diff options
Diffstat (limited to 'plugins/rtauto/Rtauto.v')
-rw-r--r-- | plugins/rtauto/Rtauto.v | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v new file mode 100644 index 00000000..0d1d09c7 --- /dev/null +++ b/plugins/rtauto/Rtauto.v @@ -0,0 +1,400 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id$ *) + + +Require Export List. +Require Export Bintree. +Require Import Bool. +Unset Boxed Definitions. + +Declare ML Module "rtauto_plugin". + +Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t. +Ltac clean:=try (simpl;congruence). + +Inductive form:Set:= + Atom : positive -> form +| Arrow : form -> form -> form +| Bot +| Conjunct : form -> form -> form +| Disjunct : form -> form -> form. + +Notation "[ n ]":=(Atom n). +Notation "A =>> B":= (Arrow A B) (at level 59, right associativity). +Notation "#" := Bot. +Notation "A //\\ B" := (Conjunct A B) (at level 57, left associativity). +Notation "A \\// B" := (Disjunct A B) (at level 58, left associativity). + +Definition ctx := Store form. + +Fixpoint pos_eq (m n:positive) {struct m} :bool := +match m with + xI mm => match n with xI nn => pos_eq mm nn | _ => false end +| xO mm => match n with xO nn => pos_eq mm nn | _ => false end +| xH => match n with xH => true | _ => false end +end. + +Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n. +induction m;simpl;destruct n;congruence || +(intro e;apply f_equal with positive;auto). +Qed. + +Fixpoint form_eq (p q:form) {struct p} :bool := +match p with + Atom m => match q with Atom n => pos_eq m n | _ => false end +| Arrow p1 p2 => +match q with + Arrow q1 q2 => form_eq p1 q1 && form_eq p2 q2 +| _ => false end +| Bot => match q with Bot => true | _ => false end +| Conjunct p1 p2 => +match q with + Conjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2 +| _ => false +end +| Disjunct p1 p2 => +match q with + Disjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2 +| _ => false +end +end. + +Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q. +induction p;destruct q;simpl;clean. +intro h;generalize (pos_eq_refl _ _ h);congruence. +caseq (form_eq p1 q1);clean. +intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence. +caseq (form_eq p1 q1);clean. +intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence. +caseq (form_eq p1 q1);clean. +intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence. +Qed. + +Implicit Arguments form_eq_refl [p q]. + +Section with_env. + +Variable env:Store Prop. + +Fixpoint interp_form (f:form): Prop := +match f with +[n]=> match get n env with PNone => True | PSome P => P end +| A =>> B => (interp_form A) -> (interp_form B) +| # => False +| A //\\ B => (interp_form A) /\ (interp_form B) +| A \\// B => (interp_form A) \/ (interp_form B) +end. + +Notation "[[ A ]]" := (interp_form A). + +Fixpoint interp_ctx (hyps:ctx) (F:Full hyps) (G:Prop) {struct F} : Prop := +match F with + F_empty => G +| F_push H hyps0 F0 => interp_ctx hyps0 F0 ([[H]] -> G) +end. + +Require Export BinPos. + +Ltac wipe := intros;simpl;constructor. + +Lemma compose0 : +forall hyps F (A:Prop), + A -> + (interp_ctx hyps F A). +induction F;intros A H;simpl;auto. +Qed. + +Lemma compose1 : +forall hyps F (A B:Prop), + (A -> B) -> + (interp_ctx hyps F A) -> + (interp_ctx hyps F B). +induction F;intros A B H;simpl;auto. +apply IHF;auto. +Qed. + +Theorem compose2 : +forall hyps F (A B C:Prop), + (A -> B -> C) -> + (interp_ctx hyps F A) -> + (interp_ctx hyps F B) -> + (interp_ctx hyps F C). +induction