with (1 + 0). - rewrite Rplus_comm in |- *. + rewrite Rplus_comm. apply Rlt_n_Sn. apply Rplus_lt_compat_l. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. - rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *. - rewrite Rmult_comm in |- *. + rewrite <- (Rmul_0_l Rset Rext RTheory 2). + rewrite Rmult_comm. apply Rmult_lt_compat_l. apply Rlt_0_2. trivial. @@ -93,9 +93,9 @@ Qed. Lemma Rgen_phiPOS_not_0 : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x <> 0. -red in |- *; intros. +red; intros. specialize (Rgen_phiPOS x). -rewrite H in |- *; intro. +rewrite H; intro. apply (Rlt_asym 0 0); trivial. Qed. @@ -107,23 +107,23 @@ Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0. Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m. Proof. - intros x n; elim n; simpl in |- *; auto with real. + intros x n; elim n; simpl; auto with real. intros n0 H' m; rewrite H'; auto with real. Qed. -Lemma R_power_theory : power_theory 1%R Rmult (eq (A:=R)) nat_of_N pow. +Lemma R_power_theory : power_theory 1%R Rmult (@eq R) N.to_nat pow. Proof. constructor. destruct n. reflexivity. - simpl. induction p;simpl. - rewrite ZL6. rewrite Rdef_pow_add;rewrite IHp. reflexivity. - unfold nat_of_P;simpl;rewrite ZL6;rewrite Rdef_pow_add;rewrite IHp;trivial. - rewrite Rmult_comm;apply Rmult_1_l. + simpl. induction p. + - rewrite Pos2Nat.inj_xI. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp. + - rewrite Pos2Nat.inj_xO. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp. + - simpl. rewrite Rmult_comm;apply Rmult_1_l. Qed. Ltac Rpow_tac t := match isnatcst t with | false => constr:(InitialRing.NotConstant) - | _ => constr:(N_of_nat t) + | _ => constr:(N.of_nat t) end. Add Field RField : Rfield diff --git a/plugins/setoid_ring/Ring.v b/plugins/setoid_ring/Ring.v index c44c2edf..7c1bf981 100644 --- a/plugins/setoid_ring/Ring.v +++ b/plugins/setoid_ring/Ring.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -14,7 +14,7 @@ Require Export Ring_tac. Lemma BoolTheory : ring_theory false true xorb andb xorb (fun b:bool => b) (eq(A:=bool)). -split; simpl in |- *. +split; simpl. destruct x; reflexivity. destruct x; destruct y; reflexivity. destruct x; destruct y; destruct z; reflexivity. diff --git a/plugins/setoid_ring/Ring_base.v b/plugins/setoid_ring/Ring_base.v index 6d4360d6..dc5248b2 100644 --- a/plugins/setoid_ring/Ring_base.v +++ b/plugins/setoid_ring/Ring_base.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/setoid_ring/Ring_polynom.v b/plugins/setoid_ring/Ring_polynom.v index b722a31b..b23ba352 100644 --- a/plugins/setoid_ring/Ring_polynom.v +++ b/plugins/setoid_ring/Ring_polynom.v @@ -1,20 +1,16 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) Set Implicit Arguments. -Require Import Setoid. -Require Import BinList. -Require Import BinPos. -Require Import BinNat. -Require Import BinInt. +Require Import Setoid Morphisms BinList BinPos BinNat BinInt. Require Export Ring_theory. -Open Local Scope positive_scope. +Local Open Scope positive_scope. Import RingSyntax. Section MakeRingPol. @@ -25,7 +21,7 @@ Section MakeRingPol. Variable req : R -> R -> Prop. (* Ring properties *) - Variable Rsth : Setoid_Theory R req. + Variable Rsth : Equivalence req. Variable Reqe : ring_eq_ext radd rmul ropp req. Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req. @@ -37,7 +33,7 @@ Section MakeRingPol. Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. - (* Power coefficients *) + (* Power coefficients *) Variable Cpow : Type. Variable Cp_phi : N -> Cpow. Variable rpow : R -> Cpow -> R. @@ -50,26 +46,47 @@ Section MakeRingPol. (* R notations *) Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). + Infix "==" := req. + Infix "^" := (pow_pos rmul). (* C notations *) - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-! " := csub. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). (* Useful tactics *) - Add Setoid R req Rsth as R_set1. - Ltac rrefl := gen_reflexivity Rsth. - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. + Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. + Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. + Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. + Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. Ltac rsimpl := gen_srewrite Rsth Reqe ARth. + Ltac add_push := gen_add_push radd Rsth Reqe ARth. Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth. + Ltac add_permut_rec t := + match t with + | ?x + ?y => add_permut_rec y || add_permut_rec x + | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity] + end. + + Ltac add_permut := + repeat (reflexivity || + match goal with |- ?t == _ => add_permut_rec t end). + + Ltac mul_permut_rec t := + match t with + | ?x * ?y => mul_permut_rec y || mul_permut_rec x + | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity] + end. + + Ltac mul_permut := + repeat (reflexivity || + match goal with |- ?t == _ => mul_permut_rec t end). + + (* Definition of multivariable polynomials with coefficients in C : Type [Pol] represents [X1 ... Xn]. The representation is Horner's where a [n] variable polynomial @@ -116,19 +133,19 @@ Section MakeRingPol. | _, _ => false end. - Notation " P ?== P' " := (Peq P P'). + Infix "?==" := Peq. Definition mkPinj j P := match P with | Pc _ => P - | Pinj j' Q => Pinj ((j + j'):positive) Q + | Pinj j' Q => Pinj (j + j') Q | _ => Pinj j P end. Definition mkPinj_pred j P:= match j with | xH => P - | xO j => Pinj (Pdouble_minus_one j) P + | xO j => Pinj (Pos.pred_double j) P | xI j => Pinj (xO j) P end. @@ -156,14 +173,14 @@ Section MakeRingPol. (** Addition et subtraction *) - Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PaddC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 +! c) | Pinj j Q => Pinj j (PaddC Q c) | PX P i Q => PX P i (PaddC Q c) end. - Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PsubC (P:Pol) (c:C) : Pol := match P with | Pc c1 => Pc (c1 -! c) | Pinj j Q => Pinj j (PsubC Q c) @@ -175,11 +192,11 @@ Section MakeRingPol. Variable Pop : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PaddI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PaddI k Q') @@ -187,16 +204,16 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PaddI (Pdouble_minus_one j) Q') + | xO j => PX P i (PaddI (Pos.pred_double j) Q') | xI j => PX P i (PaddI (xO j) Q') end end. - Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol := + Fixpoint PsubI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PaddC (--Q) c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pop (Pinj k Q') Q) | Z0 => mkPinj j (Pop Q' Q) | Zneg k => mkPinj j' (PsubI k Q') @@ -204,41 +221,41 @@ Section MakeRingPol. | PX P i Q' => match j with | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PsubI (Pdouble_minus_one j) Q') + | xO j => PX P i (PsubI (Pos.pred_double j) Q') | xI j => PX P i (PsubI (xO j) Q') end end. Variable P' : Pol. - Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PaddX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX P' i' P | Pinj j Q' => match j with | xH => PX P' i' Q' - | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX P' i' (Pinj (Pos.pred_double j) Q') | xI j => PX P' i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PaddX k P) i Q' end end. - Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol := + Fixpoint PsubX (i':positive) (P:Pol) : Pol := match P with | Pc c => PX (--P') i' P | Pinj j Q' => match j with | xH => PX (--P') i' Q' - | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q') + | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q') | xI j => PX (--P') i' (Pinj (xO j) Q') end | PX P i Q' => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' | Z0 => mkPX (Pop P P') i Q' | Zneg k => mkPX (PsubX k P) i Q' @@ -258,18 +275,18 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX P' i' (Padd Q Q') - | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q') | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') | Z0 => mkPX (Padd P P') i (Padd Q Q') | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') end end end. - Notation "P ++ P'" := (Padd P P'). + Infix "++" := Padd. Fixpoint Psub (P P': Pol) {struct P'} : Pol := match P' with @@ -281,22 +298,22 @@ Section MakeRingPol. | Pinj j Q => match j with | xH => PX (--P') i' (Psub Q Q') - | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q') + | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q') | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') end | PX P i Q => - match ZPminus i i' with + match Z.pos_sub i i' with | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') | Z0 => mkPX (Psub P P') i (Psub Q Q') | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') end end end. - Notation "P -- P'" := (Psub P P'). + Infix "--" := Psub. (** Multiplication *) - Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := + Fixpoint PmulC_aux (P:Pol) (c:C) : Pol := match P with | Pc c' => Pc (c' *! c) | Pinj j Q => mkPinj j (PmulC_aux Q c) @@ -310,11 +327,11 @@ Section MakeRingPol. Section PmulI. Variable Pmul : Pol -> Pol -> Pol. Variable Q : Pol. - Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol := + Fixpoint PmulI (j:positive) (P:Pol) : Pol := match P with | Pc c => mkPinj j (PmulC Q c) | Pinj j' Q' => - match ZPminus j' j with + match Z.pos_sub j' j with | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) | Z0 => mkPinj j (Pmul Q' Q) | Zneg k => mkPinj j' (PmulI k Q') @@ -322,13 +339,12 @@ Section MakeRingPol. | PX P' i' Q' => match j with | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) - | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q') + | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q') | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') end end. End PmulI. -(* A symmetric version of the multiplication *) Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := match P'' with @@ -341,7 +357,7 @@ Section MakeRingPol. let QQ' := match j with | xH => Pmul Q Q' - | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q' + | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q' | xI j => Pmul (Pinj (xO j) Q) Q' end in mkPX (Pmul P P') i' QQ' @@ -354,25 +370,7 @@ Section MakeRingPol. end end. -(* Non symmetric *) -(* - Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol := - match P' with - | Pc c' => PmulC P c' - | Pinj j' Q' => PmulI Pmul_aux Q' j' P - | PX P' i' Q' => - (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P) - end. - - Definition Pmul P P' := - match P with - | Pc c => PmulC P' c - | Pinj j Q => PmulI Pmul_aux Q j P' - | PX P i Q => - (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P') - end. -*) - Notation "P ** P'" := (Pmul P P'). + Infix "**" := Pmul. Fixpoint Psquare (P:Pol) : Pol := match P with @@ -387,26 +385,26 @@ Section MakeRingPol. (** Monomial **) + (** A monomial is X1^k1...Xi^ki. Its representation + is a simplified version of the polynomial representation: + + - [mon0] correspond to the polynom [P1]. + - [(zmon j M)] corresponds to [(Pinj j ...)], + i.e. skip j variable indices. + - [(vmon i M)] is X^i*M with X the current variable, + its corresponds to (PX P1 i ...)] + *) + Inductive Mon: Set := - mon0: Mon + | mon0: Mon | zmon: positive -> Mon -> Mon | vmon: positive -> Mon -> Mon. - Fixpoint Mphi(l:list R) (M: Mon) {struct M} : R := - match M with - mon0 => rI - | zmon j M1 => Mphi (jump j l) M1 - | vmon i M1 => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Mphi (tail l) M1) * xi - end. - Definition mkZmon j M := match M with mon0 => mon0 | _ => zmon j M end. Definition zmon_pred j M := - match j with xH => M | _ => mkZmon (Ppred j) M end. + match j with xH => M | _ => mkZmon (Pos.pred j) M end. Definition mkVmon i M := match M with @@ -421,7 +419,7 @@ Section MakeRingPol. | Pinj j1 P1 => let (R,S) := CFactor P1 c in (mkPinj j1 R, mkPinj j1 S) - | PX P1 i Q1 => + | PX P1 i Q1 => let (R1, S1) := CFactor P1 c in let (R2, S2) := CFactor Q1 c in (mkPX R1 i R2, mkPX S1 i S2) @@ -429,10 +427,7 @@ Section MakeRingPol. Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol := match P, M with - _, mon0 => - if (ceqb c cI) then (Pc cO, P) else -(* if (ceqb c (copp cI)) then (Pc cO, Popp P) else Not in almost ring *) - CFactor P c + _, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c | Pc _, _ => (P, Pc cO) | Pinj j1 P1, zmon j2 M1 => match j1 ?= j2 with @@ -468,7 +463,7 @@ Section MakeRingPol. | _ => Some (Padd Q1 (Pmul P2 R1)) end. - Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) {struct n}: Pol := + Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol := match POneSubst P1 cM1 P2 with Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end | _ => P1 @@ -480,14 +475,13 @@ Section MakeRingPol. | _ => None end. - Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: - Pol := + Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol := match LM1 with cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n | _ => P1 end. - Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: option Pol := + Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol := match LM1 with cons (M1,P2) LM2 => match PNSubst P1 M1 P2 n with @@ -497,7 +491,7 @@ Section MakeRingPol. | _ => None end. - Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) {struct m}: Pol := + Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol := match PSubstL P1 LM1 n with Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end | _ => P1 @@ -505,658 +499,409 @@ Section MakeRingPol. (** Evaluation of a polynomial towards R *) - Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R := + Local Notation hd := (List.hd 0). + + Fixpoint Pphi(l:list R) (P:Pol) : R := match P with | Pc c => [c] | Pinj j Q => Pphi (jump j l) Q - | PX P i Q => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Pphi l P) * xi + (Pphi (tail l) Q) + | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q end. Reserved Notation "P @ l " (at level 10, no associativity). Notation "P @ l " := (Pphi l P). + + (** Evaluation of a monomial towards R *) + + Fixpoint Mphi(l:list R) (M: Mon) : R := + match M with + | mon0 => rI + | zmon j M1 => Mphi (jump j l) M1 + | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i + end. + + Notation "M @@ l" := (Mphi l M) (at level 10, no associativity). + (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive + + Ltac destr_pos_sub := + match goal with |- context [Z.pos_sub ?x ?y] => + generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y) end. + + Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l). + Proof. rewrite Pos.add_comm. apply jump_add. Qed. + + Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l. Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. + revert P';induction P;destruct P';simpl; intros H l; try easy. + - now apply (morph_eq CRmorph). + - destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + now rewrite IHP. + - specialize (IHP1 P'1); specialize (IHP2 P'2). + destruct (Pos.compare_spec p p0); [ subst | easy | easy ]. + destruct (P2 ?== P'1); [|easy]. + rewrite H in *. + now rewrite IHP1, IHP2. Qed. - Lemma Peq_ok : forall P P', - (P ?== P') = true -> forall l, P@l == P'@ l. + Lemma Peq_spec P P' : + BoolSpec (forall l, P@l == P'@l) True (P ?== P'). Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply (morph_eq CRmorph);trivial. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite (IHP P' H); rewrite H1;trivial;rrefl. - assert (H1 := Pos.compare_eq p p0); destruct (p ?= p0); - try discriminate H. - rewrite H1;trivial. clear H1. - assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2); - destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H] - |discriminate H]. - rewrite (H1 H);rewrite (H2 H);rrefl. + generalize (Peq_ok P P'). destruct (P ?== P'); auto. Qed. - Lemma Pphi0 : forall l, P0@l == 0. + Lemma Pphi0 l : P0@l == 0. Proof. - intros;simpl;apply (morph0 CRmorph). + simpl;apply (morph0 CRmorph). Qed. - Lemma Pphi1 : forall l, P1@l == 1. + Lemma Pphi1 l : P1@l == 1. Proof. - intros;simpl;apply (morph1 CRmorph). + simpl;apply (morph1 CRmorph). Qed. - Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l). + Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l). Proof. - intros j l p;destruct p;simpl;rsimpl. - rewrite <-jump_Pplus;rewrite Pplus_comm;rrefl. + destruct P;simpl;rsimpl. + now rewrite jump_add'. Qed. - Let pow_pos_Pplus := - pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc). + Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j. + Proof. + rewrite Pos.add_comm. + apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). + Qed. - Lemma mkPX_ok : forall l P i Q, - (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l). + Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c'). Proof. - intros l P i Q;unfold mkPX. - destruct P;try (simpl;rrefl). - assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl. - rewrite (H (refl_equal true));rewrite (morph0 CRmorph). - rewrite mkPinj_ok;rsimpl;simpl;rrefl. - assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl. - rewrite (H (refl_equal true));trivial. - rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl. + generalize (morph_eq CRmorph c c'). + destruct (c ?=! c'); auto. Qed. - Ltac Esimpl := - repeat (progress ( - match goal with - | |- context [?P@?l] => - match P with - | P0 => rewrite (Pphi0 l) - | P1 => rewrite (Pphi1 l) - | (mkPinj ?j ?P) => rewrite (mkPinj_ok j l P) - | (mkPX ?P ?i ?Q) => rewrite (mkPX_ok l P i Q) - end - | |- context [[?c]] => - match c with - | cO => rewrite (morph0 CRmorph) - | cI => rewrite (morph1 CRmorph) - | ?x +! ?y => rewrite ((morph_add CRmorph) x y) - | ?x *! ?y => rewrite ((morph_mul CRmorph) x y) - | ?x -! ?y => rewrite ((morph_sub CRmorph) x y) - | -! ?x => rewrite ((morph_opp CRmorph) x) - end - end)); - rsimpl; simpl. - - Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c]. + Lemma mkPX_ok l P i Q : + (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l). Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP2;rsimpl. + unfold mkPX. destruct P. + - case ceqb_spec; intros H; simpl; try reflexivity. + rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl. + - reflexivity. + - case Peq_spec; intros H; simpl; try reflexivity. + rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl. Qed. - Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c]. + Hint Rewrite + Pphi0 + Pphi1 + mkPinj_ok + mkPX_ok + (morph0 CRmorph) + (morph1 CRmorph) + (morph0 CRmorph) + (morph_add CRmorph) + (morph_mul CRmorph) + (morph_sub CRmorph) + (morph_opp CRmorph) + : Esimpl. + + (* Quicker than autorewrite with Esimpl :-) *) + Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl. + + Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c]. Proof. - induction P;simpl;intros. - Esimpl. - rewrite IHP;rsimpl. + revert l;induction P;simpl;intros;Esimpl;trivial. rewrite IHP2;rsimpl. Qed. - Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. + Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c]. Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP1;rewrite IHP2;rsimpl. - mul_push ([c]);rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - rewrite IHP;rsimpl. + - rewrite IHP2;rsimpl. Qed. - Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. + Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c]. Proof. - intros c P l; unfold PmulC. - assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO). - rewrite (H (refl_equal true));Esimpl. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - apply PmulC_aux_ok. + revert l;induction P;simpl;intros;Esimpl;trivial. + rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut. Qed. - Lemma Popp_ok : forall P l, (--P)@l == - P@l. + Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c]. Proof. - induction P;simpl;intros. - Esimpl. - apply IHP. - rewrite IHP1;rewrite IHP2;rsimpl. + unfold PmulC. + case ceqb_spec; intros H. + - rewrite H; Esimpl. + - case ceqb_spec; intros H'. + + rewrite H'; Esimpl. + + apply PmulC_aux_ok. Qed. - Ltac Esimpl2 := - Esimpl; - repeat (progress ( - match goal with - | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l) - | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l) - | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) - | |- context [(--?P)@?l] => rewrite (Popp_ok P l) - end)); Esimpl. - - Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l. + Lemma Popp_ok P l : (--P)@l == - P@l. Proof. - induction P';simpl;intros;Esimpl2. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rrefl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl;rsimpl. - rewrite IHP2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - Esimpl2;add_push [c];rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl. - rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl. add_push (P @ (tail l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1;rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1;rewrite IHP'2;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros;try apply (ARadd_comm ARth). - destruct p2;simpl;try apply (ARadd_comm ARth). - rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth). - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2. - rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl. - rewrite IHP'1;simpl;Esimpl. - rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. + revert l;induction P;simpl;intros. + - Esimpl. + - apply IHP. + - rewrite IHP1, IHP2;rsimpl. Qed. - Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. + Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl. + + Lemma PaddX_ok P' P k l : + (forall P l, (P++P')@l == P@l + P'@l) -> + (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k. Proof. - induction P';simpl;intros;Esimpl2;trivial. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rsimpl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl;rsimpl. - rewrite IHP2;simpl. - rewrite jump_Pdouble_minus_one;rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial. - add_push (P @ (jump p0 (jump p0 (tail l))));rrefl. - rewrite IHP'2;simpl;rewrite jump_Pdouble_minus_one;rsimpl. - add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl;add_push (P @ (tail l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1; rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros. - rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial. - destruct p2;simpl;rewrite Popp_ok;rsimpl. - apply (ARadd_comm ARth);trivial. - rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth);trivial. - apply (ARadd_comm ARth);trivial. - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl. - rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl. - rewrite IHP'1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. + intros IHP'. + revert k l. induction P;simpl;intros. + - add_permut. + - destruct p; simpl; + rewrite ?jump_pred_double; add_permut. + - destr_pos_sub; intros ->;Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. -(* Proof for the symmetriv version *) - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). + Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * now rewrite IHP'. + * rewrite IHP';Esimpl. now rewrite jump_add'. + * rewrite IHP. now rewrite jump_add'. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. + * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl. add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rsimpl. add_permut. + * rewrite jump_pred_double. rsimpl. add_permut. + * rsimpl. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PaddX_ok by trivial; rsimpl. + rewrite IHP'2, pow_pos_add; rsimpl. add_permut. Qed. -(* - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l). + Lemma PsubX_ok P' P k l : + (forall P l, (P--P')@l == P@l - P'@l) -> + (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k. Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. + intros IHP'. + revert k l. induction P;simpl;intros. + - rewrite Popp_ok;rsimpl; add_permut. + - destruct p; simpl; + rewrite Popp_ok;rsimpl; + rewrite ?jump_pred_double; add_permut. + - destr_pos_sub; intros ->; Esimpl. + + rewrite IHP';rsimpl. add_permut. + + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut. + + rewrite IHP1, pow_pos_add;rsimpl. add_permut. Qed. - Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l. + Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l. Proof. - induction P';simpl;intros. - Esimpl2;trivial. - apply PmulI_ok;trivial. - rewrite Padd_ok;Esimpl2. - rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl. + revert P l; induction P';simpl;intros;Esimpl. + - revert p l; induction P;simpl;intros. + + Esimpl; add_permut. + + destr_pos_sub; intros ->;Esimpl. + * rewrite IHP';rsimpl. + * rewrite IHP';Esimpl. now rewrite jump_add'. + * rewrite IHP. now rewrite jump_add'. + + destruct p0;simpl. + * rewrite IHP2;simpl. rsimpl. + * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl. + * rewrite IHP'. rsimpl. + - destruct P;simpl. + + Esimpl; add_permut. + + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl. + * rsimpl. add_permut. + * rewrite jump_pred_double. rsimpl. add_permut. + * rsimpl. add_permut. + + destr_pos_sub; intros ->; Esimpl. + * rewrite IHP'1, IHP'2;rsimpl. add_permut. + * rewrite IHP'1, IHP'2;simpl;Esimpl. + rewrite pow_pos_add;rsimpl. add_permut. + * rewrite PsubX_ok by trivial;rsimpl. + rewrite IHP'2, pow_pos_add;rsimpl. add_permut. Qed. -*) -(* Proof for the symmetric version *) - Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma PmulI_ok P' : + (forall P l, (Pmul P P') @ l == P @ l * P' @ l) -> + forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). Proof. - intros P P';generalize P;clear P;induction P';simpl;intros. - apply PmulC_ok. apply PmulI_ok;trivial. - destruct P. - rewrite (ARmul_comm ARth);Esimpl2;Esimpl2. - Esimpl2. rewrite IHP'1;Esimpl2. - assert (match p0 with - | xI j => Pinj (xO j) P ** P'2 - | xO j => Pinj (Pdouble_minus_one j) P ** P'2 - | 1 => P ** P'2 - end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)). - destruct p0;simpl;rewrite IHP'2;Esimpl. - rewrite jump_Pdouble_minus_one;Esimpl. - rewrite H;Esimpl. - rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2. - repeat (rewrite IHP'1 || rewrite IHP'2);simpl. - rewrite PmulI_ok;trivial. - mul_push (P'1@l). simpl. mul_push (P'2 @ (tail l)). Esimpl. + intros IHP'. + induction P;simpl;intros. + - Esimpl; mul_permut. + - destr_pos_sub; intros ->;Esimpl. + + now rewrite IHP'. + + now rewrite IHP', jump_add'. + + now rewrite IHP, jump_add'. + - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl. + + f_equiv. mul_permut. + + rewrite jump_pred_double. f_equiv. mul_permut. + + rewrite IHP'. f_equiv. mul_permut. Qed. -(* -Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. + Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l. Proof. - destruct P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - rewrite (PmulI_ok P (Pmul_aux_ok P)). - apply (ARmul_comm ARth). - rewrite Padd_ok; Esimpl2. - rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial. - rewrite Pmul_aux_ok;mul_push (P' @ l). - rewrite (ARmul_comm ARth (P' @ l));rrefl. + revert P l;induction P';simpl;intros. + - apply PmulC_ok. + - apply PmulI_ok;trivial. + - destruct P. + + rewrite (ARmul_comm ARth). Esimpl. + + Esimpl. f_equiv. rewrite IHP'1; Esimpl. + destruct p0;rewrite IHP'2;Esimpl. + rewrite jump_pred_double; Esimpl. + + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok, + !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl. + add_permut; f_equiv; mul_permut. Qed. -*) - Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. + Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l. Proof. - induction P;simpl;intros;Esimpl2. - apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2. - rewrite IHP1;rewrite IHP2. - mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l). - rrefl. + revert l;induction P;simpl;intros;Esimpl. + - apply IHP. + - rewrite Padd_ok, Pmul_ok;Esimpl. + rewrite IHP1, IHP2. + mul_push ((hd l)^p). now mul_push (P2@l). Qed. - - Lemma mkZmon_ok: forall M j l, - Mphi l (mkZmon j M) == Mphi l (zmon j M). - intros M j l; case M; simpl; intros; rsimpl. + Lemma mkZmon_ok M j l : + (mkZmon j M) @@ l == (zmon j M) @@ l. + Proof. + destruct M; simpl; rsimpl. Qed. - Lemma zmon_pred_ok : forall M j l, - Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M). + Lemma zmon_pred_ok M j l : + (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l. Proof. - destruct j; simpl;intros auto; rsimpl. - rewrite mkZmon_ok;rsimpl. - rewrite mkZmon_ok;simpl. rewrite jump_Pdouble_minus_one; rsimpl. + destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl. + rewrite jump_pred_double; rsimpl. Qed. - Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i. + Lemma mkVmon_ok M i l : + (mkVmon i M)@@l == M@@l * (hd l)^i. Proof. destruct M;simpl;intros;rsimpl. - rewrite zmon_pred_ok;simpl;rsimpl. - rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl. + - rewrite zmon_pred_ok;simpl;rsimpl. + - rewrite pow_pos_add;rsimpl. Qed. - Lemma Mcphi_ok: forall P c l, - let (Q,R) := CFactor P c in - P@l == Q@l + (phi c) * (R@l). + Ltac destr_factor := match goal with + | H : context [CFactor ?P _] |- context [CFactor ?P ?c] => + destruct (CFactor P c); destr_factor; rewrite H; clear H + | H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] => + specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H + | _ => idtac + end. + + Lemma Mcphi_ok P c l : + let (Q,R) := CFactor P c in + P@l == Q@l + [c] * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c c1 l; generalize (div_th.(div_eucl_th) c c1); case cdiv. - intros q r H; rewrite H. - Esimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros i P Hrec c l. - generalize (Hrec c (jump i l)); case CFactor. - intros R1 S1; Esimpl; auto. - intros Q1 Qrec i R1 Rrec c l. - generalize (Qrec c l); case CFactor; intros S1 S2 HS. - generalize (Rrec c (tail l)); case CFactor; intros S3 S4 HS1. - rewrite HS; rewrite HS1; Esimpl. - apply (Radd_ext Reqe); rsimpl. - repeat rewrite <- (ARadd_assoc ARth). - apply (Radd_ext Reqe); rsimpl. - rewrite (ARadd_comm ARth); rsimpl. + revert l. + induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl. + - assert (H := div_th.