summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/Ncring_tac.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Ncring_tac.v')
-rw-r--r--plugins/setoid_ring/Ncring_tac.v308
1 files changed, 308 insertions, 0 deletions
diff --git a/plugins/setoid_ring/Ncring_tac.v b/plugins/setoid_ring/Ncring_tac.v
new file mode 100644
index 00000000..34731eb3
--- /dev/null
+++ b/plugins/setoid_ring/Ncring_tac.v
@@ -0,0 +1,308 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import List.
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinList.
+Require Import Znumtheory.
+Require Export Morphisms Setoid Bool.
+Require Import ZArith.
+Require Import Algebra_syntax.
+Require Export Ncring.
+Require Import Ncring_polynom.
+Require Import Ncring_initial.
+
+
+Set Implicit Arguments.
+
+Class nth (R:Type) (t:R) (l:list R) (i:nat).
+
+Instance Ifind0 (R:Type) (t:R) l
+ : nth t(t::l) 0.
+
+Instance IfindS (R:Type) (t2 t1:R) l i
+ {_:nth t1 l i}
+ : nth t1 (t2::l) (S i) | 1.
+
+Class closed (T:Type) (l:list T).
+
+Instance Iclosed_nil T
+ : closed (T:=T) nil.
+
+Instance Iclosed_cons T t (l:list T)
+ {_:closed l}
+ : closed (t::l).
+
+Class reify (R:Type)`{Rr:Ring (T:=R)} (e:PExpr Z) (lvar:list R) (t:R).
+
+Instance reify_zero (R:Type) lvar op
+ `{Ring (T:=R)(ring0:=op)}
+ : reify (ring0:=op)(PEc 0%Z) lvar op.
+
+Instance reify_one (R:Type) lvar op
+ `{Ring (T:=R)(ring1:=op)}
+ : reify (ring1:=op) (PEc 1%Z) lvar op.
+
+Instance reifyZ0 (R:Type) lvar
+ `{Ring (T:=R)}
+ : reify (PEc Z0) lvar Z0|11.
+
+Instance reifyZpos (R:Type) lvar (p:positive)
+ `{Ring (T:=R)}
+ : reify (PEc (Zpos p)) lvar (Zpos p)|11.
+
+Instance reifyZneg (R:Type) lvar (p:positive)
+ `{Ring (T:=R)}
+ : reify (PEc (Zneg p)) lvar (Zneg p)|11.
+
+Instance reify_add (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(add:=op)}
+ {_:reify (add:=op) e1 lvar t1}
+ {_:reify (add:=op) e2 lvar t2}
+ : reify (add:=op) (PEadd e1 e2) lvar (op t1 t2).
+
+Instance reify_mul (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(mul:=op)}
+ {_:reify (mul:=op) e1 lvar t1}
+ {_:reify (mul:=op) e2 lvar t2}
+ : reify (mul:=op) (PEmul e1 e2) lvar (op t1 t2)|10.
+
+Instance reify_mul_ext (R:Type) `{Ring R}
+ lvar z e2 t2
+ `{Ring (T:=R)}
+ {_:reify e2 lvar t2}
+ : reify (PEmul (PEc z) e2) lvar
+ (@multiplication Z _ _ z t2)|9.
+
+Instance reify_sub (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(sub:=op)}
+ {_:reify (sub:=op) e1 lvar t1}
+ {_:reify (sub:=op) e2 lvar t2}
+ : reify (sub:=op) (PEsub e1 e2) lvar (op t1 t2).
+
+Instance reify_opp (R:Type)
+ e1 lvar t1 op
+ `{Ring (T:=R)(opp:=op)}
+ {_:reify (opp:=op) e1 lvar t1}
+ : reify (opp:=op) (PEopp e1) lvar (op t1).
+
+Instance reify_pow (R:Type) `{Ring R}
+ e1 lvar t1 n
+ `{Ring (T:=R)}
+ {_:reify e1 lvar t1}
+ : reify (PEpow e1 n) lvar (pow_N t1 n)|1.
