summaryrefslogtreecommitdiff
path: root/plugins/rtauto/Bintree.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/rtauto/Bintree.v')
-rw-r--r--plugins/rtauto/Bintree.v233
1 files changed, 59 insertions, 174 deletions
diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v
index 39c29a3d..98dd257d 100644
--- a/plugins/rtauto/Bintree.v
+++ b/plugins/rtauto/Bintree.v
@@ -1,154 +1,32 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Bintree.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export List.
Require Export BinPos.
-
-Unset Boxed Definitions.
+Require Arith.EqNat.
Open Scope positive_scope.
Ltac clean := try (simpl; congruence).
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
-
-Functional Scheme Pcompare_ind := Induction for Pcompare Sort Prop.
-
-Lemma Gt_Eq_Gt : forall p q cmp,
- (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Lt_Gt : forall p q cmp,
- (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Psucc_Eq: forall p q,
- (p ?= Psucc q) Gt = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro;apply Gt_Eq_Gt;auto.
-apply Gt_Lt_Gt.
-Qed.
-
-Lemma Eq_Psucc_Gt: forall p q,
- (p ?= Psucc q) Eq = Eq -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro H;elim (Pcompare_not_Eq p (Psucc q));tauto.
-intro H;apply Gt_Eq_Gt;auto.
-intro H;rewrite Pcompare_Eq_eq with p q;auto.
-generalize q;clear q IHq p H;induction q;simpl;auto.
-intro H;elim (Pcompare_not_Eq p q);tauto.
-Qed.
-
-Lemma Gt_Psucc_Gt : forall n p cmp cmp0,
- (n?=p) cmp = Gt -> (Psucc n?=p) cmp0 = Gt.
-induction n;intros [ | p | p];simpl;try congruence.
-intros; apply IHn with cmp;trivial.
-intros; apply IHn with Gt;trivial.
-intros;apply Gt_Lt_Gt;trivial.
-intros [ | | ] _ H.
-apply Gt_Eq_Gt;trivial.
-apply Gt_Lt_Gt;trivial.
-trivial.
-Qed.
Lemma Gt_Psucc: forall p q,
- (p ?= Psucc q) Eq = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-apply Gt_Psucc_Eq.
-intro;apply Gt_Eq_Gt;apply IHq;auto.
-apply Gt_Eq_Gt.
-apply Gt_Lt_Gt.
+ (p ?= Pos.succ q) = Gt -> (p ?= q) = Gt.
+Proof.
+intros. rewrite <- Pos.compare_succ_succ.
+now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt.
Qed.
Lemma Psucc_Gt : forall p,
- (Psucc p ?= p) Eq = Gt.
-induction p;simpl.
-apply Gt_Eq_Gt;auto.
-generalize p;clear p IHp.
-induction p;simpl;auto.
-reflexivity.
+ (Pos.succ p ?= p) = Gt.
+Proof.
+intros. apply Pos.lt_gt, Pos.lt_succ_diag_r.
Qed.
-Fixpoint pos_eq (m n:positive) {struct m} :bool :=
-match m, n with
- xI mm, xI nn => pos_eq mm nn
-| xO mm, xO nn => pos_eq mm nn
-| xH, xH => true
-| _, _ => false
-end.
-
-Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
-Defined.
-
-Theorem refl_pos_eq : forall m, pos_eq m m = true.
-induction m;simpl;auto.
-Qed.
-
-Definition pos_eq_dec : forall (m n:positive), {m=n}+{m<>n} .
-fix 1;intros [mm|mm|] [nn|nn|];try (right;congruence).
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xI e).
-intro ne;right;congruence.
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xO e).
-intro ne;right;congruence.
-left;reflexivity.
-Defined.
-
-Theorem pos_eq_dec_refl : forall m, pos_eq_dec m m = left _ (refl_equal m).
-fix 1;intros [mm|mm|].
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-reflexivity.
-Qed.
-
-Theorem pos_eq_dec_ex : forall m n,
- pos_eq m n =true -> exists h:m=n,
- pos_eq_dec m n = left _ h.
