diff options
Diffstat (limited to 'plugins/setoid_ring/Field_tac.v')
-rw-r--r-- | plugins/setoid_ring/Field_tac.v | 571 |
1 files changed, 571 insertions, 0 deletions
diff --git a/plugins/setoid_ring/Field_tac.v b/plugins/setoid_ring/Field_tac.v new file mode 100644 index 00000000..9d82d1fd --- /dev/null +++ b/plugins/setoid_ring/Field_tac.v @@ -0,0 +1,571 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import Ring_tac BinList Ring_polynom InitialRing. +Require Export Field_theory. + + (* syntaxification *) + Ltac mkFieldexpr C Cst CstPow radd rmul rsub ropp rdiv rinv rpow t fv := + let rec mkP t := + let f := + match Cst t with + | InitialRing.NotConstant => + match t with + | (radd ?t1 ?t2) => + fun _ => + let e1 := mkP t1 in + let e2 := mkP t2 in constr:(FEadd e1 e2) + | (rmul ?t1 ?t2) => + fun _ => + let e1 := mkP t1 in + let e2 := mkP t2 in constr:(FEmul e1 e2) + | (rsub ?t1 ?t2) => + fun _ => + let e1 := mkP t1 in + let e2 := mkP t2 in constr:(FEsub e1 e2) + | (ropp ?t1) => + fun _ => let e1 := mkP t1 in constr:(FEopp e1) + | (rdiv ?t1 ?t2) => + fun _ => + let e1 := mkP t1 in + let e2 := mkP t2 in constr:(FEdiv e1 e2) + | (rinv ?t1) => + fun _ => let e1 := mkP t1 in constr:(FEinv e1) + | (rpow ?t1 ?n) => + match CstPow n with + | InitialRing.NotConstant => + fun _ => + let p := Find_at t fv in + constr:(@FEX C p) + | ?c => fun _ => let e1 := mkP t1 in constr:(FEpow e1 c) + end + | _ => + fun _ => + let p := Find_at t fv in + constr:(@FEX C p) + end + | ?c => fun _ => constr:(FEc c) + end in + f () + in mkP t. + +Ltac FFV Cst CstPow add mul sub opp div inv pow t fv := + let rec TFV t fv := + match Cst t with + | InitialRing.NotConstant => + match t with + | (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) + | (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) + | (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) + | (opp ?t1) => TFV t1 fv + | (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv) + | (inv ?t1) => TFV t1 fv + | (pow ?t1 ?n) => + match CstPow n with + | InitialRing.NotConstant => + AddFvTail t fv + | _ => TFV t1 fv + end + | _ => AddFvTail t fv + end + | _ => fv + end + in TFV t fv. + +(* packaging the field structure *) + +(* TODO: inline PackField into field_lookup *) +Ltac PackField F req Cst_tac Pow_tac L1 L2 L3 L4 cond_ok pre post := + let FLD := + match type of L1 with + | context [req (@FEeval ?R ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv + ?C ?phi ?Cpow ?Cp_phi ?rpow _ _) _ ] => + (fun proj => + proj Cst_tac Pow_tac pre post + req radd rmul rsub ropp rdiv rinv rpow C L1 L2 L3 L4 cond_ok) + | _ => fail 1 "field anomaly: bad correctness lemma (parse)" + end in + F FLD. + +Ltac get_FldPre FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + pre). + +Ltac get_FldPost FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + post). + +Ltac get_L1 FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + L1). + +Ltac get_SimplifyEqLemma FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + L2). + +Ltac get_SimplifyLemma FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + L3). + +Ltac get_L4 FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + L4). + +Ltac get_CondLemma FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + cond_ok). + +Ltac get_FldEq FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + req). + +Ltac get_FldCarrier FLD := + let req := get_FldEq FLD in + relation_carrier req. + +Ltac get_RingFV FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + FV Cst_tac Pow_tac radd rmul rsub ropp rpow). + +Ltac get_FFV FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow). + +Ltac get_RingMeta FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow). + +Ltac get_Meta FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow). + +Ltac get_Hyp_tac FLD := + FLD ltac: + (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C + L1 L2 L3 L4 cond_ok => + let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in + fun fv lH => mkHyp_tac C req ltac:(fun t => mkPol t fv) lH). + +Ltac get_FEeval FLD := + let L1 := get_L1 FLD in + match type of L1 with + | context + [(@FEeval + ?R ?r0 ?add ?mul ?sub ?opp ?div ?inv ?C ?phi ?Cpow ?powphi ?pow _ _)] => + constr:(@FEeval R r0 add mul sub opp div inv C phi Cpow powphi pow) + | _ => fail 1 "field anomaly: bad correctness lemma (get_FEeval)" + end. + +(* simplifying the non-zero condition... *) + +Ltac fold_field_cond req := + let rec fold_concl t := + match t with + ?x /\ ?y => + let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy) + | req ?x ?y -> False => constr:(~ req x y) + | _ => t + end in + let ft := fold_concl Get_goal in + change ft. + +Ltac simpl_PCond FLD := + let req := get_FldEq FLD in + let lemma := get_CondLemma FLD in + try apply lemma; + protect_fv "field_cond"; + fold_field_cond req; + try exact I. + +Ltac simpl_PCond_BEURK FLD := + let req := get_FldEq FLD in + let lemma := get_CondLemma FLD in + apply lemma; + protect_fv "field_cond"; + fold_field_cond req. + +(* Rewriting (field_simplify) *) +Ltac Field_norm_gen f n FLD lH rl := + let mkFV := get_RingFV FLD in + let mkFFV := get_FFV FLD in + let mkFE := get_Meta FLD in + let fv0 := FV_hypo_tac mkFV ltac:(get_FldEq FLD) lH in + let lemma_tac fv kont := + let lemma := get_SimplifyLemma FLD in + (* reify equations of the context *) + let lpe := get_Hyp_tac FLD fv lH in + let vlpe := fresh "hyps" in + pose (vlpe := lpe); + let prh := proofHyp_tac lH in + (* compute the normal form of the reified hyps *) + let vlmp := fresh "hyps'" in + let vlmp_eq := fresh "hyps_eq" in + let mk_monpol := get_MonPol lemma in + compute_assertion vlmp_eq vlmp (mk_monpol vlpe); + (* partially instantiate the lemma *) + let lem := fresh "f_rw_lemma" in + (assert (lem := lemma n vlpe fv prh vlmp vlmp_eq) + || fail "type error when building the rewriting lemma"); + (* continuation will call main_tac for all reified terms *) + kont lem; + (* at the end, cleanup *) + (clear lem vlmp_eq vlmp vlpe||idtac"Field_norm_gen:cleanup failed") in + (* each instance of the lemma is simplified then passed to f *) + let main_tac H := protect_fv "field" in H; f H in + (* generate and use equations for each expression *) + ReflexiveRewriteTactic mkFFV mkFE lemma_tac main_tac fv0 rl; + try simpl_PCond FLD. + +Ltac Field_simplify_gen f FLD lH rl := + get_FldPre FLD (); + Field_norm_gen f ring_subst_niter FLD lH rl; + get_FldPost FLD (). + +Ltac Field_simplify := + Field_simplify_gen ltac:(fun H => rewrite H). + +Tactic Notation (at level 0) "field_simplify" constr_list(rl) := + let G := Get_goal in + field_lookup (PackField Field_simplify) [] rl G. + +Tactic Notation (at level 0) + "field_simplify" "[" constr_list(lH) "]" constr_list(rl) := + let G := Get_goal in + field_lookup (PackField Field_simplify) [lH] rl G. + +Tactic Notation "field_simplify" constr_list(rl) "in" hyp(H):= + let G := Get_goal in + let t := type of H in + let g := fresh "goal" in + set (g:= G); + revert H; + field_lookup (PackField Field_simplify) [] rl t; + intro H; + unfold g;clear g. + +Tactic Notation "field_simplify" + "["constr_list(lH) "]" constr_list(rl) "in" hyp(H):= + let G := Get_goal in + let t := type of H in + let g := fresh "goal" in + set (g:= G); + revert H; + field_lookup (PackField Field_simplify) [lH] rl t; + intro H; + unfold g;clear g. + +(* +Ltac Field_simplify_in hyp:= + Field_simplify_gen ltac:(fun H => rewrite H in hyp). + +Tactic Notation (at level 0) + "field_simplify" constr_list(rl) "in" hyp(h) := + let t := type of h in + field_lookup (Field_simplify_in h) [] rl t. + +Tactic Notation (at level 0) + "field_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h) := + let t := type of h in + field_lookup (Field_simplify_in h) [lH] rl t. +*) + +(** Generic tactic for solving equations *) + +Ltac Field_Scheme Simpl_tac n lemma FLD lH := + let req := get_FldEq FLD in + let mkFV := get_RingFV FLD in + let mkFFV := get_FFV FLD in + let mkFE := get_Meta FLD in + let Main_eq t1 t2 := + let fv := FV_hypo_tac mkFV req lH in + let fv := mkFFV t1 fv in + let fv := mkFFV t2 fv in + let lpe := get_Hyp_tac FLD fv lH in + let prh := proofHyp_tac lH in + let vlpe := fresh "list_hyp" in + let fe1 := mkFE t1 fv in + let fe2 := mkFE t2 fv in + pose (vlpe := lpe); + let