diff options
Diffstat (limited to 'plugins/romega/refl_omega.ml')
-rw-r--r-- | plugins/romega/refl_omega.ml | 1299 |
1 files changed, 1299 insertions, 0 deletions
diff --git a/plugins/romega/refl_omega.ml b/plugins/romega/refl_omega.ml new file mode 100644 index 00000000..570bb187 --- /dev/null +++ b/plugins/romega/refl_omega.ml @@ -0,0 +1,1299 @@ +(************************************************************************* + + PROJET RNRT Calife - 2001 + Author: Pierre Crégut - France Télécom R&D + Licence : LGPL version 2.1 + + *************************************************************************) + +open Util +open Const_omega +module OmegaSolver = Omega.MakeOmegaSolver (Bigint) +open OmegaSolver + +(* \section{Useful functions and flags} *) +(* Especially useful debugging functions *) +let debug = ref false + +let show_goal gl = + if !debug then Pp.ppnl (Tacmach.pr_gls gl); Tacticals.tclIDTAC gl + +let pp i = print_int i; print_newline (); flush stdout + +(* More readable than the prefix notation *) +let (>>) = Tacticals.tclTHEN + +let mkApp = Term.mkApp + +(* \section{Types} + \subsection{How to walk in a term} + To represent how to get to a proposition. Only choice points are + kept (branch to choose in a disjunction and identifier of the disjunctive + connector) *) +type direction = Left of int | Right of int + +(* Step to find a proposition (operators are at most binary). A list is + a path *) +type occ_step = O_left | O_right | O_mono +type occ_path = occ_step list + +(* chemin identifiant une proposition sous forme du nom de l'hypothèse et + d'une liste de pas à partir de la racine de l'hypothèse *) +type occurence = {o_hyp : Names.identifier; o_path : occ_path} + +(* \subsection{refiable formulas} *) +type oformula = + (* integer *) + | Oint of Bigint.bigint + (* recognized binary and unary operations *) + | Oplus of oformula * oformula + | Omult of oformula * oformula + | Ominus of oformula * oformula + | Oopp of oformula + (* an atome in the environment *) + | Oatom of int + (* weird expression that cannot be translated *) + | Oufo of oformula + +(* Operators for comparison recognized by Omega *) +type comparaison = Eq | Leq | Geq | Gt | Lt | Neq + +(* Type des prédicats réifiés (fragment de calcul propositionnel. Les + * quantifications sont externes au langage) *) +type oproposition = + Pequa of Term.constr * oequation + | Ptrue + | Pfalse + | Pnot of oproposition + | Por of int * oproposition * oproposition + | Pand of int * oproposition * oproposition + | Pimp of int * oproposition * oproposition + | Pprop of Term.constr + +(* Les équations ou proposiitions atomiques utiles du calcul *) +and oequation = { + e_comp: comparaison; (* comparaison *) + e_left: oformula; (* formule brute gauche *) + e_right: oformula; (* formule brute droite *) + e_trace: Term.constr; (* tactique de normalisation *) + e_origin: occurence; (* l'hypothèse dont vient le terme *) + e_negated: bool; (* vrai si apparait en position nié + après normalisation *) + e_depends: direction list; (* liste des points de disjonction dont + dépend l'accès à l'équation avec la + direction (branche) pour y accéder *) + e_omega: afine (* la fonction normalisée *) + } + +(* \subsection{Proof context} + This environment codes + \begin{itemize} + \item the terms and propositions that are given as + parameters of the reified proof (and are represented as variables in the + reified goals) + \item translation functions linking the decision procedure and the Coq proof + \end{itemize} *) + +type environment = { + (* La liste des termes non reifies constituant l'environnement global *) + mutable terms : Term.constr list; + (* La meme chose pour les propositions *) + mutable props : Term.constr list; + (* Les variables introduites par omega *) + mutable om_vars : (oformula * int) list; + (* Traduction des indices utilisés ici en les indices finaux utilisés par + * la tactique Omega après dénombrement des variables utiles *) + real_indices : (int,int) Hashtbl.t; + mutable cnt_connectors : int; + equations : (int,oequation) Hashtbl.t; + constructors : (int, occurence) Hashtbl.t +} + +(* \subsection{Solution tree} + Définition d'une solution trouvée par Omega sous la forme d'un identifiant, + d'un ensemble d'équation dont dépend la solution et d'une trace *) +(* La liste des dépendances est triée et sans redondance *) +type solution = { + s_index : int; + s_equa_deps : int list; + s_trace : action list } + +(* Arbre de solution résolvant complètement un ensemble de systèmes *) +type solution_tree = + Leaf of solution + (* un noeud interne représente un point de branchement correspondant à + l'élimination d'un connecteur générant plusieurs buts + (typ. disjonction). Le premier argument + est l'identifiant du connecteur *) + | Tree of int * solution_tree * solution_tree + +(* Représentation de l'environnement extrait du but initial sous forme de + chemins pour extraire des equations ou d'hypothèses *) + +type context_content = + CCHyp of occurence + | CCEqua of int + +(* \section{Specific utility functions to handle base types} *) +(* Nom arbitraire de l'hypothèse codant la négation du but final *) +let id_concl = Names.id_of_string "__goal__" + +(* Initialisation de l'environnement de réification de la tactique *) +let new_environment () = { + terms = []; props = []; om_vars = []; cnt_connectors = 0; + real_indices = Hashtbl.create 7; + equations = Hashtbl.create 7; + constructors = Hashtbl.create 7; +} + +(* Génération d'un nom d'équation *) +let new_connector_id env = + env.cnt_connectors <- succ env.cnt_connectors; env.cnt_connectors + +(* Calcul de la branche complémentaire *) +let barre = function Left x -> Right x | Right x -> Left x + +(* Identifiant associé à une branche *) +let indice = function Left x | Right x -> x + +(* Affichage de l'environnement de réification (termes et propositions) *) +let print_env_reification env = + let rec loop c i = function + [] -> Printf.printf " ===============================\n\n" + | t :: l -> + Printf.printf " (%c%02d) := " c i; + Pp.ppnl (Printer.pr_lconstr t); + Pp.flush_all (); + loop c (succ i) l in + print_newline (); + Printf.printf " ENVIRONMENT OF PROPOSITIONS :\n\n"; loop 'P' 0 env.props; + Printf.printf " ENVIRONMENT OF TERMS :\n\n"; loop 'V' 0 env.terms + + +(* \subsection{Gestion des environnements de variable pour Omega} *) +(* generation d'identifiant d'equation pour Omega *) + +let new_omega_eq, rst_omega_eq = + let cpt = ref 0 in + (function () -> incr cpt; !cpt), + (function () -> cpt:=0) + +(* generation d'identifiant de variable pour Omega *) + +let new_omega_var, rst_omega_var = + let cpt = ref 0 in + (function () -> incr cpt; !cpt), + (function () -> cpt:=0) + +(* Affichage des variables d'un système *) + +let display_omega_var i = Printf.sprintf "OV%d" i + +(* Recherche la variable codant un terme pour Omega et crée la variable dans + l'environnement si il n'existe pas. Cas ou la variable dans Omega représente + le terme d'un monome (le plus souvent un atome) *) + +let intern_omega env t = + begin try List.assoc t env.om_vars + with Not_found -> + let v = new_omega_var () in + env.om_vars <- (t,v) :: env.om_vars; v + end + +(* Ajout forcé d'un lien entre un terme et une variable Cas où la + variable est créée par Omega et où il faut la lier après coup à un atome + réifié introduit de force *) +let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars + +(* Récupère le terme associé à une variable *) +let unintern_omega env id = + let rec loop = function + [] -> failwith "unintern" + | ((t,j)::l) -> if id = j then t else loop l in + loop env.om_vars + +(* \subsection{Gestion des environnements de variable pour la réflexion} + Gestion des environnements de traduction entre termes des constructions + non réifiés et variables des termes reifies. Attention il s'agit de + l'environnement initial contenant tout. Il faudra le réduire après + calcul des variables utiles. *) + +let add_reified_atom t env = + try list_index0 t env.terms + with Not_found -> + let i = List.length env.terms in + env.terms <- env.terms @ [t]; i + +let get_reified_atom env = + try List.nth env.terms with _ -> failwith "get_reified_atom" + +(* \subsection{Gestion de l'environnement de proposition pour Omega} *) +(* ajout d'une proposition *) +let add_prop env t = + try list_index0 t env.props + with Not_found -> + let i = List.length env.props in env.props <- env.props @ [t]; i + +(* accès a une proposition *) +let get_prop v env = try List.nth v env with _ -> failwith "get_prop" + +(* \subsection{Gestion du nommage des équations} *) +(* Ajout d'une equation dans l'environnement de reification *) +let add_equation env e = + let id = e.e_omega.id in + try let _ = Hashtbl.find env.equations id in () + with Not_found -> Hashtbl.add env.equations id e + +(* accès a une equation *) +let get_equation env id = + try Hashtbl.find env.equations id + with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e + +(* Affichage des termes réifiés *) +let rec oprint ch = function + | Oint n -> Printf.fprintf ch "%s" (Bigint.to_string n) + | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2 + | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2 + | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2 + | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1 + | Oatom n -> Printf.fprintf ch "V%02d" n + | Oufo x -> Printf.fprintf ch "?" + +let rec pprint ch = function + Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) -> + let connector = + match comp with + Eq -> "=" | Leq -> "<=" | Geq -> ">=" + | Gt -> ">" | Lt -> "<" | Neq -> "!=" in + Printf.fprintf ch "%a %s %a" oprint t1 connector oprint t2 + | Ptrue -> Printf.fprintf ch "TT" + | Pfalse -> Printf.fprintf ch "FF" + | Pnot t -> Printf.fprintf ch "not(%a)" pprint t + | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2 + | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2 + | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2 + | Pprop c -> Printf.fprintf ch "Prop" + +let rec weight env = function + | Oint _ -> -1 + | Oopp c -> weight env c + | Omult(c,_) -> weight env c + | Oplus _ -> failwith "weight" + | Ominus _ -> failwith "weight minus" + | Oufo _ -> -1 + | Oatom _ as c -> (intern_omega env c) + +(* \section{Passage entre oformules et représentation interne de Omega} *) + +(* \subsection{Oformula vers Omega} *) + +let omega_of_oformula env kind = + let rec loop accu = function + | Oplus(Omult(v,Oint n),r) -> + loop ({v=intern_omega env v; c=n} :: accu) r + | Oint n -> + let id = new_omega_eq () in + (*i tag_equation name id; i*) + {kind = kind; body = List.rev accu; + constant = n; id = id} + | t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in + loop [] + +(* \subsection{Omega vers Oformula} *) + +let rec oformula_of_omega env af = + let rec loop = function + | ({v=v; c=n}::r) -> + Oplus(Omult(unintern_omega env v,Oint n),loop r) + | [] -> Oint af.constant in + loop af.body + +let app f v = mkApp(Lazy.force f,v) + +(* \subsection{Oformula vers COQ reel} *) + +let rec coq_of_formula env t = + let rec loop = function + | Oplus (t1,t2) -> app Z.plus [| loop t1; loop t2 |] + | Oopp t -> app Z.opp [| loop t |] + | Omult(t1,t2) -> app Z.mult [| loop t1; loop t2 |] + | Oint v -> Z.mk v + | Oufo t -> loop t + | Oatom var -> + (* attention ne traite pas les nouvelles variables si on ne les + * met pas dans env.term *) + get_reified_atom env var + | Ominus(t1,t2) -> app Z.minus [| loop t1; loop t2 |] in + loop t + +(* \subsection{Oformula vers COQ reifié} *) + +let reified_of_atom env i = + try Hashtbl.find env.real_indices