F;intros A B C H;simpl;auto. +apply IHF;auto. +Qed. + +Theorem compose3 : +forall hyps F (A B C D:Prop), + (A -> B -> C -> D) -> + (interp_ctx hyps F A) -> + (interp_ctx hyps F B) -> + (interp_ctx hyps F C) -> + (interp_ctx hyps F D). +induction F;intros A B C D H;simpl;auto. +apply IHF;auto. +Qed. + +Lemma weaken : forall hyps F f G, + (interp_ctx hyps F G) -> + (interp_ctx (hyps\f) (F_push f hyps F) G). +induction F;simpl;intros;auto. +apply compose1 with ([[a]]-> G);auto. +Qed. + +Theorem project_In : forall hyps F g, +In g hyps F -> +interp_ctx hyps F [[g]]. +induction F;simpl. +contradiction. +intros g H;destruct H. +subst;apply compose0;simpl;trivial. +apply compose1 with [[g]];auto. +Qed. + +Theorem project : forall hyps F p g, +get p hyps = PSome g-> +interp_ctx hyps F [[g]]. +intros hyps F p g e; apply project_In. +apply get_In with p;assumption. +Qed. + +Implicit Arguments project [hyps p g]. + +Inductive proof:Set := + Ax : positive -> proof +| I_Arrow : proof -> proof +| E_Arrow : positive -> positive -> proof -> proof +| D_Arrow : positive -> proof -> proof -> proof +| E_False : positive -> proof +| I_And: proof -> proof -> proof +| E_And: positive -> proof -> proof +| D_And: positive -> proof -> proof +| I_Or_l: proof -> proof +| I_Or_r: proof -> proof +| E_Or: positive -> proof -> proof -> proof +| D_Or: positive -> proof -> proof +| Cut: form -> proof -> proof -> proof. + +Notation "hyps \ A" := (push A hyps) (at level 72,left associativity). + +Fixpoint check_proof (hyps:ctx) (gl:form) (P:proof) {struct P}: bool := + match P with + Ax i => + match get i hyps with + PSome F => form_eq F gl + | _ => false + end +| I_Arrow p => + match gl with + A =>> B => check_proof (hyps \ A) B p + | _ => false + end +| E_Arrow i j p => + match get i hyps,get j hyps with + PSome A,PSome (B =>>C) => + form_eq A B && check_proof (hyps \ C) (gl) p + | _,_ => false + end +| D_Arrow i p1 p2 => + match get i hyps with + PSome ((A =>>B)=>>C) => + (check_proof ( hyps \ B =>> C \ A) B p1) && (check_proof (hyps \ C) gl p2) + | _ => false + end +| E_False i => + match get i hyps with + PSome # => true + | _ => false + end +| I_And p1 p2 => + match gl with + A //\\ B => + check_proof hyps A p1 && check_proof hyps B p2 + | _ => false + end +| E_And i p => + match get i hyps with + PSome (A //\\ B) => check_proof (hyps \ A \ B) gl p + | _=> false + end +| D_And i p => + match get i hyps with + PSome (A //\\ B =>> C) => check_proof (hyps \ A=>>B=>>C) gl p + | _=> false + end +| I_Or_l p => + match gl with + (A \\// B) => check_proof hyps A p + | _ => false + end +| I_Or_r p => + match gl with + (A \\// B) => check_proof hyps B p + | _ => false + end +| E_Or i p1 p2 => + match get i hyps with + PSome (A \\// B) => + check_proof (hyps \ A) gl p1 && check_proof (hyps \ B) gl p2 + | _=> false + end +| D_Or i p => + match get i hyps with + PSome (A \\// B =>> C) => + (check_proof (hyps \ A=>>C \ B=>>C) gl p) + | _=> false + end +| Cut A p1 p2 => + check_proof hyps A p1 && check_proof (hyps \ A) gl p2 +end. + +Theorem interp_proof: +forall p hyps F gl, +check_proof hyps gl p = true -> interp_ctx hyps F [[gl]]. + +induction p;intros hyps F gl. + +(* cas Axiom *) +Focus 1. +simpl;caseq (get p hyps);clean. +intros f nth_f e;rewrite <- (form_eq_refl e). +apply project with p;trivial. + +(* Cas Arrow_Intro *) +Focus 1. +destruct gl;clean. +simpl;intros. +change (interp_ctx (hyps\gl1) (F_push gl1 hyps F) [[gl2]]). +apply IHp;try