-fix 1;intros [mm|mm|] [nn|nn|];try (simpl;congruence).
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xI x).
-reflexivity.
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xO x).
-reflexivity.
-simpl.
-exists (refl_equal xH).
-reflexivity.
-Qed.
-
-Fixpoint nat_eq (m n:nat) {struct m}: bool:=
-match m, n with
-O,O => true
-| S mm,S nn => nat_eq mm nn
-| _,_ => false
-end.
-
-Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with nat;auto).
-Defined.
-
-Theorem refl_nat_eq : forall n, nat_eq n n = true.
-induction n;simpl;trivial.
-Defined.
-
Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
match l with nil => None
| x::q =>
@@ -156,21 +34,21 @@ match n with O => Some x
| S m => Lget A m q
end end .
-Implicit Arguments Lget [A].
+Arguments Lget [A] n l.
Lemma map_app : forall (A B:Set) (f:A -> B) l m,
List.map f (l ++ m) = List.map f l ++ List.map f m.
induction l.
reflexivity.
simpl.
-intro m ; apply f_equal with (list B);apply IHl.
+intro m ; apply f_equal;apply IHl.
Qed.
Lemma length_map : forall (A B:Set) (f:A -> B) l,
length (List.map f l) = length l.
induction l.
reflexivity.
-simpl; apply f_equal with nat;apply IHl.
+simpl; apply f_equal;apply IHl.
Qed.
Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
@@ -182,7 +60,8 @@ simpl;auto.
Qed.
Lemma Lget_app : forall (A:Set) (a:A) l i,
-Lget i (l ++ a :: nil) = if nat_eq i (length l) then Some a else Lget i l.
+Lget i (l ++ a :: nil) = if Arith.EqNat.beq_nat i (length l) then Some a else Lget i l.
+Proof.
induction l;simpl Lget;simpl length.
intros [ | i];simpl;reflexivity.
intros [ | i];simpl.
@@ -278,17 +157,20 @@ Qed.
Theorem Tget_Tadd: forall i j a T,
Tget i (Tadd j a T) =
- match (i ?= j) Eq with
+ match (i ?= j) with
Eq => PSome a
| Lt => Tget i T
| Gt => Tget i T
end.
+Proof.
intros i j.
-caseq ((i ?= j) Eq).
-intro H;rewrite (Pcompare_Eq_eq _ _ H);intros a;clear i H.
+case_eq (i ?= j).
+intro H;rewrite (Pos.compare_eq _ _ H);intros a;clear i H.
induction j;destruct T;simpl;try (apply IHj);congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
Qed.
@@ -299,7 +181,7 @@ mkStore {index:positive;contents:Tree}.
Definition empty := mkStore xH Tempty.
Definition push a S :=
-mkStore (Psucc (index S)) (Tadd (index S) a (contents S)).
+mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)).
Definition get i S := Tget i (contents S).
@@ -312,7 +194,8 @@ Inductive Full : Store -> Type:=
| F_push : forall a S, Full S -> Full (push a S).
Theorem get_Full_Gt : forall S, Full S ->
- forall i, (i ?= index S) Eq = Gt -> get i S = PNone.
+ forall i, (i ?= index S) = Gt -> get i S = PNone.
+Proof.
intros S W;induction W.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
@@ -331,7 +214,7 @@ intros a S.
rewrite Tget_Tadd.
rewrite Psucc_Gt.
intro W.
-change (get (Psucc (index S)) S =PNone).
+change (get (Pos.succ (index S)) S =PNone).
apply get_Full_Gt; auto.
apply Psucc_Gt.
Qed.
@@ -339,16 +222,17 @@ Qed.
Theorem get_push_Full :
forall i a S, Full S ->
get i (push a S) =
- match (i ?= index S) Eq with
+ match (i ?= index S) with
Eq => PSome a
| Lt => get i S
| Gt => PNone
end.
+Proof.
intros i a S F.
-caseq ((i ?= index S) Eq).