(div_eucl_th) c0 c). + destruct cdiv as (q,r). rewrite H; Esimpl. add_permut. + - destr_factor. Esimpl. + - destr_factor. Esimpl. add_permut. Qed. - Lemma Mphi_ok: forall P (cM: C * Mon) l, - let (c,M) := cM in - let (Q,R) := MFactor P c M in - P@l == Q@l + (phi c) * (Mphi l M) * (R@l). + Lemma Mphi_ok P (cM: C * Mon) l : + let (c,M) := cM in + let (Q,R) := MFactor P c M in + P@l == Q@l + [c] * M@@l * R@l. Proof. - intros P; elim P; simpl; auto; clear P. - intros c (c1, M) l; case M; simpl; auto. - assert (H1:= morph_eq CRmorph c1 cI);destruct (c1 ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - try rewrite (morph0 CRmorph); rsimpl. - generalize (div_th.(div_eucl_th) c c1); case (cdiv c c1). - intros q r H; rewrite H; clear H H1. - Esimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros p m; Esimpl. - intros p m; Esimpl. - intros i P Hrec (c,M) l; case M; simpl; clear M. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - Esimpl. - generalize (Mcphi_ok P c (jump i l)); case CFactor. - intros R1 Q1 HH; rewrite HH; Esimpl. - intros j M. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec (c, M) (jump j l)); case (MFactor P c M); - simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - generalize (Hrec (c, (zmon (j -i) M)) (jump i l)); - case (MFactor P c (zmon (j -i) M)); simpl. - intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)). - rewrite Pplus_comm; rewrite jump_Pplus; auto. - rewrite (morph0 CRmorph); rsimpl. - intros P2 m; rewrite (morph0 CRmorph); rsimpl. - - intros P2 Hrec1 i Q2 Hrec2 (c, M) l; case M; simpl; auto. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - Esimpl. - generalize (Mcphi_ok P2 c l); case CFactor. - intros S1 S2 HS. - generalize (Mcphi_ok Q2 c (tail l)); case CFactor. - intros S3 S4 HS1; Esimpl; rewrite HS; rewrite HS1. - rsimpl. - apply (Radd_ext Reqe); rsimpl. - repeat rewrite <- (ARadd_assoc ARth). - apply (Radd_ext Reqe); rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - intros j M1. - generalize (Hrec1 (c,zmon j M1) l); - case (MFactor P2 c (zmon j M1)). - intros R1 S1 H1. - generalize (Hrec2 (c, zmon_pred j M1) (List.tail l)); - case (MFactor Q2 c (zmon_pred j M1)); simpl. - intros R2 S2 H2; rewrite H1; rewrite H2. - repeat rewrite mkPX_ok; simpl. - rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - rewrite zmon_pred_ok;rsimpl. - intros j M1. - case_eq (i ?= j); intros He; simpl. - rewrite (Pos.compare_eq _ _ He). - generalize (Hrec1 (c, mkZmon xH M1) l); case (MFactor P2 c (mkZmon xH M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite mkZmon_ok. - apply rmul_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - generalize (Hrec1 (c, vmon (j - i) M1) l); - case (MFactor P2 c (vmon (j - i) M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- (ARmul_comm ARth (Mphi (tail l) M1)); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl. - generalize (Hrec1 (c, mkZmon 1 M1) l); - case (MFactor P2 c (mkZmon 1 M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite mkZmon_ok. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - rewrite mkPX_ok; simpl; rsimpl. - rewrite (morph0 CRmorph); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite (ARmul_comm ARth (Q3@l)); rsimpl. - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - repeat (rewrite <- (ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ He); rsimpl. + destruct cM as (c,M). revert M l. + induction P; destruct M; intros l; simpl; auto; + try (case ceqb_spec; intro He); + try (case Pos.compare_spec; intros He); rewrite ?He; + destr_factor; simpl; Esimpl. + - assert (H := div_th.(div_eucl_th) c0 c). + destruct cdiv as (q,r). rewrite H; Esimpl. add_permut. + - assert (H := Mcphi_ok P c). destr_factor. Esimpl. + - now rewrite <- jump_add, Pos.sub_add. + - assert (H2 := Mcphi_ok P2 c). assert (H3 := Mcphi_ok P3 c). + destr_factor. Esimpl. add_permut. + - rewrite zmon_pred_ok. simpl. add_permut. + - rewrite mkZmon_ok. simpl. add_permut. mul_permut. + - add_permut. mul_permut. + rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl. + - rewrite mkZmon_ok. simpl. Esimpl. add_permut. mul_permut. + rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl. Qed. -(* Proof for the symmetric version *) - - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> phi (fst M1) * Mphi l (snd M1) == P2@l -> P1@l == P3@l. + Lemma POneSubst_ok P1 cM1 P2 P3 l : + POneSubst P1 cM1 P2 = Some P3 -> + [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l. Proof. - intros P2 (cc,M1) P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 (cc, M1) l); case (MFactor P2 cc M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - (* new version *) - rewrite Padd_ok; rewrite PmulC_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - assert (P4 = Q1 ++ P3 ** PX i P5 P6). - injection H2; intros; subst;trivial. - rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl. - Qed. -(* - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. -Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - injection H2; intros; subst; rsimpl. - rewrite Padd_ok. - rewrite Pmul_ok; rsimpl. + destruct cM1 as (cc,M1). + unfold POneSubst. + assert (H := Mphi_ok P1 (cc, M1) l). simpl in H. + destruct MFactor as (R1,S1); simpl. rewrite H. clear H. + intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1). + - rewrite EQ', Padd_ok, Pmul_ok; rsimpl. + - revert EQ. destruct S1; try now injection 1. + case ceqb_spec; now inversion 2. Qed. -*) - Lemma PNSubst1_ok: forall n P1 M1 P2 l, - [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. + + Lemma PNSubst1_ok n P1 cM1 P2 l : + [fst cM1] * (snd cM1)@@l == P2@l -> + P1@l == (PNSubst1 P1 cM1 P2 n)@l. Proof. - intros n; elim n; simpl; auto. - intros P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl. - intros n1 Hrec P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl. + revert P1. induction n; simpl; intros P1; + generalize (POneSubst_ok P1 cM1 P2); destruct POneSubst; + intros; rewrite <- ?IHn; auto; reflexivity. Qed. - Lemma PNSubst_ok: forall n P1 M1 P2 l P3, - PNSubst P1 M1 P2 n = Some P3 -> [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == P3@l. + Lemma PNSubst_ok n P1 cM1 P2 l P3 : + PNSubst P1 cM1 P2 n = Some P3 -> + [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l. Proof. - intros n P2 (cc, M1) P3 l P4; unfold PNSubst. - generalize (fun P4 => @POneSubst_ok P2 (cc,M1) P3 P4 l); - case (POneSubst P2 (cc,M1) P3); [idtac | intros; discriminate]. - intros P5 H1; case n; try (intros; discriminate). - intros n1 H2; injection H2; intros; subst. - rewrite <- PNSubst1_ok; auto. + unfold PNSubst. + assert (H := POneSubst_ok P1 cM1 P2); destruct POneSubst; try discriminate. + destruct n; inversion_clear 1. + intros. rewrite <- PNSubst1_ok; auto. Qed. - Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) {struct LM1} : Prop := - match LM1 with - cons (M1,P2) LM2 => ([fst M1] * Mphi l (snd M1) == P2@l) /\ (MPcond LM2 l) - | _ => True - end. + Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop := + match LM1 with + | (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l + | _ => True + end. - Lemma PSubstL1_ok: forall n LM1 P1 l, - MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. + Lemma PSubstL1_ok n LM1 P1 l : + MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; rsimpl. - intros (M2,P2) LM2 Hrec P3 l [H H1]. - rewrite <- Hrec; auto. - apply PNSubst1_ok; auto. + revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros. + - reflexivity. + - rewrite <- IH by intuition. now apply PNSubst1_ok. Qed. - Lemma PSubstL_ok: forall n LM1 P1 P2 l, - PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. + Lemma PSubstL_ok n LM1 P1 P2 l : + PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. Proof. - intros n LM1; elim LM1; simpl; auto. - intros; discriminate. - intros (M2,P2) LM2 Hrec P3 P4 l. - generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n). - intros P5 H0 H1 [H2 H3]; injection H1; intros; subst. - rewrite <- PSubstL1_ok; auto. - intros l1 H [H1 H2]; auto. + revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros. + - discriminate. + - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst. + * injection H; intros <-. rewrite <- PSubstL1_ok; intuition. + * now apply IH. Qed. - Lemma PNSubstL_ok: forall m n LM1 P1 l, - MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. + Lemma PNSubstL_ok m n LM1 P1 l : + MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. Proof. - intros m; elim m; simpl; auto. - intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - intros m1 Hrec n LM1 P2 l H. - generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - rewrite <- Hrec; auto. + revert LM1 P1. induction m; simpl; intros; + assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL; + auto; try reflexivity. + rewrite <- IHm; auto. Qed. (** Definition of polynomial expressions *) @@ -1190,58 +935,22 @@ Strategy expand [PEeval]. (** Correctness proofs *) - Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l. + Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l. Proof. destruct p;simpl;intros;Esimpl;trivial. - rewrite <-jump_tl;rewrite nth_jump;rrefl. - rewrite <- nth_jump. - rewrite nth_Pdouble_minus_one;rrefl. + - now rewrite <-jump_tl, nth_jump. + - now rewrite <- nth_jump, nth_pred_double. Qed. - Ltac Esimpl3 := - repeat match goal with - | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l) - | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l) - end;Esimpl2;try rrefl;try apply (ARadd_comm ARth). - -(* Power using the chinise algorithm *) -(*Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => P - | xO p => subst_l (Psquare (Ppow_pos P p)) - | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p))) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok P. - induction p;simpl;intros;try rrefl;try rewrite subst_l_ok. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed. - - End POWER. *) + Hint Rewrite Padd_ok Psub_ok : Esimpl. Section POWER. Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := + Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol := match p with - | xH => subst_l (Pmul res P) + | xH => subst_l (res ** P) | xO p => Ppow_pos (Ppow_pos res P p) P p - | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P) + | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P) end. Definition Ppow_N P n := @@ -1250,17 +959,23 @@ Section POWER. | Npos p => Ppow_pos P1 P p end. - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. + Lemma Ppow_pos_ok l : + (forall P, subst_l P@l == P@l) -> + forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. Proof. - intros l subst_l_ok res P p. generalize res;clear res. - induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp. - rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl. + intros subst_l_ok res P p. revert res. + induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp; + mul_permut. Qed. - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok by trivial. Esimpl. Qed. + Lemma Ppow_N_ok l : + (forall P, subst_l P@l == P@l) -> + forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. + Proof. + destruct n;simpl. + - reflexivity. + - rewrite Ppow_pos_ok by trivial. Esimpl. + Qed. End POWER. @@ -1277,69 +992,66 @@ Section POWER. match pe with | PEc c => Pc c | PEX j => mk_X j - | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_aux pe1) (norm_aux pe2) - | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2) - | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2) - | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2) - | PEopp pe1 => Popp (norm_aux pe1) + | PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1) + | PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2) + | PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2) + | PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2) + | PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2) + | PEopp pe1 => -- (norm_aux pe1) | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n end. Definition norm_subst pe := subst_l (norm_aux pe). - (* - Fixpoint norm_subst (pe:PExpr) : Pol := + (** Internally, [norm_aux] is expanded in a large number of cases. + To speed-up proofs, we use an alternative definition. *) + + Definition get_PEopp pe := match pe with - | PEc c => Pc c - | PEX j => subst_l (mk_X j) - | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_subst pe1) (norm_subst pe2) - | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2) - | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2) - | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2) - | PEopp pe1 => Popp (norm_subst pe1) - | PEpow pe1 n => Ppow_subst (norm_subst pe1) n + | PEopp pe' => Some pe' + | _ => None end. - Lemma norm_subst_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_subst pe)@l. + Lemma norm_aux_PEadd pe1 pe2 : + norm_aux (PEadd pe1 pe2) = + match get_PEopp pe1, get_PEopp pe2 with + | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1') + | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2') + | None, None => (norm_aux pe1) ++ (norm_aux pe2) + end. Proof. - intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l). - unfold subst_l;intros. - rewrite <- PNSubstL_ok;trivial. rrefl. - assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l). - intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl. - induction pe;simpl;Esimpl3. - rewrite subst_l_ok;apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe;rrefl. - unfold Ppow_subst. rewrite Ppow_N_ok. trivial. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + simpl (norm_aux (PEadd _ _)). + destruct pe1; [ | | | | | reflexivity | ]; + destruct pe2; simpl get_PEopp; reflexivity. Qed. -*) - Lemma norm_aux_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_aux pe)@l. + + Lemma norm_aux_PEopp pe : + match get_PEopp pe with + | Some pe' => norm_aux pe = -- (norm_aux pe') + | None => True + end. + Proof. + now destruct pe. + Qed. + + Lemma norm_aux_spec l pe : + PEeval l pe == (norm_aux pe)@l. Proof. intros. - induction pe;simpl;Esimpl3. - apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl. - rewrite IHpe;rrefl. - rewrite Ppow_N_ok by (intros;rrefl). - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. + induction pe. + - reflexivity. + - apply mkX_ok. + - simpl PEeval. rewrite IHpe1, IHpe2. + assert (H1 := norm_aux_PEopp pe1). + assert (H2 := norm_aux_PEopp pe2). + rewrite norm_aux_PEadd. + do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut. + - simpl. rewrite IHpe1, IHpe2. Esimpl. + - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok. + - simpl. rewrite IHpe. Esimpl. + - simpl. rewrite Ppow_N_ok by reflexivity. + rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl. + induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok. Qed. Lemma norm_subst_spec : @@ -1347,7 +1059,7 @@ Section POWER. PEeval l pe == (norm_subst pe)@l. Proof. intros;unfold norm_subst. - unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. trivial. + unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. Qed. End NORM_SUBST_REC. @@ -1514,27 +1226,27 @@ Section POWER. (rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R := match P with | Pc c => - let lm := add_pow_list (hd 0 fv) n lm in + let lm := add_pow_list (hd fv) n lm in mkadd_mult rP c lm | Pinj j Q => - add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm) + add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => - let rP := add_mult_dev rP P fv (Nplus (Npos i) n) lm in + let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP - else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd 0 fv) n lm) + else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm) end. Fixpoint mult_dev (P:Pol) (fv : list R) (n:N) (lm:list (R*positive)) {struct P} : R := (* P@l * (hd 0 l)^n * lm *) match P with - | Pc c => mkmult_c c (add_pow_list (hd 0 fv) n lm) - | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm) + | Pc c => mkmult_c c (add_pow_list (hd fv) n lm) + | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm) | PX P i Q => - let rP := mult_dev P fv (Nplus (Npos i) n) lm in + let rP := mult_dev P fv (N.add (Npos i) n) lm in if Q ?== P0 then rP else - let lmq := add_pow_list (hd 0 fv) n lm in + let lmq := add_pow_list (hd fv) n lm in add_mult_dev rP Q (tail fv) N0 lmq end. @@ -1575,7 +1287,7 @@ Section POWER. (forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l). induction l;intros;simpl;Esimpl. destruct a;rewrite IHl;Esimpl. - rewrite (ARmul_comm ARth (pow_pos rmul r p)). rrefl. + rewrite (ARmul_comm ARth (pow_pos rmul r p)). reflexivity. intros;unfold rev'. rewrite H;simpl;Esimpl. Qed. @@ -1617,11 +1329,11 @@ Qed. Qed. Lemma add_mult_dev_ok : forall P rP fv n lm, - add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd 0 fv) n * r_list_pow lm. + add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm. Proof. induction P;simpl;intros. - rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl. - rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl. + rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl. + rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl. change (match P3 with | Pc c => c ?=! cO | Pinj _ _ => false @@ -1630,17 +1342,19 @@ Qed. change match n with | N0 => Npos p | Npos q => Npos (p + q) - end with (Nplus (Npos p) n);trivial. + end with (N.add (Npos p) n);trivial. assert (H := Peq_ok P3 P0). destruct (P3 ?== P0). - rewrite (H (refl_equal true)). - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. - rewrite IHP2. - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + rewrite (H eq_refl). + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut. mul_permut. + rewrite IHP2. + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut. mul_permut. Qed. Lemma mult_dev_ok : forall P fv n lm, - mult_dev P fv n lm == P@fv * pow_N rI rmul (hd 0 fv) n * r_list_pow lm. + mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm. Proof. induction P;simpl;intros;Esimpl. rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl. @@ -1653,13 +1367,15 @@ Qed. change match n with | N0 => Npos p | Npos q => Npos (p + q) - end with (Nplus (Npos p) n);trivial. + end with (N.add (Npos p) n);trivial. assert (H := Peq_ok P3 P0). destruct (P3 ?== P0). - rewrite (H (refl_equal true)). - rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + rewrite (H eq_refl). + rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + mul_permut. rewrite add_mult_dev_ok. rewrite IHP1; rewrite add_pow_list_ok. - destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl. + destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl. + add_permut; mul_permut. Qed. Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv. @@ -1676,18 +1392,18 @@ Qed. let mkmult_pow r x p := rmul r (mkpow x p) in Pphi_avoid mkpow mkopp_pow mkmult_pow. - Lemma local_mkpow_ok : - forall (r : R) (p : positive), + Lemma local_mkpow_ok r p : match p with | xI _ => rpow r (Cp_phi (Npos p)) | xO _ => rpow r (Cp_phi (Npos p)) | 1 => r end == pow_pos rmul r p. - Proof. intros r p;destruct p;try rewrite pow_th.(rpow_pow_N);reflexivity. Qed. + Proof. destruct p; now rewrite ?pow_th.(rpow_pow_N). Qed. Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv. Proof. - unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;try rewrite local_mkpow_ok;rrefl. + unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros; + now rewrite ?local_mkpow_ok. Qed. Lemma ring_rw_pow_correct : forall n lH l, @@ -1697,7 +1413,7 @@ Qed. PEeval l pe == Pphi_pow l npe. Proof. intros n lH l H1 lmp Heq1 pe npe Heq2. - rewrite Pphi_pow_ok. rewrite <- Heq2;rewrite <- Heq1. + rewrite Pphi_pow_ok, <- Heq2, <- Heq1. apply norm_subst_ok. trivial. Qed. @@ -1711,58 +1427,48 @@ Qed. Definition mkpow x p := match p with | xH => x - | xO p => mkmult_pow x x (Pdouble_minus_one p) + | xO p => mkmult_pow x x (Pos.pred_double p) | xI p => mkmult_pow x x (xO p) end. Definition mkopp_pow x p := match p with | xH => -x - | xO p => mkmult_pow (-x) x (Pdouble_minus_one p) + | xO p => mkmult_pow (-x) x (Pos.pred_double p) | xI p => mkmult_pow (-x) x (xO p) end. Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow. - Lemma mkmult_pow_ok : forall p r x, mkmult_pow r x p == r*pow_pos rmul x p. + Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p. Proof. - induction p;intros;simpl;Esimpl. - repeat rewrite IHp;Esimpl. - repeat rewrite IHp;Esimpl. + revert r; induction p;intros;simpl;Esimpl;rewrite !IHp;Esimpl. Qed. - Lemma mkpow_ok : forall p x, mkpow x p == pow_pos rmul x p. + Lemma mkpow_ok p x : mkpow x p == x^p. Proof. destruct p;simpl;intros;Esimpl. - repeat rewrite mkmult_pow_ok;Esimpl. - rewrite mkmult_pow_ok;Esimpl. - pattern x at 1;replace x with (pow_pos rmul x 1). - rewrite <- pow_pos_Pplus. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO. - simpl;Esimpl. - trivial. + - rewrite !mkmult_pow_ok;Esimpl. + - rewrite mkmult_pow_ok;Esimpl. + change x with (x^1) at 1. + now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double. Qed. - Lemma mkopp_pow_ok : forall p x, mkopp_pow x p == - pow_pos rmul x p. + Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p. Proof. destruct p;simpl;intros;Esimpl. - repeat rewrite mkmult_pow_ok;Esimpl. - rewrite mkmult_pow_ok;Esimpl. - pattern x at 1;replace x with (pow_pos rmul x 1). - rewrite <- pow_pos_Pplus. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO. - simpl;Esimpl. - trivial. + - rewrite !mkmult_pow_ok;Esimpl. + - rewrite mkmult_pow_ok;Esimpl. + change x with (x^1) at 1. + now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double. Qed. Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv. Proof. unfold Pphi_dev;intros;apply Pphi_avoid_ok. - intros;apply mkpow_ok. - intros;apply mkopp_pow_ok. - intros;apply mkmult_pow_ok. + - intros;apply mkpow_ok. + - intros;apply mkopp_pow_ok. + - intros;apply mkmult_pow_ok. Qed. Lemma ring_rw_correct : forall n lH l, @@ -1776,6 +1482,4 @@ Qed. apply norm_subst_ok. trivial. Qed. - End MakeRingPol. - diff --git a/plugins/setoid_ring/Ring_tac.v b/plugins/setoid_ring/Ring_tac.v index d33e9a82..7a7ffcfd 100644 --- a/plugins/setoid_ring/Ring_tac.v +++ b/plugins/setoid_ring/Ring_tac.v @@ -3,6 +3,7 @@ Require Import Setoid. Require Import BinPos. Require Import Ring_polynom. Require Import BinList. +Require Export ListTactics. Require Import InitialRing. Require Import Quote. Declare ML Module "newring_plugin". @@ -14,7 +15,7 @@ Ltac compute_assertion eqn t' t := let nft := eval vm_compute in t in pose (t' := nft); assert (eqn : t = t'); - [vm_cast_no_check (refl_equal t')|idtac]. + [vm_cast_no_check (eq_refl t')|idtac]. Ltac relation_carrier req := let ty := type of req in @@ -340,7 +341,7 @@ Ltac Ring RNG lemma lH := || idtac "can not automatically proof hypothesis :"; idtac " maybe a left member of a hypothesis is not a monomial") | vm_compute; - (exact (refl_equal true) || fail "not a valid ring equation")]). + (exact (eq_refl true) || fail "not a valid ring equation")]). Ltac Ring_norm_gen f RNG lemma lH rl := let mkFV := get_RingFV RNG in @@ -385,7 +386,7 @@ Ltac Ring_simplify_gen f RNG lH rl := let lemma := get_SimplifyLemma RNG in let l := fresh "to_rewrite" in pose (l:= rl); - generalize (refl_equal l); + generalize (eq_refl l); unfold l at 2; get_Pre RNG (); let rl := diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v index ab992552..42ce4edc 100644 --- a/plugins/setoid_ring/Ring_theory.v +++ b/plugins/setoid_ring/Ring_theory.v @@ -1,14 +1,12 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -Require Import Setoid. -Require Import BinPos. -Require Import BinNat. +Require Import Setoid Morphisms BinPos BinNat. Set Implicit Arguments. @@ -35,48 +33,42 @@ Section Power. Variable rI : R. Variable rmul : R -> R -> R. Variable req : R -> R -> Prop. - Variable Rsth : Setoid_Theory R req. - Notation "x * y " := (rmul x y). - Notation "x == y" := (req x y). + Variable Rsth : Equivalence req. + Infix "*" := rmul. + Infix "==" := req. - Hypothesis mul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2. - Hypothesis mul_comm : forall x y, x * y == y * x. + Hypothesis mul_ext : Proper (req ==> req ==> req) rmul. Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z. - Add Setoid R req Rsth as R_set_Power. - Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed. - - Fixpoint pow_pos (x:R) (i:positive) {struct i}: R := + Fixpoint pow_pos (x:R) (i:positive) : R := match i with | xH => x - | xO i => let p := pow_pos x i in rmul p p - | xI i => let p := pow_pos x i in rmul x (rmul p p) + | xO i => let p := pow_pos x i in p * p + | xI i => let p := pow_pos x i in x * (p * p) end. - Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j. + Lemma pow_pos_swap x j : pow_pos x j * x == x * pow_pos x j. Proof. - induction j;simpl. - rewrite IHj. - rewrite (mul_comm x (pow_pos x j *pow_pos x j)). - setoid_rewrite (mul_comm x (pow_pos x j)) at 2. - repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - apply (Seq_refl _ _ Rsth). + induction j; simpl; rewrite <- ?mul_assoc. + - f_equiv. now do 2 (rewrite IHj, mul_assoc). + - now do 2 (rewrite IHj, mul_assoc). + - reflexivity. Qed. - Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j. + Lemma pow_pos_succ x j : + pow_pos x (Pos.succ j) == x * pow_pos x j. Proof. - intro x;induction i;intros. - rewrite xI_succ_xO;rewrite Pplus_one_succ_r. - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi. - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc. - simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc. - repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth). - rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc; - simpl. apply (Seq_refl _ _ Rsth). + induction j; simpl; try reflexivity. + rewrite IHj, <- mul_assoc; f_equiv. + now rewrite mul_assoc, pow_pos_swap, mul_assoc. + Qed. + + Lemma pow_pos_add x i j : + pow_pos x (i + j) == pow_pos x i * pow_pos x j. + Proof. + induction i using Pos.peano_ind. + - now rewrite Pos.add_1_l, pow_pos_succ. + - now rewrite Pos.add_succ_l, !pow_pos_succ, IHi, mul_assoc. Qed. Definition pow_N (x:R) (p:N) := @@ -87,9 +79,9 @@ Section Power. Definition id_phi_N (x:N) : N := x. - Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n. + Lemma pow_N_pow_N x n : pow_N x (id_phi_N n) == pow_N x n. Proof. - intros; apply (Seq_refl _ _ Rsth). + reflexivity. Qed. End Power. @@ -98,19 +90,18 @@ Section DEFINITIONS. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Notation "0" := rO. Notation "1" := rI. + Infix "==" := req. Infix "+" := radd. Infix "*" := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). (** Semi Ring *) Record semi_ring_theory : Prop := mk_srt { SRadd_0_l : forall n, 0 + n == n; - SRadd_comm : forall n m, n + m == m + n ; + SRadd_comm : forall n m, n + m == m + n ; SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p; SRmul_1_l : forall n, 1*n == n; SRmul_0_l : forall n, 0*n == 0; - SRmul_comm : forall n m, n*m == m*n; + SRmul_comm : forall n m, n*m == m*n; SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p; SRdistr_l : forall n m p, (n + m)*p == n*p + m*p }. @@ -119,11 +110,11 @@ Section DEFINITIONS. (*Almost ring are no ring : Ropp_def is missing **) Record almost_ring_theory : Prop := mk_art { ARadd_0_l : forall x, 0 + x == x; - ARadd_comm : forall x y, x + y == y + x; + ARadd_comm : forall x y, x + y == y + x; ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z; ARmul_1_l : forall x, 1 * x == x; ARmul_0_l : forall x, 0 * x == 0; - ARmul_comm : forall x y, x * y == y * x; + ARmul_comm : forall x y, x * y == y * x; ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z; ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); ARopp_mul_l : forall x y, -(x * y) == -x * y; @@ -134,10 +125,10 @@ Section DEFINITIONS. (** Ring *) Record ring_theory : Prop := mk_rt { Radd_0_l : forall x, 0 + x == x; - Radd_comm : forall x y, x + y == y + x; + Radd_comm : forall x y, x + y == y + x; Radd_assoc : forall x y z, x + (y + z) == (x + y) + z; Rmul_1_l : forall x, 1 * x == x; - Rmul_comm : forall x y, x * y == y * x; + Rmul_comm : forall x y, x * y == y * x; Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z; Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); Rsub_def : forall x y, x - y == x + -y; @@ -148,19 +139,15 @@ Section DEFINITIONS. Record sring_eq_ext : Prop := mk_seqe { (* SRing operators are compatible with equality *) - SRadd_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; - SRmul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2 + SRadd_ext : Proper (req ==> req ==> req) radd; + SRmul_ext : Proper (req ==> req ==> req) rmul }. Record ring_eq_ext : Prop := mk_reqe { (* Ring operators are compatible with equality *) - Radd_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; - Rmul_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2; - Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2 + Radd_ext : Proper (req ==> req ==> req) radd; + Rmul_ext : Proper (req ==> req ==> req) rmul; + Ropp_ext : Proper (req ==> req) ropp }. (** Interpretation morphisms definition*) @@ -170,9 +157,9 @@ Section DEFINITIONS. Variable ceqb : C->C->bool. (* [phi] est un morphisme de [C] dans [R] *) Variable phi : C -> R. - Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y). - Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x). - Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). + Infix "+!" := cadd. Infix "-!" := csub. + Infix "*!" := cmul. Notation "-! x" := (copp x). + Infix "?=!" := ceqb. Notation "[ x ]" := (phi x). (*for semi rings*) Record semi_morph : Prop := mkRmorph { @@ -216,15 +203,13 @@ Section DEFINITIONS. End MORPHISM. (** Identity is a morphism *) - Variable Rsth : Setoid_Theory R req. - Add Setoid R req Rsth as R_setoid1. + Variable Rsth : Equivalence req. Variable reqb : R->R->bool. Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y. Definition IDphi (x:R) := x. Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi. Proof. - apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi; - try apply (Seq_refl _ _ Rsth);auto. + now apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi). Qed. (** Specification of the power function *) @@ -239,35 +224,31 @@ Section DEFINITIONS. End POWER. - Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth). + Definition pow_N_th := + mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth). End DEFINITIONS. - - Section ALMOST_RING. Variable R : Type. Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R). Variable req : R -> R -> Prop. - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). + Notation "0" := rO. Notation "1" := rI. + Infix "==" := req. Infix "+" := radd. Infix "* " := rmul. + Infix "-" := rsub. Notation "- x" := (ropp x). (** Leibniz equality leads to a setoid theory and is extensional*) - Lemma Eqsth : Setoid_Theory R (@eq R). - Proof. constructor;red;intros;subst;trivial. Qed. + Lemma Eqsth : Equivalence (@eq R). + Proof. exact eq_equivalence. Qed. Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R). - Proof. constructor;intros;subst;trivial. Qed. + Proof. constructor;solve_proper. Qed. Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R). - Proof. constructor;intros;subst;trivial. Qed. + Proof. constructor;solve_proper. Qed. - Variable Rsth : Setoid_Theory R req. - Add Setoid R req Rsth as R_setoid2. - Ltac sreflexivity := apply (Seq_refl _ _ Rsth). + Variable Rsth : Equivalence req. Section SEMI_RING. Variable SReqe : sring_eq_ext radd rmul req. @@ -282,23 +263,24 @@ Section ALMOST_RING. Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y). Lemma SRopp_ext : forall x y, x == y -> -x == -y. - Proof. intros x y H;exact H. Qed. + Proof. intros x y H; exact H. Qed. Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req. Proof. - constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe). - exact SRopp_ext. + constructor. + - exact (SRadd_ext SReqe). + - exact (SRmul_ext SReqe). + - exact SRopp_ext. Qed. Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y. - Proof. intros;sreflexivity. Qed. + Proof. reflexivity. Qed. Lemma SRopp_add : forall x y, -(x + y) == -x + -y. - Proof. intros;sreflexivity. Qed. - + Proof. reflexivity. Qed. Lemma SRsub_def : forall x y, x - y == x + -y. - Proof. intros;sreflexivity. Qed. + Proof. reflexivity. Qed. Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req. Proof (mk_art 0 1 radd rmul SRsub SRopp req @@ -315,7 +297,7 @@ Section ALMOST_RING. Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req 0 1 radd rmul SRsub SRopp reqb (@IDphi R). Proof. - apply mkmorph;intros;try sreflexivity. unfold IDphi;auto. + now apply mkmorph. Qed. (* a semi_morph can be extended to a ring_morph for the almost_ring derived @@ -331,9 +313,7 @@ Section ALMOST_RING. ring_morph rO rI radd rmul SRsub SRopp req cO cI cadd cmul cadd (fun x => x) ceqb phi. Proof. - case Smorph; intros; constructor; auto. - unfold SRopp in |- *; intros. - setoid_reflexivity. + case Smorph; now constructor. Qed. End SEMI_RING. @@ -347,31 +327,28 @@ Section ALMOST_RING. Variable Rth : ring_theory 0 1 radd rmul rsub ropp req. (** Rings are almost rings*) - Lemma Rmul_0_l : forall x, 0 * x == 0. + Lemma Rmul_0_l x : 0 * x == 0. Proof. - intro x; setoid_replace (0*x) with ((0+1)*x + -x). - rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth). - rewrite (Ropp_def Rth);sreflexivity. + setoid_replace (0*x) with ((0+1)*x + -x). + now rewrite (Radd_0_l Rth), (Rmul_1_l Rth), (Ropp_def Rth). - rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth). - rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). - rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity. + rewrite (Rdistr_l Rth), (Rmul_1_l Rth). + rewrite <- (Radd_assoc Rth), (Ropp_def Rth). + now rewrite (Radd_comm Rth), (Radd_0_l Rth). Qed. - Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y. + Lemma Ropp_mul_l x y : -(x * y) == -x * y. Proof. - intros x y;rewrite <-(Radd_0_l Rth (- x * y)). - rewrite (Radd_comm Rth). - rewrite <-(Ropp_def Rth (x*y)). - rewrite (Radd_assoc Rth). - rewrite <- (Rdistr_l Rth). - rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth). - rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity. + rewrite <-(Radd_0_l Rth (- x * y)). + rewrite (Radd_comm Rth), <-(Ropp_def Rth (x*y)). + rewrite (Radd_assoc Rth), <- (Rdistr_l Rth). + rewrite (Rth.(Radd_comm) (-x)), (Ropp_def Rth). + now rewrite Rmul_0_l, (Radd_0_l Rth). Qed. - Lemma Ropp_add : forall x y, -(x + y) == -x + -y. + Lemma Ropp_add x y : -(x + y) == -x + -y. Proof. - intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))). + rewrite <- ((Radd_0_l Rth) (-(x+y))). rewrite <- ((Ropp_def Rth) x). rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))). rewrite <- ((Ropp_def Rth) y). @@ -383,17 +360,17 @@ Section ALMOST_RING. rewrite ((Radd_comm Rth) y). rewrite <- ((Radd_assoc Rth) (- x)). rewrite ((Radd_assoc Rth) y). - rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth). - rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth). - apply (Radd_comm Rth). + rewrite ((Radd_comm Rth) y), (Ropp_def Rth). + rewrite ((Radd_comm Rth) (-x) 0), (Radd_0_l Rth). + now apply (Radd_comm Rth). Qed. - Lemma Ropp_opp : forall x, - -x == x. + Lemma Ropp_opp x : - -x == x. Proof. - intros x; rewrite <- (Radd_0_l Rth (- -x)). + rewrite <- (Radd_0_l Rth (- -x)). rewrite <- (Ropp_def Rth x). - rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth). - rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth). + rewrite <- (Radd_assoc Rth), (Ropp_def Rth). + rewrite ((Radd_comm Rth) x); now apply (Radd_0_l Rth). Qed. Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req. @@ -407,10 +384,10 @@ Section ALMOST_RING. Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C). Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool). Variable phi : C -> R. - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). - Variable Csth : Setoid_Theory C ceq. + Infix "+!" := cadd. Infix "*!" := cmul. + Infix "-!" := csub. Notation "-! x" := (copp x). + Notation "?=!" := ceqb. Notation "[ x ]" := (phi x). + Variable Csth : Equivalence ceq. Variable Ceqe : ring_eq_ext cadd cmul copp ceq. Add Setoid C ceq Csth as C_setoid. Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed. @@ -420,9 +397,9 @@ Section ALMOST_RING. Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi. Variable phi_ext : forall x y, ceq x y -> [x] == [y]. Add Morphism phi : phi_ext1. exact phi_ext. Qed. - Lemma Smorph_opp : forall x, [-!x] == -[x]. + Lemma Smorph_opp x : [-!x] == -[x]. Proof. - intros x;rewrite <- (Rth.(Radd_0_l) [-!x]). + rewrite <- (Rth.(Radd_0_l) [-!x]). rewrite <- ((Ropp_def Rth) [x]). rewrite ((Radd_comm Rth) [x]). rewrite <- (Radd_assoc Rth). @@ -430,17 +407,18 @@ Section ALMOST_RING. rewrite (Ropp_def Cth). rewrite (Smorph0 Smorph). rewrite (Radd_comm Rth (-[x])). - apply (Radd_0_l Rth);sreflexivity. + now apply (Radd_0_l Rth). Qed. - Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y]. + Lemma Smorph_sub x y : [x -! y] == [x] - [y]. Proof. - intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth). - rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity. + rewrite (Rsub_def Cth), (Rsub_def Rth). + now rewrite (Smorph_add Smorph), Smorph_opp. Qed. - Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req - cO cI cadd cmul csub copp ceqb phi. + Lemma Smorph_morph : + ring_morph 0 1 radd rmul rsub ropp req + cO cI cadd cmul csub copp ceqb phi. Proof (mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi (Smorph0 Smorph) (Smorph1 Smorph) @@ -458,17 +436,11 @@ elim ARth; intros. constructor; trivial. Qed. - Lemma ARsub_ext : - forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2. + Instance ARsub_ext : Proper (req ==> req ==> req) rsub. Proof. - intros. - setoid_replace (x1 - y1) with (x1 + -y1). - setoid_replace (x2 - y2) with (x2 + -y2). - rewrite H;rewrite H0;sreflexivity. - apply (ARsub_def ARth). - apply (ARsub_def ARth). + intros x1 x2 Ex y1 y2 Ey. + now rewrite !(ARsub_def ARth), Ex, Ey. Qed. - Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed. Ltac mrewrite := repeat first @@ -479,64 +451,56 @@ Qed. | rewrite (ARmul_0_l ARth) | rewrite <- ((ARmul_comm ARth) 0) | rewrite (ARdistr_l ARth) - | sreflexivity + | reflexivity | match goal with | |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y)) end]. - Lemma ARadd_0_r : forall x, (x + 0) == x. - Proof. intros; mrewrite. Qed. + Lemma ARadd_0_r x : x + 0 == x. + Proof. mrewrite. Qed. - Lemma ARmul_1_r : forall x, x * 1 == x. - Proof. intros;mrewrite. Qed. + Lemma ARmul_1_r x : x * 1 == x. + Proof. mrewrite. Qed. - Lemma ARmul_0_r : forall x, x * 0 == 0. - Proof. intros;mrewrite. Qed. + Lemma ARmul_0_r x : x * 0 == 0. + Proof. mrewrite. Qed. - Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y. + Lemma ARdistr_r x y z : z * (x + y) == z*x + z*y. Proof. - intros;mrewrite. - repeat rewrite (ARth.(ARmul_comm) z);sreflexivity. + mrewrite. now rewrite !(ARth.(ARmul_comm) z). Qed. - Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x. + Lemma ARadd_assoc1 x y z : (x + y) + z == (y + z) + x. Proof. - intros;rewrite <-(ARth.(ARadd_assoc) x). - rewrite (ARth.(ARadd_comm) x);sreflexivity. + now rewrite <-(ARth.(ARadd_assoc) x), (ARth.(ARadd_comm) x). Qed. - Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x. + Lemma ARadd_assoc2 x y z : (y + x) + z == (y + z) + x. Proof. - intros; repeat rewrite <- (ARadd_assoc ARth); - rewrite ((ARadd_comm ARth) x); sreflexivity. + now rewrite <- !(ARadd_assoc ARth), ((ARadd_comm ARth) x). Qed. - Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x. + Lemma ARmul_assoc1 x y z : (x * y) * z == (y * z) * x. Proof. - intros;rewrite <-((ARmul_assoc ARth) x). - rewrite ((ARmul_comm ARth) x);sreflexivity. + now rewrite <- ((ARmul_assoc ARth) x), ((ARmul_comm ARth) x). Qed. - Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x. + Lemma ARmul_assoc2 x y z : (y * x) * z == (y * z) * x. Proof. - intros; repeat rewrite <- (ARmul_assoc ARth); - rewrite ((ARmul_comm ARth) x); sreflexivity. + now rewrite <- !