i + with Not_found -> + Printf.printf "Atome %d non trouvé\n" i; + Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices; + raise Not_found + +let rec reified_of_formula env = function + | Oplus (t1,t2) -> + app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |] + | Oopp t -> + app coq_t_opp [| reified_of_formula env t |] + | Omult(t1,t2) -> + app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |] + | Oint v -> app coq_t_int [| Z.mk v |] + | Oufo t -> reified_of_formula env t + | Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |] + | Ominus(t1,t2) -> + app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |] + +let reified_of_formula env f = + begin try reified_of_formula env f with e -> oprint stderr f; raise e end + +let rec reified_of_proposition env = function + Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) -> + app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |] + | Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) -> + app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |] + | Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) -> + app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |] + | Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) -> + app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |] + | Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) -> + app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |] + | Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) -> + app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |] + | Ptrue -> Lazy.force coq_p_true + | Pfalse -> Lazy.force coq_p_false + | Pnot t -> + app coq_p_not [| reified_of_proposition env t |] + | Por (_,t1,t2) -> + app coq_p_or + [| reified_of_proposition env t1; reified_of_proposition env t2 |] + | Pand(_,t1,t2) -> + app coq_p_and + [| reified_of_proposition env t1; reified_of_proposition env t2 |] + | Pimp(_,t1,t2) -> + app coq_p_imp + [| reified_of_proposition env t1; reified_of_proposition env t2 |] + | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |] + +let reified_of_proposition env f = + begin try reified_of_proposition env f + with e -> pprint stderr f; raise e end + +(* \subsection{Omega vers COQ réifié} *) + +let reified_of_omega env body constant = + let coeff_constant = + app coq_t_int [| Z.mk constant |] in + let mk_coeff {c=c; v=v} t = + let coef = + app coq_t_mult + [| reified_of_formula env (unintern_omega env v); + app coq_t_int [| Z.mk c |] |] in + app coq_t_plus [|coef; t |] in + List.fold_right mk_coeff body coeff_constant + +let reified_of_omega env body c = + begin try + reified_of_omega env body c + with e -> + display_eq display_omega_var (body,c); raise e + end + +(* \section{Opérations sur les équations} +Ces fonctions préparent les traces utilisées par la tactique réfléchie +pour faire des opérations de normalisation sur les équations. *) + +(* \subsection{Extractions des variables d'une équation} *) +(* Extraction des variables d'une équation. *) +(* Chaque fonction retourne une liste triée sans redondance *) + +let (@@) = list_merge_uniq compare + +let rec vars_of_formula = function + | Oint _ -> [] + | Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2) + | Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2) + | Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2) + | Oopp e -> vars_of_formula e + | Oatom i -> [i] + | Oufo _ -> [] + +let rec vars_of_equations = function + | [] -> [] + | e::l -> + (vars_of_formula e.e_left) @@ + (vars_of_formula e.e_right) @@ + (vars_of_equations l) + +let rec vars_of_prop = function + | Pequa(_,e) -> vars_of_equations [e] + | Pnot p -> vars_of_prop p + | Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2) + | Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2) + | Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2) + | Pprop _ | Ptrue | Pfalse -> [] + +(* \subsection{Multiplication par un scalaire} *) + +let rec scalar n = function + Oplus(t1,t2) -> + let tac1,t1' = scalar n t1 and + tac2,t2' = scalar n t2 in + do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2], + Oplus(t1',t2') + | Oopp t -> + do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(Bigint.neg n)) + | Omult(t1,Oint x) -> + do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x)) + | Omult(t1,t2) -> + Util.error "Omega: Can't solve a goal with non-linear products" + | (Oatom _ as t) -> do_list [], Omult(t,Oint n) + | Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i) + | (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n)) + | Ominus _ -> failwith "scalar minus" + +(* \subsection{Propagation de l'inversion} *) + +let rec negate = function + Oplus(t1,t2) -> + let tac1,t1' = negate t1 and + tac2,t2' = negate t2 in + do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)], + Oplus(t1',t2') + | Oopp t -> + do_list [Lazy.force coq_c_opp_opp], t + | Omult(t1,Oint x) -> + do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (Bigint.neg x)) + | Omult(t1,t2) -> + Util.error "Omega: Can't solve a goal with non-linear products" + | (Oatom _ as t) -> + do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(negone)) + | Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(Bigint.neg i) + | Oufo c -> do_list [], Oufo (Oopp c) + | Ominus _ -> failwith "negate minus" + +let rec norm l = (List.length l) + +(* \subsection{Mélange (fusion) de deux équations} *) +(* \subsubsection{Version avec coefficients} *) +let rec shuffle_path k1 e1 k2 e2 = + let rec loop = function + (({c=c1;v=v1}::l1) as l1'), + (({c=c2;v=v2}::l2) as l2') -> + if v1 = v2 then + if k1*c1 + k2 * c2 = zero then ( + Lazy.force coq_f_cancel :: loop (l1,l2)) + else ( + Lazy.force coq_f_equal :: loop (l1,l2) ) + else if v1 > v2 then ( + Lazy.force coq_f_left :: loop(l1,l2')) + else ( + Lazy.force coq_f_right :: loop(l1',l2)) + | ({c=c1;v=v1}::l1), [] -> + Lazy.force coq_f_left :: loop(l1,[]) + | [],({c=c2;v=v2}::l2) -> + Lazy.force coq_f_right :: loop([],l2) + | [],[] -> flush stdout; [] in + mk_shuffle_list (loop (e1,e2)) + +(* \subsubsection{Version sans coefficients} *) +let rec shuffle env (t1,t2) = + match t1,t2 with + Oplus(l1,r1), Oplus(l2,r2) -> + if weight env l1 > weight env l2 then + let l_action,t' = shuffle env (r1,t2) in + do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t') + else + let l_action,t' = shuffle env (t1,r2) in + do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t') + | Oplus(l1,r1), t2 -> + if weight env l1 > weight env t2 then + let (l_action,t') = shuffle env (r1,t2) in + do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t') + else do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1) + | t1,Oplus(l2,r2) -> + if weight env l2 > weight env t1 then + let (l_action,t') = shuffle env (t1,r2) in + do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t') + else do_list [],Oplus(t1,t2) + | Oint t1,Oint t2 -> + do_list [Lazy.force coq_c_reduce], Oint(t1+t2) + | t1,t2 -> + if weight env t1 < weight env t2 then + do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1) + else do_list [],Oplus(t1,t2) + +(* \subsection{Fusion avec réduction} *) + +let shrink_pair f1 f2 = + begin match f1,f2 with + Oatom v,Oatom _ -> + Lazy.force coq_c_red1, Omult(Oatom v,Oint two) + | Oatom v, Omult(_,c2) -> + Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint one)) + | Omult (v1,c1),Oatom v -> + Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint one)) + | Omult (Oatom v,c1),Omult (v2,c2) -> + Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2)) + | t1,t2 -> + oprint stdout t1; print_newline (); oprint stdout t2; print_newline (); + flush Pervasives.stdout; Util.error "shrink.1" + end + +(* \subsection{Calcul d'une sous formule constante} *) + +let reduce_factor = function + Oatom v -> + let r = Omult(Oatom v,Oint one) in + [Lazy.force coq_c_red0],r + | Omult(Oatom v,Oint n) as f -> [],f + | Omult(Oatom v,c) -> + let rec compute = function + Oint n -> n + | Oplus(t1,t2) -> compute t1 + compute t2 + | _ -> Util.error "condense.1" in + [Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c)) + | t -> Util.error "reduce_factor.1" + +(* \subsection{Réordonnancement} *) + +let rec condense env = function + Oplus(f1,(Oplus(f2,r) as t)) -> + if weight env f1 = weight env f2 then begin + let shrink_tac,t = shrink_pair f1 f2 in + let assoc_tac = Lazy.force coq_c_plus_assoc_l in + let tac_list,t' = condense env (Oplus(t,r)) in + assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t' + end else begin + let tac,f = reduce_factor f1 in + let tac',t' = condense env t in + [do_both (do_list tac) (do_list tac')], Oplus(f,t') + end + | Oplus(f1,Oint n) -> + let tac,f1' = reduce_factor f1 in + [do_left (do_list tac)],Oplus(f1',Oint n) + | Oplus(f1,f2) -> + if weight env f1 = weight env f2 then begin + let tac_shrink,t = shrink_pair f1 f2 in + let tac,t' = condense env t in + tac_shrink :: tac,t' + end else begin + let tac,f = reduce_factor f1 in + let tac',t' = condense env f2 in + [do_both (do_list tac) (do_list tac')],Oplus(f,t') + end + | (Oint _ as t)-> [],t + | t -> + let tac,t' = reduce_factor t in + let final = Oplus(t',Oint zero) in + tac @ [Lazy.force coq_c_red6], final + +(* \subsection{Elimination des zéros} *) + +let rec clear_zero = function + Oplus(Omult(Oatom v,Oint n),r) when n=zero -> + let tac',t = clear_zero r in + Lazy.force coq_c_red5 :: tac',t + | Oplus(f,r) -> + let tac,t = clear_zero r in + (if tac = [] then [] else [do_right (do_list tac)]),Oplus(f,t) + | t -> [],t;; + +(* \subsection{Transformation des hypothèses} *) + +let rec reduce env = function + Oplus(t1,t2) -> + let t1', trace1 = reduce env t1 in + let t2', trace2 = reduce env t2 in + let trace3,t' = shuffle env (t1',t2') in + t', do_list [do_both trace1 trace2; trace3] + | Ominus(t1,t2) -> + let t,trace = reduce env (Oplus(t1, Oopp t2)) in + t, do_list [Lazy.force coq_c_minus; trace] + | Omult(t1,t2) as t -> + let t1', trace1 = reduce env t1 in + let t2', trace2 = reduce env t2 in + begin match t1',t2' with + | (_, Oint n) -> + let tac,t' = scalar n t1' in + t', do_list [do_both trace1 trace2; tac] + | (Oint n,_) -> + let tac,t' = scalar n t2' in + t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_comm; tac] + | _ -> Oufo t, Lazy.force coq_c_nop + end + | Oopp t -> + let t',trace = reduce env t in + let trace',t'' = negate t' in + t'', do_list [do_left trace; trace'] + | (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop + +let normalize_linear_term env t = + let t1,trace1 = reduce env t in + let trace2,t2 = condense env t1 in + let trace3,t3 = clear_zero t2 in + do_list [trace1; do_list trace2; do_list trace3], t3 + +(* Cette fonction reproduit très exactement le comportement de [p_invert] *) +let negate_oper = function + Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq + +let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) = + let mk_step t1 t2 f kind = + let t = f t1 t2 in + let trace, oterm = normalize_linear_term env t in + let equa = omega_of_oformula env kind oterm in + { e_comp = oper; e_left = t1; e_right = t2; + e_negated = negated; e_depends = depends; + e_origin = { o_hyp = origin; o_path = List.rev path }; + e_trace = trace; e_omega = equa } in + try match (if negated then (negate_oper oper) else oper) with + | Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) EQUA + | Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) DISE + | Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) INEQ + | Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) INEQ + | Lt -> + mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint negone),Oopp o1)) + INEQ + | Gt -> + mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint negone),Oopp o2)) + INEQ + with e when Logic.catchable_exception e -> raise e + +(* \section{Compilation des hypothèses} *) + +let rec oformula_of_constr env t = + match Z.parse_term t with + | Tplus (t1,t2) -> binop env (fun x y -> Oplus(x,y)) t1 t2 + | Tminus (t1,t2) -> binop env (fun x y -> Ominus(x,y)) t1 t2 + | Tmult (t1,t2) when Z.is_scalar t1 || Z.is_scalar t2 -> + binop env (fun x y -> Omult(x,y)) t1 t2 + | Topp t -> Oopp(oformula_of_constr env t) + | Tsucc t -> Oplus(oformula_of_constr env t, Oint one) + | Tnum n -> Oint n + | _ -> Oatom (add_reified_atom t env) + +and binop env c t1 t2 = + let t1' = oformula_of_constr env t1 in + let t2' = oformula_of_constr env t2 in + c t1' t2' + +and binprop env (neg2,depends,origin,path) + add_to_depends neg1 gl c t1 t2 = + let i = new_connector_id env in + let depends1 = if add_to_depends then Left i::depends else depends in + let depends2 = if add_to_depends then Right i::depends else depends in + if add_to_depends then + Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path}; + let t1' = + oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in + let t2' = + oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in + (* On numérote le connecteur dans l'environnement. *) + c i t1' t2' + +and mk_equation env ctxt c connector t1 t2 = + let t1' = oformula_of_constr env t1 in + let t2' = oformula_of_constr env t2 in + (* On ajoute l'equation dans l'environnement. *) + let omega = normalize_equation env ctxt (connector,t1',t2') in + add_equation env omega; + Pequa (c,omega) + +and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c = + match Z.parse_rel gl c with + | Req (t1,t2) -> mk_equation env ctxt c Eq t1 t2 + | Rne (t1,t2) -> mk_equation env ctxt c Neq t1 t2 + | Rle (t1,t2) -> mk_equation env ctxt c Leq t1 t2 + | Rlt (t1,t2) -> mk_equation env ctxt c Lt t1 t2 + | Rge (t1,t2) -> mk_equation env ctxt c Geq t1 t2 + | Rgt (t1,t2) -> mk_equation env ctxt c Gt t1 t2 + | Rtrue -> Ptrue + | Rfalse -> Pfalse + | Rnot t -> + let t' = + oproposition_of_constr + env (not negated, depends, origin,(O_mono::path)) gl t in + Pnot t' + | Ror (t1,t2) -> + binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2 + | Rand (t1,t2) -> + binprop env ctxt negated negated gl + (fun i x y -> Pand(i,x,y)) t1 t2 + | Rimp (t1,t2) -> + binprop env ctxt (not negated) (not negated) gl + (fun i x y -> Pimp(i,x,y)) t1 t2 + | Riff (t1,t2) -> + binprop env ctxt negated negated gl + (fun i x y -> Pand(i,x,y)) (Term.mkArrow t1 t2) (Term.mkArrow t2 t1) + | _ -> Pprop c + +(* Destructuration des hypothèses et de la conclusion *) + +let reify_gl env gl = + let concl = Tacmach.pf_concl gl in + let t_concl = + Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in + if !debug then begin + Printf.printf "REIFED PROBLEM\n\n"; + Printf.printf " CONCL: "; pprint stdout t_concl; Printf.printf "\n" + end; + let rec loop = function + (i,t) :: lhyps -> + let t' = oproposition_of_constr env (false,[],i,[]) gl t in + if !debug then begin + Printf.printf " %s: " (Names.string_of_id i); + pprint stdout t'; + Printf.printf "\n" + end; + (i,t') :: loop lhyps + | [] -> + if !debug then print_env_reification env; + [] in + let t_lhyps = loop (Tacmach.pf_hyps_types gl) in + (id_concl,t_concl) :: t_lhyps + +let rec destructurate_pos_hyp orig list_equations list_depends = function + | Pequa (_,e) -> [e :: list_equations] + | Ptrue | Pfalse | Pprop _ -> [list_equations] + | Pnot t -> destructurate_neg_hyp orig list_equations list_depends t + | Por (i,t1,t2) -> + let s1 = + destructurate_pos_hyp orig list_equations (i::list_depends) t1 in + let s2 = + destructurate_pos_hyp orig list_equations (i::list_depends) t2 in + s1 @ s2 + | Pand(i,t1,t2) -> + let list_s1 = + destructurate_pos_hyp orig list_equations (list_depends) t1 in + let rec loop = function + le1 :: ll -> destructurate_pos_hyp orig le1 list_depends t2 @ loop ll + | [] -> [] in + loop list_s1 + | Pimp(i,t1,t2) -> + let s1 = + destructurate_neg_hyp orig list_equations (i::list_depends) t1 in + let s2 = + destructurate_pos_hyp orig list_equations (i::list_depends) t2 in + s1 @ s2 + +and destructurate_neg_hyp orig list_equations list_depends = function + | Pequa (_,e) -> [e :: list_equations] + | Ptrue | Pfalse | Pprop _ -> [list_equations] + | Pnot t -> destructurate_pos_hyp orig list_equations list_depends t + | Pand (i,t1,t2) -> + let s1 = + destructurate_neg_hyp orig list_equations (i::list_depends) t1 in + let s2 = + destructurate_neg_hyp orig list_equations (i::list_depends) t2 in + s1 @ s2 + | Por(_,t1,t2) -> + let list_s1 = + destructurate_neg_hyp orig list_equations list_depends t1 in + let rec loop = function + le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll + | [] -> [] in + loop list_s1 + | Pimp(_,t1,t2) -> + let list_s1 = + destructurate_pos_hyp orig list_equations list_depends t1 in + let rec loop = function + le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll + | [] -> [] in + loop list_s1 + +let destructurate_hyps syst = + let rec loop = function + (i,t) :: l -> + let l_syst1 = destructurate_pos_hyp i [] [] t in + let l_syst2 = loop l in + list_cartesian (@) l_syst1 l_syst2 + | [] -> [[]] in + loop syst + +(* \subsection{Affichage d'un système d'équation} *) + +(* Affichage des dépendances de système *) +let display_depend = function + Left i -> Printf.printf " L%d" i + | Right i -> Printf.printf " R%d" i + +let display_systems syst_list = + let display_omega om_e = + Printf.printf " E%d : %a %s 0\n" + om_e.id + (fun _ -> display_eq display_omega_var) + (om_e.body, om_e.constant) + (operator_of_eq om_e.kind) in + + let display_equation oformula_eq = + pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline (); + display_omega oformula_eq.e_omega; + Printf.printf " Depends