+
+Instance reify_var (R:Type) t lvar i
+ `{nth R t lvar i}
+ `{Rr: Ring (T:=R)}
+ : reify (Rr:= Rr) (PEX Z (P_of_succ_nat i))lvar t
+ | 100.
+
+Class reifylist (R:Type)`{Rr:Ring (T:=R)} (lexpr:list (PExpr Z)) (lvar:list R)
+ (lterm:list R).
+
+Instance reify_nil (R:Type) lvar
+ `{Rr: Ring (T:=R)}
+ : reifylist (Rr:= Rr) nil lvar (@nil R).
+
+Instance reify_cons (R:Type) e1 lvar t1 lexpr2 lterm2
+ `{Rr: Ring (T:=R)}
+ {_:reify (Rr:= Rr) e1 lvar t1}
+ {_:reifylist (Rr:= Rr) lexpr2 lvar lterm2}
+ : reifylist (Rr:= Rr) (e1::lexpr2) lvar (t1::lterm2).
+
+Definition list_reifyl (R:Type) lexpr lvar lterm
+ `{Rr: Ring (T:=R)}
+ {_:reifylist (Rr:= Rr) lexpr lvar lterm}
+ `{closed (T:=R) lvar} := (lvar,lexpr).
+
+Unset Implicit Arguments.
+
+
+Ltac lterm_goal g :=
+ match g with
+ | ?t1 == ?t2 => constr:(t1::t2::nil)
+ | ?t1 = ?t2 => constr:(t1::t2::nil)
+ | (_ ?t1 ?t2) => constr:(t1::t2::nil)
+ end.
+
+Lemma Zeqb_ok: forall x y : Z, Zeq_bool x y = true -> x == y.
+ intros x y H. rewrite (Zeq_bool_eq x y H). reflexivity. Qed.
+
+Ltac reify_goal lvar lexpr lterm:=
+ (*idtac lvar; idtac lexpr; idtac lterm;*)
+ match lexpr with
+ nil => idtac
+ | ?e1::?e2::_ =>
+ match goal with
+ |- (?op ?u1 ?u2) =>
+ change (op
+ (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
+ (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
+ lvar e1)
+ (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
+ (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
+ lvar e2))
+ end
+ end.
+
+Lemma comm: forall (R:Type)`{Ring R}(c : Z) (x : R),
+ x * (gen_phiZ c) == (gen_phiZ c) * x.
+induction c. intros. simpl. gen_rewrite. simpl. intros.
+rewrite <- same_gen.
+induction p. simpl. gen_rewrite. rewrite IHp. reflexivity.
+simpl. gen_rewrite. rewrite IHp. reflexivity.
+simpl. gen_rewrite.
+simpl. intros. rewrite <- same_gen.
+induction p. simpl. generalize IHp. clear IHp.
+gen_rewrite. intro IHp. rewrite IHp. reflexivity.
+simpl. generalize IHp. clear IHp.
+gen_rewrite. intro IHp. rewrite IHp. reflexivity.
+simpl. gen_rewrite. Qed.
+
+Ltac ring_gen :=
+ match goal with
+ |- ?g => let lterm := lterm_goal g in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) =>
+ (*idtac "variables:";idtac fv;
+ idtac "terms:"; idtac lterm;
+ idtac "reifications:"; idtac lexpr; *)
+ reify_goal fv lexpr lterm;
+ match goal with
+ |- ?g =>
+ apply (@ring_correct Z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
+ (@gen_phiZ _ _ _ _ _ _ _ _ _) _
+ (@comm _ _ _ _ _ _ _ _ _ _) Zeq_bool Zeqb_ok N (fun n:N => n)
+ (@pow_N _ _ _ _ _ _ _ _ _));
+ [apply mkpow_th; reflexivity
+ |vm_compute; reflexivity]
+ end
+ end
+ end.