(ARmul_assoc ARth), ((ARmul_comm ARth) x). Qed. - Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y. + Lemma ARopp_mul_r x y : - (x * y) == x * -y. Proof. - intros;rewrite ((ARmul_comm ARth) x y); - rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth). + rewrite ((ARmul_comm ARth) x y), (ARopp_mul_l ARth). + now apply (ARmul_comm ARth). Qed. Lemma ARopp_zero : -0 == 0. Proof. - rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth). - repeat rewrite ARmul_0_r; sreflexivity. + now rewrite <- (ARmul_0_r 0), (ARopp_mul_l ARth), !ARmul_0_r. Qed. - - End ALMOST_RING. @@ -611,6 +575,8 @@ Ltac gen_add_push add Rsth Reqe ARth x := progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z) | |- context [add (add x ?y) ?z] => progress rewrite (ARadd_assoc1 Rsth ARth x y z) + | |- context [(add x ?y)] => + progress rewrite (ARadd_comm ARth x y) end). Ltac gen_mul_push mul Rsth Reqe ARth x := @@ -619,5 +585,6 @@ Ltac gen_mul_push mul Rsth Reqe ARth x := progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z) | |- context [mul (mul x ?y) ?z] => progress rewrite (ARmul_assoc1 Rsth ARth x y z) + | |- context [(mul x ?y)] => + progress rewrite (ARmul_comm ARth x y) end). - diff --git a/plugins/setoid_ring/Rings_Z.v b/plugins/setoid_ring/Rings_Z.v index 88904865..58a4d7ea 100644 --- a/plugins/setoid_ring/Rings_Z.v +++ b/plugins/setoid_ring/Rings_Z.v @@ -3,7 +3,7 @@ Require Export Integral_domain. Require Export Ncring_initial. Instance Zcri: (Cring (Rr:=Zr)). -red. exact Zmult_comm. Defined. +red. exact Z.mul_comm. Defined. Lemma Z_one_zero: 1%Z <> 0%Z. omega. diff --git a/plugins/setoid_ring/ZArithRing.v b/plugins/setoid_ring/ZArithRing.v index d3ed36ee..3c4f6b86 100644 --- a/plugins/setoid_ring/ZArithRing.v +++ b/plugins/setoid_ring/ZArithRing.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -39,14 +39,14 @@ Ltac Zpower_neg := repeat match goal with | [|- ?G] => match G with - | context c [Zpower _ (Zneg _)] => + | context c [Z.pow _ (Zneg _)] => let t := context c [Z0] in change t end end. Add Ring Zr : Zth - (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Zsucc], + (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ], power_tac Zpower_theory [Zpow_tac], (* The two following option are not needed, it is the default chose when the set of coefficiant is usual ring Z *) diff --git a/plugins/setoid_ring/newring.ml4 b/plugins/setoid_ring/newring.ml4 index 9d61c06d..580e78f6 100644 --- a/plugins/setoid_ring/newring.ml4 +++ b/plugins/setoid_ring/newring.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/eterm.mli b/plugins/subtac/eterm.mli index 03d76f29..a0b693de 100644 --- a/plugins/subtac/eterm.mli +++ b/plugins/subtac/eterm.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/g_subtac.ml4 b/plugins/subtac/g_subtac.ml4 index 6a131d39..956ccf09 100644 --- a/plugins/subtac/g_subtac.ml4 +++ b/plugins/subtac/g_subtac.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac.ml b/plugins/subtac/subtac.ml index d626396f..281e981b 100644 --- a/plugins/subtac/subtac.ml +++ b/plugins/subtac/subtac.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_cases.ml b/plugins/subtac/subtac_cases.ml index 16d4e21e..221b57ee 100644 --- a/plugins/subtac/subtac_cases.ml +++ b/plugins/subtac/subtac_cases.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_cases.mli b/plugins/subtac/subtac_cases.mli index 77537d33..91142067 100644 --- a/plugins/subtac/subtac_cases.mli +++ b/plugins/subtac/subtac_cases.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_classes.ml b/plugins/subtac/subtac_classes.ml index 6b3fe718..f11f611f 100644 --- a/plugins/subtac/subtac_classes.ml +++ b/plugins/subtac/subtac_classes.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_classes.mli b/plugins/subtac/subtac_classes.mli index 5b5c0203..2c9fbaf5 100644 --- a/plugins/subtac/subtac_classes.mli +++ b/plugins/subtac/subtac_classes.mli @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_coercion.ml b/plugins/subtac/subtac_coercion.ml index eb29bd04..168a799d 100644 --- a/plugins/subtac/subtac_coercion.ml +++ b/plugins/subtac/subtac_coercion.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_command.ml b/plugins/subtac/subtac_command.ml index ced390aa..14a09032 100644 --- a/plugins/subtac/subtac_command.ml +++ b/plugins/subtac/subtac_command.ml @@ -380,9 +380,16 @@ let rec unfold f b = | Some (x, b') -> x :: unfold f b' | None -> [] + +let find_annot loc id ctx = + try rel_index id ctx + with Not_found -> + user_err_loc(loc,"", + str "No parameter named " ++ Nameops.pr_id id ++ str".") + let compute_possible_guardness_evidences (n,_) (_, fixctx) fixtype = match n with - | Some (loc, n) -> [rel_index n fixctx] + | Some (loc, id) -> [find_annot loc id fixctx] | None -> (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, diff --git a/plugins/subtac/subtac_pretyping.ml b/plugins/subtac/subtac_pretyping.ml index e56fa4f5..fac6b567 100644 --- a/plugins/subtac/subtac_pretyping.ml +++ b/plugins/subtac/subtac_pretyping.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/subtac/subtac_pretyping_F.ml b/plugins/subtac/subtac_pretyping_F.ml index 9a4e1883..95e756ab 100644 --- a/plugins/subtac/subtac_pretyping_F.ml +++ b/plugins/subtac/subtac_pretyping_F.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/syntax/nat_syntax.ml b/plugins/syntax/nat_syntax.ml index 446ae522..63b44008 100644 --- a/plugins/syntax/nat_syntax.ml +++ b/plugins/syntax/nat_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -28,9 +28,11 @@ open Names (* Parsing via scopes *) (* For example, (nat_of_string "3") is <<(S (S (S O)))>> *) +let threshold = of_int 5000 + let nat_of_int dloc n = if is_pos_or_zero n then begin - if less_than (of_string "5000") n then + if less_than threshold n then Flags.if_warn msg_warning (strbrk "Stack overflow or segmentation fault happens when " ++ strbrk "working with large numbers in nat (observed threshold " ++ diff --git a/plugins/syntax/numbers_syntax.ml b/plugins/syntax/numbers_syntax.ml index 19a3c899..b8636a74 100644 --- a/plugins/syntax/numbers_syntax.ml +++ b/plugins/syntax/numbers_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -50,26 +50,10 @@ let bigN_t = make_mind_mpdot bigN_module "BigN" "t'" let bigN_scope = "bigN_scope" (* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *) -let n_inlined = of_string "7" -let bigN_constructor = - (* converts a bigint into an int the ugly way *) - let rec to_int i = - if equal i zero then - 0 - else - let (quo,rem) = div2_with_rest i in - if rem then - 2*(to_int quo)+1 - else - 2*(to_int quo) - in - fun i -> - ConstructRef ((bigN_t,0), - if less_than i n_inlined then - (to_int i)+1 - else - (to_int n_inlined)+1 - ) +let n_inlined = 7 + +let bigN_constructor i = + ConstructRef ((bigN_t,0),(min i n_inlined)+1) (*bigZ stuff*) let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ] @@ -150,55 +134,54 @@ let _ = Notation.declare_numeral_interpreter int31_scope (*** Parsing for bigN in digital notation ***) (* the base for bigN (in Coq) that is 2^31 in our case *) -let base = pow two (of_string "31") +let base = pow two 31 -(* base of the bigN of height N : *) -let rank n = pow base (pow two n) +(* base of the bigN of height N : (2^31)^(2^n) *) +let rank n = + let rec rk n pow2 = + if n <= 0 then pow2 + else rk (n-1) (mult pow2 pow2) + in rk n base (* splits a number bi at height n, that is the rest needs 2^n int31 to be stored it is expected to be used only when the quotient would also need 2^n int31 to be stored *) let split_at n bi = - euclid bi (rank (sub_1 n)) + euclid bi (rank (n-1)) (* search the height of the Coq bigint needed to represent the integer bi *) let height bi = - let rec height_aux n = - if less_than bi (rank n) then - n - else - height_aux (add_1 n) - in - height_aux zero - + let rec hght n pow2 = + if less_than bi pow2 then n + else hght (n+1) (mult pow2 pow2) + in hght 0 base (* n must be a non-negative integer (from bigint.ml) *) let word_of_pos_bigint dloc hght n = let ref_W0 = GRef (dloc, zn2z_W0) in let ref_WW = GRef (dloc, zn2z_WW) in let rec decomp hgt n = - if is_neg_or_zero hgt then + if hgt <= 0 then int31_of_pos_bigint dloc n else if equal n zero then GApp (dloc, ref_W0, [GHole (dloc, Evd.InternalHole)]) else let (h,l) = split_at hgt n in GApp (dloc, ref_WW, [GHole (dloc, Evd.InternalHole); - decomp (sub_1 hgt) h; - decomp (sub_1 hgt) l]) + decomp (hgt-1) h; + decomp (hgt-1) l]) in decomp hght n let bigN_of_pos_bigint dloc n = - let ref_constructor i = GRef (dloc, bigN_constructor i) in - let result h word = GApp (dloc, ref_constructor h, if less_than h n_inlined then - [word] - else - [Nat_syntax.nat_of_int dloc (sub h n_inlined); - word]) + let h = height n in + let ref_constructor = GRef (dloc, bigN_constructor h) in + let word = word_of_pos_bigint dloc h n in + let args = + if h < n_inlined then [word] + else [Nat_syntax.nat_of_int dloc (of_int (h-n_inlined));word] in - let hght = height n in - result hght (word_of_pos_bigint dloc hght n) + GApp (dloc, ref_constructor, args) let bigN_error_negative dloc = Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.") @@ -216,22 +199,17 @@ let bigint_of_word = let rec get_height rc = match rc with | GApp (_,GRef(_,c), [_;lft;rght]) when c = zn2z_WW -> - let hleft = get_height lft in - let hright = get_height rght in - add_1 - (if less_than hleft hright then - hright - else - hleft) - | _ -> zero + 1+max (get_height lft) (get_height rght) + | _ -> 0 in let rec transform hght rc = match rc with | GApp (_,GRef(_,c),_) when c = zn2z_W0-> zero - | GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in - add (mult (rank new_hght) - (transform (new_hght) lft)) - (transform (new_hght) rght) + | GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW-> + let new_hght = hght-1 in + add (mult (rank new_hght) + (transform new_hght lft)) + (transform new_hght rght) | _ -> bigint_of_int31 rc in fun rc -> @@ -256,12 +234,12 @@ let uninterp_bigN rc = let bigN_list_of_constructors = let rec build i = - if less_than i (add_1 n_inlined) then - GRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i)) + if i < n_inlined+1 then + GRef (Util.dummy_loc, bigN_constructor i)::(build (i+1)) else [] in - build zero + build 0 (* Actually declares the interpreter for bigN *) let _ = Notation.declare_numeral_interpreter bigN_scope diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml index b9c0bcd6..401c23f7 100644 --- a/plugins/syntax/r_syntax.ml +++ b/plugins/syntax/r_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/syntax/z_syntax.ml b/plugins/syntax/z_syntax.ml index f8bce8f7..032e0036 100644 --- a/plugins/syntax/z_syntax.ml +++ b/plugins/syntax/z_syntax.ml @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) diff --git a/plugins/xml/dumptree.ml4 b/plugins/xml/dumptree.ml4 index 56ce7ef2..cbc52c5f 100644 --- a/plugins/xml/dumptree.ml4 +++ b/plugins/xml/dumptree.ml4 @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) |