constructor;trivial. + +(* Cas Arrow_Elim *) +Focus 1. +simpl check_proof;caseq (get p hyps);clean. +intros f ef;caseq (get p0 hyps);clean. +intros f0 ef0;destruct f0;clean. +caseq (form_eq f f0_1);clean. +simpl;intros e check_p1. +generalize (project F ef) (project F ef0) +(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1); +clear check_p1 IHp p p0 p1 ef ef0. +simpl. +apply compose3. +rewrite (form_eq_refl e). +auto. + +(* cas Arrow_Destruct *) +Focus 1. +simpl;caseq (get p1 hyps);clean. +intros f ef;destruct f;clean. +destruct f1;clean. +caseq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean. +intros check_p1 check_p2. +generalize (project F ef) +(IHp1 (hyps \ f1_2 =>> f2 \ f1_1) +(F_push f1_1 (hyps \ f1_2 =>> f2) + (F_push (f1_2 =>> f2) hyps F)) f1_2 check_p1) +(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2). +simpl;apply compose3;auto. + +(* Cas False_Elim *) +Focus 1. +simpl;caseq (get p hyps);clean. +intros f ef;destruct f;clean. +intros _; generalize (project F ef). +apply compose1;apply False_ind. + +(* Cas And_Intro *) +Focus 1. +simpl;destruct gl;clean. +caseq (check_proof hyps gl1 p1);clean. +intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2). +apply compose2 ;simpl;auto. + +(* cas And_Elim *) +Focus 1. +simpl;caseq (get p hyps);clean. +intros f ef;destruct f;clean. +intro check_p;generalize (project F ef) +(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p). +simpl;apply compose2;intros [h1 h2];auto. + +(* cas And_Destruct *) +Focus 1. +simpl;caseq (get p hyps);clean. +intros f ef;destruct f;clean. +destruct f1;clean. +intro H;generalize (project F ef) +(IHp (hyps \ f1_1 =>> f1_2 =>> f2) +(F_push (f1_1 =>> f1_2 =>> f2) hyps F) gl H);clear H;simpl. +apply compose2;auto. + +(* cas Or_Intro_left *) +Focus 1. +destruct gl;clean. +intro Hp;generalize (IHp hyps F gl1 Hp). +apply compose1;simpl;auto. + +(* cas Or_Intro_right *) +Focus 1. +destruct gl;clean. +intro Hp;generalize (IHp hyps F gl2 Hp). +apply compose1;simpl;auto. + +(* cas Or_elim *) +Focus 1. +simpl;caseq (get p1 hyps);clean. +intros f ef;destruct f;clean. +caseq (check_proof (hyps \ f1) gl p2);clean. +intros check_p1 check_p2;generalize (project F ef) +(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1) +(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2); +simpl;apply compose3;simpl;intro h;destruct h;auto. + +(* cas Or_Destruct *) +Focus 1. +simpl;caseq (get p hyps);clean. +intros f ef;destruct f;clean. +destruct f1;clean. +intro check_p0;generalize (project F ef) +(IHp (hyps \ f1_1 =>> f2 \ f1_2 =>> f2) +(F_push (f1_2 =>> f2) (hyps \ f1_1 =>> f2) + (F_push (f1_1 =>> f2) hyps F)) gl check_p0);simpl. +apply compose2;auto. + +(* cas Cut *) +Focus 1. +simpl;caseq (check_proof hyps f p1);clean. +intros check_p1 check_p2; +generalize (IHp1 hyps F f check_p1) +(IHp2 (hyps\f) (F_push f hyps F) gl check_p2); +simpl; apply compose2;auto. +Qed. + +Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True. +intros gl prf;caseq (check_proof empty gl prf);intro check_prf. +change (interp_ctx empty F_empty [[gl]]) ; +apply interp_proof with prf;assumption. +trivial. +Qed. + +End with_env. + +(* +(* A small example *) +Parameters A B C D:Prop. +Theorem toto:A /\ (B \/ C) -> (A /\ B) \/ (A /\ C). +exact (Reflect (empty \ A \ B \ C) +([1] //\\ ([2] \\// [3]) =>> [1] //\\ [2] \\// [1] //\\ [3]) +(I_Arrow (E_And 1 (E_Or 3 + (I_Or_l (I_And (Ax 2) (Ax 4))) + (I_Or_r (I_And (Ax 2) (Ax 4))))))). +Qed. +Print toto. +*) |