+
+Ltac non_commutative_ring:=
+ intros;
+ ring_gen.
+
+(* simplification *)
+
+Ltac ring_simplify_aux lterm fv lexpr hyp :=
+ match lterm with
+ | ?t0::?lterm =>
+ match lexpr with
+ | ?e::?le => (* e:PExpr Z est la réification de t0:R *)
+ let t := constr:(@Ncring_polynom.norm_subst
+ Z 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z) Zops Zeq_bool e) in
+ (* t:Pol Z *)
+ let te :=
+ constr:(@Ncring_polynom.Pphi Z
+ _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ fv t) in
+ let eq1 := fresh "ring" in
+ let nft := eval vm_compute in t in
+ let t':= fresh "t" in
+ pose (t' := nft);
+ assert (eq1 : t = t');
+ [vm_cast_no_check (refl_equal t')|
+ let eq2 := fresh "ring" in
+ assert (eq2:(@Ncring_polynom.PEeval Z
+ _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
+ [apply (@Ncring_polynom.norm_subst_ok
+ Z _ 0%Z 1%Z Zplus Zmult Zminus Zopp (@eq Z)
+ _ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _
+ (@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok);
+ apply mkpow_th; reflexivity
+ | match hyp with
+ | 1%nat => rewrite eq2
+ | ?H => try rewrite eq2 in H
+ end];
+ let P:= fresh "P" in
+ match hyp with
+ | 1%nat => idtac "ok";
+ rewrite eq1;
+ pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
+ _ Ncring_initial.gen_phiZ fv t');
+ match goal with
+ |- (?p ?t) => set (P:=p)
+ end;
+ unfold t' in *; clear t' eq1 eq2; simpl
+ | ?H =>
+ rewrite eq1 in H;
+ pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
+ _ Ncring_initial.gen_phiZ fv t') in H;
+ match type of H with
+ | (?p ?t) => set (P:=p) in H
+ end;
+ unfold t' in *; clear t' eq1 eq2; simpl in H
+ end; unfold P in *; clear P
+ ]; ring_simplify_aux lterm fv le hyp
+ | nil => idtac
+ end
+ | nil => idtac
+ end.
+
+Ltac set_variables fv :=
+ match fv with
+ | nil => idtac
+ | ?t::?fv =>
+ let v := fresh "X" in
+ set (v:=t) in *; set_variables fv
+ end.
+
+Ltac deset n:=
+ match n with
+ | 0%nat => idtac
+ | S ?n1 =>
+ match goal with
+ | h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
+ end
+ end.
+
+(* a est soit un terme de l'anneau, soit une liste de termes.
+J'ai pas réussi à un décomposer les Vlists obtenues avec ne_constr_list
+ dans Tactic Notation *)
+
+Ltac ring_simplify_gen a hyp :=
+ let lterm :=
+ match a with
+ | _::_ => a
+ | _ => constr:(a::nil)
+ end in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
+ let n := eval compute in (length fv) in
+ idtac n;
+ let lt:=fresh "lt" in
+ set (lt:= lterm);
+ let lv:=fresh "fv" in
+ set (lv:= fv);
+ (* les termes de fv sont remplacés par des variables
+ pour pouvoir utiliser simpl ensuite sans risquer
+ des simplifications indésirables *)
+ set_variables fv;
+ let lterm1 := eval unfold lt in lt in
+ let lv1 := eval unfold lv in lv in
+ idtac lterm1; idtac lv1;
+ ring_simplify_aux lterm1 lv1 lexpr hyp;
+ clear lt lv;
+ (* on remet les termes de fv *)
+ deset n
+ end.
+
+Tactic Notation "non_commutative_ring_simplify" constr(lterm):=
+ ring_simplify_gen lterm 1%nat.
+
+Tactic Notation "non_commutative_ring_simplify" constr(lterm) "in" ident(H):=
+ ring_simplify_gen lterm H.
+
+