on:"; + List.iter display_depend oformula_eq.e_depends; + Printf.printf "\n Path: %s" + (String.concat "" + (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M") + oformula_eq.e_origin.o_path)); + Printf.printf "\n Origin: %s (negated : %s)\n\n" + (Names.string_of_id oformula_eq.e_origin.o_hyp) + (if oformula_eq.e_negated then "yes" else "no") in + + let display_system syst = + Printf.printf "=SYSTEM===================================\n"; + List.iter display_equation syst in + List.iter display_system syst_list + +(* Extraction des prédicats utilisées dans une trace. Permet ensuite le + calcul des hypothèses *) + +let rec hyps_used_in_trace = function + | act :: l -> + begin match act with + | HYP e -> [e.id] @@ (hyps_used_in_trace l) + | SPLIT_INEQ (_,(_,act1),(_,act2)) -> + hyps_used_in_trace act1 @@ hyps_used_in_trace act2 + | _ -> hyps_used_in_trace l + end + | [] -> [] + +(* Extraction des variables déclarées dans une équation. Permet ensuite + de les déclarer dans l'environnement de la procédure réflexive et + éviter les créations de variable au vol *) + +let rec variable_stated_in_trace = function + | act :: l -> + begin match act with + | STATE action -> + (*i nlle_equa: afine, def: afine, eq_orig: afine, i*) + (*i coef: int, var:int i*) + action :: variable_stated_in_trace l + | SPLIT_INEQ (_,(_,act1),(_,act2)) -> + variable_stated_in_trace act1 @ variable_stated_in_trace act2 + | _ -> variable_stated_in_trace l + end + | [] -> [] +;; + +let add_stated_equations env tree = + (* Il faut trier les variables par ordre d'introduction pour ne pas risquer + de définir dans le mauvais ordre *) + let stated_equations = + let cmpvar x y = Pervasives.(-) x.st_var y.st_var in + let rec loop = function + | Tree(_,t1,t2) -> List.merge cmpvar (loop t1) (loop t2) + | Leaf s -> List.sort cmpvar (variable_stated_in_trace s.s_trace) + in loop tree + in + let add_env st = + (* On retransforme la définition de v en formule reifiée *) + let v_def = oformula_of_omega env st.st_def in + (* Notez que si l'ordre de création des variables n'est pas respecté, + * ca va planter *) + let coq_v = coq_of_formula env v_def in + let v = add_reified_atom coq_v env in + (* Le terme qu'il va falloir introduire *) + let term_to_generalize = app coq_refl_equal [|Lazy.force Z.typ; coq_v|] in + (* sa représentation sous forme d'équation mais non réifié car on n'a pas + * l'environnement pour le faire correctement *) + let term_to_reify = (v_def,Oatom v) in + (* enregistre le lien entre la variable omega et la variable Coq *) + intern_omega_force env (Oatom v) st.st_var; + (v, term_to_generalize,term_to_reify,st.st_def.id) in + List.map add_env stated_equations + +(* Calcule la liste des éclatements à réaliser sur les hypothèses + nécessaires pour extraire une liste d'équations donnée *) + +(* PL: experimentally, the result order of the following function seems + _very_ crucial for efficiency. No idea why. Do not remove the List.rev + or modify the current semantics of Util.list_union (some elements of first + arg, then second arg), unless you know what you're doing. *) + +let rec get_eclatement env = function + i :: r -> + let l = try (get_equation env i).e_depends with Not_found -> [] in + list_union (List.rev l) (get_eclatement env r) + | [] -> [] + +let select_smaller l = + let comp (_,x) (_,y) = Pervasives.(-) (List.length x) (List.length y) in + try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller" + +let filter_compatible_systems required systems = + let rec select = function + (x::l) -> + if List.mem x required then select l + else if List.mem (barre x) required then failwith "Exit" + else x :: select l + | [] -> [] in + map_succeed (function (sol,splits) -> (sol,select splits)) systems + +let rec equas_of_solution_tree = function + Tree(_,t1,t2) -> (equas_of_solution_tree t1)@@(equas_of_solution_tree t2) + | Leaf s -> s.s_equa_deps + +(* [really_useful_prop] pushes useless props in a new Pprop variable *) +(* Things get shorter, but may also get wrong, since a Prop is considered + to be undecidable in ReflOmegaCore.concl_to_hyp, whereas for instance + Pfalse is decidable. So should not be used on conclusion (??) *) + +let really_useful_prop l_equa c = + let rec real_of = function + Pequa(t,_) -> t + | Ptrue -> app coq_True [||] + | Pfalse -> app coq_False [||] + | Pnot t1 -> app coq_not [|real_of t1|] + | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|] + | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|] + (* Attention : implications sur le lifting des variables à comprendre ! *) + | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2) + | Pprop t -> t in + let rec loop c = + match c with + Pequa(_,e) -> + if List.mem e.e_omega.id l_equa then Some c else None + | Ptrue -> None + | Pfalse -> None + | Pnot t1 -> + begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end + | Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2 + | Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2 + | Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2 + | Pprop t -> None + and binop f t1 t2 = + begin match loop t1, loop t2 with + None, None -> None + | Some t1',Some t2' -> Some (f(t1',t2')) + | Some t1',None -> Some (f(t1',Pprop (real_of t2))) + | None,Some t2' -> Some (f(Pprop (real_of t1),t2')) + end in + match loop c with + None -> Pprop (real_of c) + | Some t -> t + +let rec display_solution_tree ch = function + Leaf t -> + output_string ch + (Printf.sprintf "%d[%s]" + t.s_index + (String.concat " " (List.map string_of_int t.s_equa_deps))) + | Tree(i,t1,t2) -> + Printf.fprintf ch "S%d(%a,%a)" i + display_solution_tree t1 display_solution_tree t2 + +let rec solve_with_constraints all_solutions path = + let rec build_tree sol buf = function + [] -> Leaf sol + | (Left i :: remainder) -> + Tree(i, + build_tree