nlemma := fresh "field_lemma" in + (assert (nlemma := lemma n fv vlpe fe1 fe2 prh) + || fail "field anomaly:failed to build lemma"); + ProveLemmaHyps nlemma + ltac:(fun ilemma => + apply ilemma + || fail "field anomaly: failed in applying lemma"; + [ Simpl_tac | simpl_PCond FLD]); + clear nlemma; + subst vlpe in + OnEquation req Main_eq. + +(* solve completely a field equation, leaving non-zero conditions to be + proved (field) *) + +Ltac FIELD FLD lH rl := + let Simpl := vm_compute; reflexivity || fail "not a valid field equation" in + let lemma := get_L1 FLD in + get_FldPre FLD (); + Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH; + try exact I; + get_FldPost FLD(). + +Tactic Notation (at level 0) "field" := + let G := Get_goal in + field_lookup (PackField FIELD) [] G. + +Tactic Notation (at level 0) "field" "[" constr_list(lH) "]" := + let G := Get_goal in + field_lookup (PackField FIELD) [lH] G. + +(* transforms a field equation to an equivalent (simplified) ring equation, + and leaves non-zero conditions to be proved (field_simplify_eq) *) +Ltac FIELD_SIMPL FLD lH rl := + let Simpl := (protect_fv "field") in + let lemma := get_SimplifyEqLemma FLD in + get_FldPre FLD (); + Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH; + get_FldPost FLD (). + +Tactic Notation (at level 0) "field_simplify_eq" := + let G := Get_goal in + field_lookup (PackField FIELD_SIMPL) [] G. + +Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" := + let G := Get_goal in + field_lookup (PackField FIELD_SIMPL) [lH] G. + +(* Same as FIELD_SIMPL but in hypothesis *) + +Ltac Field_simplify_eq n FLD lH := + let req := get_FldEq FLD in + let mkFV := get_RingFV FLD in + let mkFFV := get_FFV FLD in + let mkFE := get_Meta FLD in + let lemma := get_L4 FLD in + let hyp := fresh "hyp" in + intro hyp; + OnEquationHyp req hyp ltac:(fun t1 t2 => + let fv := FV_hypo_tac mkFV req lH in + let fv := mkFFV t1 fv in + let fv := mkFFV t2 fv in + let lpe := get_Hyp_tac FLD fv lH in + let prh := proofHyp_tac lH in + let fe1 := mkFE t1 fv in + let fe2 := mkFE t2 fv in + let vlpe := fresh "vlpe" in + ProveLemmaHyps (lemma n fv lpe fe1 fe2 prh) + ltac:(fun ilemma => + match type of ilemma with + | req _ _ -> _ -> ?EQ => + let tmp := fresh "tmp" in + assert (tmp : EQ); + [ apply ilemma; [ exact hyp | simpl_PCond_BEURK FLD] + | protect_fv "field" in tmp; revert tmp ]; + clear hyp + end)). + +Ltac FIELD_SIMPL_EQ FLD lH rl := + get_FldPre FLD (); + Field_simplify_eq Ring_tac.ring_subst_niter FLD lH; + get_FldPost FLD (). + +Tactic Notation (at level 0) "field_simplify_eq" "in" hyp(H) := + let t := type of H in + generalize H; + field_lookup (PackField FIELD_SIMPL_EQ) [] t; + [ try exact I + | clear H;intro H]. + + +Tactic Notation (at level 0) + "field_simplify_eq" "[" constr_list(lH) "]" "in" hyp(H) := + let t := type of H in + generalize H; + field_lookup (PackField FIELD_SIMPL_EQ) [lH] t; + [ try exact I + |clear H;intro H]. + +(* More generic tactics to build variants of field *) + +(* This tactic reifies c and pass to F: + - the FLD structure gathering all info in the field DB + - the atom list + - the expression (FExpr) + *) +Ltac gen_with_field F c := + let MetaExpr FLD _ rl := + let R := get_FldCarrier FLD in + let mkFFV := get_FFV FLD in + let mkFE := get_Meta FLD in + let csr := + match rl with + | List.cons ?r _ => r + | _ => fail 1 "anomaly: ill-formed list" + end in + let fv := mkFFV csr (@List.nil R) in + let expr := mkFE csr fv in + F FLD fv expr in + field_lookup (PackField MetaExpr) [] (c=c). + + +(* pushes the equation expr = ope(expr) in the goal, and + discharge it with field *) +Ltac prove_field_eqn ope FLD fv expr := + let res := ope expr in + let expr' := fresh "input_expr" in + pose (expr' := expr); + let res' := fresh "result" in + pose (res' := res); + let lemma := get_L1 FLD in + let lemma := + constr:(lemma O fv List.nil expr' res' I List.nil (refl_equal _)) in + let ty := type of lemma in + let lhs := match ty with + forall _, ?lhs=_ -> _ => lhs + end in + let rhs := match ty with + forall _, _=_ -> forall _, ?rhs=_ -> _ => rhs + end in + let lhs' := fresh "lhs" in let lhs_eq := fresh "lhs_eq" in + let rhs' := fresh "rhs" in let rhs_eq := fresh "rhs_eq" in + compute_assertion lhs_eq lhs' lhs; + compute_assertion rhs_eq rhs' rhs; + let H := fresh "fld_eqn" in + refine (_ (lemma lhs' lhs_eq rhs' rhs_eq _ _)); + (* main goal *) + [intro H;protect_fv "field" in H; revert H + (* ring-nf(lhs') = ring-nf(rhs') *) + | vm_compute; reflexivity || fail "field cannot prove this equality" + (* denominator condition *) + | simpl_PCond FLD]; + clear lhs_eq rhs_eq; subst lhs' rhs'. + +Ltac prove_with_field ope c := + gen_with_field ltac:(prove_field_eqn ope) c. + +(* Prove an equation x=ope(x) and rewrite with it *) +Ltac prove_rw ope x := + prove_with_field ope x; + [ let H := fresh "Heq_maple" in + intro H; rewrite H; clear H + |..]. + +(* Apply ope (FExpr->FExpr) on an expression *) +Ltac reduce_field_expr ope kont FLD fv expr := + let evfun := get_FEeval FLD in + let res := ope expr in + let c := (eval simpl_field_expr in (evfun fv res)) in + kont c. + +(* Hack to let a Ltac return a term in the context of a primitive tactic *) +Ltac return_term x := generalize (refl_equal x). +Ltac get_term := + match goal with + | |- ?x = _ -> _ => x + end. + +(* Turn an operation on field expressions (FExpr) into a reduction + on terms (in the field carrier). Because of field_lookup, + the tactic cannot return a term directly, so it is returned + via the conclusion of the goal (return_term). *) +Ltac reduce_field_ope ope c := + gen_with_field ltac:(reduce_field_expr ope return_term) c. + + +(* Adding a new field *) + +Ltac ring_of_field f := + match type of f with + | almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f) + | field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f) + | semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f) + end. + +Ltac coerce_to_almost_field set ext f := + match type of f with + | almost_field_theory _ _ _ _ _ _ _ _ _ => f + | field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f) + | semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f) + end. + +Ltac field_elements set ext fspec pspec sspec dspec rk := + let afth := coerce_to_almost_field set ext fspec in + let rspec := ring_of_field fspec in + ring_elements set ext rspec pspec sspec dspec rk + ltac:(fun arth ext_r morph p_spec s_spec d_spec f => f afth ext_r morph p_spec s_spec d_spec). + +Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk := + let get_lemma := + match pspec with None => fun x y => x | _ => fun x y => y end in + let simpl_eq_lemma := get_lemma + Field_simplify_eq_correct Field_simplify_eq_pow_correct in + let simpl_eq_in_lemma := get_lemma + Field_simplify_eq_in_correct Field_simplify_eq_pow_in_correct in + let rw_lemma := get_lemma + Field_rw_correct Field_rw_pow_correct in + field_elements set ext fspec pspec sspec dspec rk + ltac:(fun afth ext_r morph p_spec s_spec d_spec => + match morph with + | _ => + let field_ok1 := constr:(Field_correct set ext_r inv_m afth morph) in + match p_spec with + | mkhypo ?pp_spec => + let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in + match s_spec with + | mkhypo ?ss_spec => + let field_ok3 := constr:(field_ok2 _ ss_spec) in + match d_spec with + | mkhypo ?dd_spec => + let field_ok := constr:(field_ok3 _ dd_spec) in + let mk_lemma lemma := + constr:(lemma _ _ _ _ _ _ _ _ _ _ + set ext_r inv_m afth + _ _ _ _ _ _ _ _ _ morph + _ _ _ pp_spec _ ss_spec _ dd_spec) in + let field_simpl_eq_ok := mk_lemma simpl_eq_lemma in + let field_simpl_ok := mk_lemma rw_lemma in + let field_simpl_eq_in := mk_lemma simpl_eq_in_lemma in + let cond1_ok := + constr:(Pcond_simpl_gen set ext_r afth morph pp_spec dd_spec) in + let cond2_ok := + constr:(Pcond_simpl_complete set ext_r afth morph pp_spec dd_spec) in + (fun f => + f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok field_simpl_eq_in + cond1_ok cond2_ok) + | _ => fail 4 "field: bad coefficiant division specification" + end + | _ => fail 3 "field: bad sign specification" + end + | _ => fail 2 "field: bad power specification" + end + | _ => fail 1 "field internal error : field_lemmas, please report" + end). |