-intro e;rewrite (Pcompare_Eq_eq _ _ e).
+case_eq (i ?= index S).
+intro e;rewrite (Pos.compare_eq _ _ e).
destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
-rewrite Pcompare_refl;reflexivity.
+rewrite Pos.compare_refl;reflexivity.
intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
simpl index in H;rewrite H;reflexivity.
intro H;generalize H;clear H.
@@ -361,9 +245,10 @@ Qed.
Lemma Full_push_compat : forall i a S, Full S ->
forall x, get i S = PSome x ->
get i (push a S) = PSome x.
+Proof.
intros i a S F x H.
-caseq ((i ?= index S) Eq);intro test.
-rewrite (Pcompare_Eq_eq _ _ test) in H.
+case_eq (i ?= index S);intro test.
+rewrite (Pos.compare_eq _ _ test) in H.
rewrite (get_Full_Eq _ F) in H;congruence.
rewrite <- H.
rewrite (get_push_Full i a).
@@ -375,13 +260,13 @@ Qed.
Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty.
intros [ind cont] F one; inversion F.
reflexivity.
-simpl index in one;assert (h:=Psucc_not_one (index S)).
+simpl index in one;assert (h:=Pos.succ_not_1 (index S)).
congruence.
Qed.
Lemma push_not_empty: forall a S, (push a S) <> empty.
intros a [ind cont];unfold push,empty.
-simpl;intro H;injection H; intros _ ; apply Psucc_not_one.
+simpl;intro H;injection H; intros _ ; apply Pos.succ_not_1.
Qed.
Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop :=
@@ -395,7 +280,7 @@ get i S = PSome x -> In x S F.
induction F.
intro i;rewrite get_empty; congruence.
intro i;rewrite get_push_Full;trivial.
-caseq ((i ?= index S) Eq);simpl.
+case_eq (i ?= index S);simpl.
left;congruence.
right;eauto.
congruence.
@@ -403,34 +288,34 @@ Qed.
End Store.
-Implicit Arguments PNone [A].
-Implicit Arguments PSome [A].
+Arguments PNone [A].
+Arguments PSome [A] _.
-Implicit Arguments Tempty [A].
-Implicit Arguments Branch0 [A].
-Implicit Arguments Branch1 [A].
+Arguments Tempty [A].
+Arguments Branch0 [A] _ _.
+Arguments Branch1 [A] _ _ _.
-Implicit Arguments Tget [A].
-Implicit Arguments Tadd [A].
+Arguments Tget [A] p T.
+Arguments Tadd [A] p a T.
-Implicit Arguments Tget_Tempty [A].
-Implicit Arguments Tget_Tadd [A].
+Arguments Tget_Tempty [A] p.
+Arguments Tget_Tadd [A] i j a T.
-Implicit Arguments mkStore [A].
-Implicit Arguments index [A].
-Implicit Arguments contents [A].
+Arguments mkStore [A] index contents.
+Arguments index [A] s.
+Arguments contents [A] s.
-Implicit Arguments empty [A].
-Implicit Arguments get [A].
-Implicit Arguments push [A].
+Arguments empty [A].
+Arguments get [A] i S.
+Arguments push [A] a S.
-Implicit Arguments get_empty [A].
-Implicit Arguments get_push_Full [A].
+Arguments get_empty [A] i.
+Arguments get_push_Full [A] i a S _.
-Implicit Arguments Full [A].
-Implicit Arguments F_empty [A].
-Implicit Arguments F_push [A].
-Implicit Arguments In [A].
+Arguments Full [A] _.
+Arguments F_empty [A].
+Arguments F_push [A] a S _.
+Arguments In [A] x S F.
Section Map.
@@ -482,8 +367,8 @@ Defined.
End Map.
-Implicit Arguments Tmap [A B].
-Implicit Arguments map [A B].
-Implicit Arguments Full_map [A B f].
+Arguments Tmap [A B] f T.
+Arguments map [A B] f S.
+Arguments Full_map [A B f] S _.
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).