sol (Left i :: buf) remainder, + solve_with_constraints all_solutions (List.rev(Right i :: buf))) + | (Right i :: remainder) -> + Tree(i, + solve_with_constraints all_solutions (List.rev (Left i :: buf)), + build_tree sol (Right i :: buf) remainder) in + let weighted = filter_compatible_systems path all_solutions in + let (winner_sol,winner_deps) = + try select_smaller weighted + with e -> + Printf.printf "%d - %d\n" + (List.length weighted) (List.length all_solutions); + List.iter display_depend path; raise e in + build_tree winner_sol (List.rev path) winner_deps + +let find_path {o_hyp=id;o_path=p} env = + let rec loop_path = function + ([],l) -> Some l + | (x1::l1,x2::l2) when x1 = x2 -> loop_path (l1,l2) + | _ -> None in + let rec loop_id i = function + CCHyp{o_hyp=id';o_path=p'} :: l when id = id' -> + begin match loop_path (p',p) with + Some r -> i,r + | None -> loop_id (succ i) l + end + | _ :: l -> loop_id (succ i) l + | [] -> failwith "find_path" in + loop_id 0 env + +let mk_direction_list l = + let trans = function + O_left -> coq_d_left | O_right -> coq_d_right | O_mono -> coq_d_mono in + mk_list (Lazy.force coq_direction) (List.map (fun d-> Lazy.force(trans d)) l) + + +(* \section{Rejouer l'historique} *) + +let get_hyp env_hyp i = + try list_index0 (CCEqua i) env_hyp + with Not_found -> failwith (Printf.sprintf "get_hyp %d" i) + +let replay_history env env_hyp = + let rec loop env_hyp t = + match t with + | CONTRADICTION (e1,e2) :: l -> + let trace = mk_nat (List.length e1.body) in + mkApp (Lazy.force coq_s_contradiction, + [| trace ; mk_nat (get_hyp env_hyp e1.id); + mk_nat (get_hyp env_hyp e2.id) |]) + | DIVIDE_AND_APPROX (e1,e2,k,d) :: l -> + mkApp (Lazy.force coq_s_div_approx, + [| Z.mk k; Z.mk d; + reified_of_omega env e2.body e2.constant; + mk_nat (List.length e2.body); + loop env_hyp l; mk_nat (get_hyp env_hyp e1.id) |]) + | NOT_EXACT_DIVIDE (e1,k) :: l -> + let e2_constant = floor_div e1.constant k in + let d = e1.constant - e2_constant * k in + let e2_body = map_eq_linear (fun c -> c / k) e1.body in + mkApp (Lazy.force coq_s_not_exact_divide, + [|Z.mk k; Z.mk d; + reified_of_omega env e2_body e2_constant; + mk_nat (List.length e2_body); + mk_nat (get_hyp env_hyp e1.id)|]) + | EXACT_DIVIDE (e1,k) :: l -> + let e2_body = + map_eq_linear (fun c -> c / k) e1.body in + let e2_constant = floor_div e1.constant k in + mkApp (Lazy.force coq_s_exact_divide, + [|Z.mk k; + reified_of_omega env e2_body e2_constant; + mk_nat (List.length e2_body); + loop env_hyp l; mk_nat (get_hyp env_hyp e1.id)|]) + | (MERGE_EQ(e3,e1,e2)) :: l -> + let n1 = get_hyp env_hyp e1.id and n2 = get_hyp env_hyp e2 in + mkApp (Lazy.force coq_s_merge_eq, + [| mk_nat (List.length e1.body); + mk_nat n1; mk_nat n2; + loop (CCEqua e3:: env_hyp) l |]) + | SUM(e3,(k1,e1),(k2,e2)) :: l -> + let n1 = get_hyp env_hyp e1.id + and n2 = get_hyp env_hyp e2.id in + let trace = shuffle_path k1 e1.body k2 e2.body in + mkApp (Lazy.force coq_s_sum, + [| Z.mk k1; mk_nat n1; Z.mk k2; + mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |]) + | CONSTANT_NOT_NUL(e,k) :: l -> + mkApp (Lazy.force coq_s_constant_not_nul, + [| mk_nat (get_hyp env_hyp e) |]) + | CONSTANT_NEG(e,k) :: l -> + mkApp (Lazy.force coq_s_constant_neg, + [| mk_nat (get_hyp env_hyp e) |]) + | STATE {st_new_eq=new_eq; st_def =def; + st_orig=orig; st_coef=m; + st_var=sigma } :: l -> + let n1 = get_hyp env_hyp orig.id + and n2 = get_hyp env_hyp def.id in + let v = unintern_omega env sigma in + let o_def = oformula_of_omega env def in + let o_orig = oformula_of_omega env orig in + let body = + Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in + let trace,_ = normalize_linear_term env body in + mkApp (Lazy.force coq_s_state, + [| Z.mk m; trace; mk_nat n1; mk_nat n2; + loop (CCEqua new_eq.id :: env_hyp) l |]) + | HYP _ :: l -> loop env_hyp l + | CONSTANT_NUL e :: l -> + mkApp (Lazy.force coq_s_constant_nul, + [| mk_nat (get_hyp env_hyp e) |]) + | NEGATE_CONTRADICT(e1,e2,true) :: l -> + mkApp (Lazy.force coq_s_negate_contradict, + [| mk_nat (get_hyp env_hyp e1.id); + mk_nat (get_hyp env_hyp e2.id) |]) + | NEGATE_CONTRADICT(e1,e2,false) :: l -> + mkApp (Lazy.force coq_s_negate_contradict_inv, + [| mk_nat (List.length e2.body); + mk_nat (get_hyp env_hyp e1.id); + mk_nat (get_hyp env_hyp e2.id) |]) + | SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l -> + let i = get_hyp env_hyp e.id in + let r1 = loop (CCEqua e1 :: env_hyp) l1 in + let r2 = loop (CCEqua e2 :: env_hyp) l2 in + mkApp (Lazy.force coq_s_split_ineq, + [| mk_nat (List.length e.body); mk_nat i; r1 ; r2 |]) + | (FORGET_C _ | FORGET _ | FORGET_I _) :: l -> + loop env_hyp l + | (WEAKEN _ ) :: l -> failwith "not_treated" + | [] -> failwith "no contradiction" + in loop env_hyp + +let rec decompose_tree env ctxt = function + Tree(i,left,right) -> + let org = + try Hashtbl.find env.constructors i + with Not_found -> + failwith (Printf.sprintf "Cannot find constructor %d" i) in + let (index,path) = find_path org ctxt in + let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in + let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in + app coq_e_split + [| mk_nat index; + mk_direction_list path; + decompose_tree env (left_hyp::ctxt) left; + decompose_tree env (right_hyp::ctxt) right |] + | Leaf s -> + decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps +and decompose_tree_hyps trace env ctxt = function + [] -> app coq_e_solve [| replay_history env ctxt trace |] + | (i::l) -> + let equation = + try Hashtbl.find env.equations i + with Not_found -> + failwith (Printf.sprintf "Cannot find equation %d" i) in + let (index,path) = find_path equation.e_origin ctxt in + let full_path = if equation.e_negated then path @ [O_mono] else path in + let cont = + decompose_tree_hyps trace env + (CCEqua equation.e_omega.id :: ctxt) l in + app coq_e_extract [|mk_nat index; + mk_direction_list full_path; + cont |] + +(* \section{La fonction principale} *) + (* Cette fonction construit la +trace pour la procédure de décision réflexive. A partir des résultats +de l'extraction des systèmes, elle lance la résolution par Omega, puis +l'extraction d'un ensemble minimal de solutions permettant la +résolution globale du système et enfin construit la trace qui permet +de faire rejouer cette solution par la tactique réflexive. *) + +let resolution env full_reified_goal systems_list = + let num = ref 0 in + let solve_system list_eq = + let index = !num in + let system = List.map (fun eq -> eq.e_omega) list_eq in + let trace = + simplify_strong + (new_omega_eq,new_omega_var,display_omega_var) + system in + (* calcule les hypotheses utilisées pour la solution *) + let vars = hyps_used_in_trace trace in + let splits = get_eclatement env vars in + if !debug then begin + Printf.printf "SYSTEME %d\n" index; + display_action display_omega_var trace; + print_string "\n Depend :"; + List.iter (fun i -> Printf.printf " %d" i) vars; + print_string "\n Split points :"; + List.iter display_depend splits; + Printf.printf "\n------------------------------------\n" + end; + incr num; + {s_index = index; s_trace = trace; s_equa_deps = vars}, splits in + if !debug then Printf.printf "\n====================================\n"; + let all_solutions = List.map solve_system systems_list in + let solution_tree = solve_with_constraints all_solutions [] in + if !debug then begin + display_solution_tree stdout solution_tree; + print_newline() + end; + (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *) + let useful_equa_id = equas_of_solution_tree solution_tree in + (* recupere explicitement ces equations *) + let equations = List.map (get_equation env) useful_equa_id in + let l_hyps' = list_uniquize (List.map (fun e -> e.e_origin.o_hyp) equations) in + let l_hyps = id_concl :: list_remove id_concl l_hyps' in + let useful_hyps = + List.map (fun id -> List.assoc id full_reified_goal) l_hyps in + let useful_vars = + let really_useful_vars = vars_of_equations equations in + let concl_vars = vars_of_prop (List.assoc id_concl full_reified_goal) in + really_useful_vars @@ concl_vars + in + (* variables a introduire *) + let to_introduce = add_stated_equations env solution_tree in + let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in + let l_generalize_arg = List.map (fun (_,t,_,_) -> t) to_introduce in + let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in + (* L'environnement de base se construit en deux morceaux : + - les variables des équations utiles (et de la conclusion) + - les nouvelles variables declarées durant les preuves *) + let all_vars_env = useful_vars @ stated_vars in + let basic_env = + let rec loop i = function + var :: l -> + let t = get_reified_atom env var in + Hashtbl.add env.real_indices var i; t :: loop (succ i) l + | [] -> [] in + loop 0 all_vars_env in + let env_terms_reified = mk_list (Lazy.force Z.typ) basic_env in + (* On peut maintenant généraliser le but : env est a jour *) + let l_reified_stated = + List.map (fun (_,_,(l,r),_) -> + app coq_p_eq [| reified_of_formula env l; + reified_of_formula env r |]) + to_introduce in + let reified_concl = + match useful_hyps with + (Pnot p) :: _ -> reified_of_proposition env p + | _ -> reified_of_proposition env Pfalse in + let l_reified_terms = + (List.map + (fun p -> + reified_of_proposition env (really_useful_prop useful_equa_id p)) + (List.tl useful_hyps)) in + let env_props_reified = mk_plist env.props in + let reified_goal = + mk_list (Lazy.force coq_proposition) + (l_reified_stated @ l_reified_terms) in + let reified = + app coq_interp_sequent + [| reified_concl;env_props_reified;env_terms_reified;reified_goal|] in + let normalize_equation e = + let rec loop = function + [] -> app (if e.e_negated then coq_p_invert else coq_p_step) + [| e.e_trace |] + | ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |] + | (O_right :: l) -> app coq_p_right [| loop l |] in + let correct_index = + let i = list_index0 e.e_origin.o_hyp l_hyps in + (* PL: it seems that additionnally introduced hyps are in the way during + normalization, hence this index shifting... *) + if i=0 then 0 else Pervasives.(+) i (List.length to_introduce) + in + app coq_pair_step [| mk_nat correct_index; loop e.e_origin.o_path |] in + let normalization_trace = + mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in + + let initial_context = + List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in + let context = + CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in + let decompose_tactic = decompose_tree env context solution_tree in + + Tactics.generalize + (l_generalize_arg @ List.map Term.mkVar (List.tl l_hyps)) >> + Tactics.change_in_concl None reified >> + Tactics.apply (app coq_do_omega [|decompose_tactic; normalization_trace|]) >> + show_goal >> + Tactics.normalise_vm_in_concl >> + (*i Alternatives to the previous line: + - Normalisation without VM: + Tactics.normalise_in_concl + - Skip the conversion check and rely directly on the QED: + Tacmach.convert_concl_no_check (Lazy.force coq_True) Term.VMcast >> + i*) + Tactics.apply (Lazy.force coq_I) + +let total_reflexive_omega_tactic gl = + Coqlib.check_required_library ["Coq";"romega";"ROmega"]; + rst_omega_eq (); + rst_omega_var (); + try + let env = new_environment () in + let full_reified_goal = reify_gl env gl in + let systems_list = destructurate_hyps full_reified_goal in + if !debug then display_systems systems_list; + resolution env full_reified_goal systems_list gl + with NO_CONTRADICTION -> Util.error "ROmega can't solve this system" + + +(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*) + + |