summaryrefslogtreecommitdiff
path: root/plugins/ring/Ring_normalize.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring/Ring_normalize.v')
-rw-r--r--plugins/ring/Ring_normalize.v902
1 files changed, 902 insertions, 0 deletions
diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v
new file mode 100644
index 00000000..7aeee218
--- /dev/null
+++ b/plugins/ring/Ring_normalize.v
@@ -0,0 +1,902 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id$ *)
+
+Require Import LegacyRing_theory.
+Require Import Quote.
+
+Set Implicit Arguments.
+Unset Boxed Definitions.
+
+Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
+Proof.
+ intros.
+ apply index_eq_prop.
+ generalize H.
+ case (index_eq n m); simpl in |- *; trivial; intros.
+ contradiction.
+Qed.
+
+Section semi_rings.
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aeq : A -> A -> bool.
+
+(* Section definitions. *)
+
+
+(******************************************)
+(* Normal abtract Polynomials *)
+(******************************************)
+(* DEFINITIONS :
+- A varlist is a sorted product of one or more variables : x, x*y*z
+- A monom is a constant, a varlist or the product of a constant by a varlist
+ variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
+- A canonical sum is either a monom or an ordered sum of monoms
+ (the order on monoms is defined later)
+- A normal polynomial it either a constant or a canonical sum or a constant
+ plus a canonical sum
+*)
+
+(* varlist is isomorphic to (list var), but we built a special inductive
+ for efficiency *)
+Inductive varlist : Type :=
+ | Nil_var : varlist
+ | Cons_var : index -> varlist -> varlist.
+
+Inductive canonical_sum : Type :=
+ | Nil_monom : canonical_sum
+ | Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
+ | Cons_varlist : varlist -> canonical_sum -> canonical_sum.
+
+(* Order on monoms *)
+
+(* That's the lexicographic order on varlist, extended by :
+ - A constant is less than every monom
+ - The relation between two varlist is preserved by multiplication by a
+ constant.
+
+ Examples :
+ 3 < x < y
+ x*y < x*y*y*z
+ 2*x*y < x*y*y*z
+ x*y < 54*x*y*y*z
+ 4*x*y < 59*x*y*y*z
+*)
+
+Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Nil_var => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ andb (index_eq i j) (varlist_eq xrest yrest)
+ | _, _ => false
+ end.
+
+Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
+ match x, y with
+ | Nil_var, Cons_var _ _ => true
+ | Cons_var i xrest, Cons_var j yrest =>
+ if index_lt i j
+ then true
+ else andb (index_eq i j) (varlist_lt xrest yrest)
+ | _, _ => false
+ end.
+
+(* merges two variables lists *)
+Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
+ match l1 with
+ | Cons_var v1 t1 =>
+ (fix vm_aux (l2:varlist) : varlist :=
+ match l2 with
+ | Cons_var v2 t2 =>
+ if index_lt v1 v2
+ then Cons_var v1 (varlist_merge t1 l2)
+ else Cons_var v2 (vm_aux t2)
+ | Nil_var => l1
+ end)
+ | Nil_var => fun l2 => l2
+ end.
+
+(* returns the sum of two canonical sums *)
+Fixpoint canonical_sum_merge (s1:canonical_sum) :
+ canonical_sum -> canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ (fix csm_aux (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux t2)
+ | Nil_monom => s1
+ end)
+ | Cons_varlist l1 t1 =>
+ (fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_monom c2 l2 (csm_aux2 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 (canonical_sum_merge t1 s2)
+ else Cons_varlist l2 (csm_aux2 t2)
+ | Nil_monom => s1
+ end)
+ | Nil_monom => fun s2 => s2
+ end.
+
+(* Insertion of a monom in a canonical sum *)
+Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_monom c2 l2 (monom_insert c1 l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus c1 Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_monom c1 l1 s2
+ else Cons_varlist l2 (monom_insert c1 l1 t2)
+ | Nil_monom => Cons_monom c1 l1 Nil_monom
+ end.
+
+Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
+ canonical_sum :=
+ match s2 with
+ | Cons_monom c2 l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone c2) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_monom c2 l2 (varlist_insert l1 t2)
+ | Cons_varlist l2 t2 =>
+ if varlist_eq l1 l2
+ then Cons_monom (Aplus Aone Aone) l1 t2
+ else
+ if varlist_lt l1 l2
+ then Cons_varlist l1 s2
+ else Cons_varlist l2 (varlist_insert l1 t2)
+ | Nil_monom => Cons_varlist l1 Nil_monom
+ end.
+
+(* Computes c0*s *)
+Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
+ | Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes l0*s *)
+Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
+ canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Cons_varlist l t =>
+ varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* Computes c0*l0*s *)
+Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
+ (s:canonical_sum) {struct s} : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ monom_insert (Amult c0 c) (varlist_merge l0 l)
+ (canonical_sum_scalar3 c0 l0 t)
+ | Cons_varlist l t =>
+ monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
+ | Nil_monom => Nil_monom
+ end.
+
+(* returns the product of two canonical sums *)
+Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
+ canonical_sum :=
+ match s1 with
+ | Cons_monom c1 l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Cons_varlist l1 t1 =>
+ canonical_sum_merge (canonical_sum_scalar2 l1 s2)
+ (canonical_sum_prod t1 s2)
+ | Nil_monom => Nil_monom
+ end.
+
+(* The type to represent concrete semi-ring polynomials *)
+Inductive spolynomial : Type :=
+ | SPvar : index -> spolynomial
+ | SPconst : A -> spolynomial
+ | SPplus : spolynomial -> spolynomial -> spolynomial
+ | SPmult : spolynomial -> spolynomial -> spolynomial.
+
+Fixpoint spolynomial_normalize (p:spolynomial) : canonical_sum :=
+ match p with
+ | SPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
+ | SPconst c => Cons_monom c Nil_var Nil_monom
+ | SPplus l r =>
+ canonical_sum_merge (spolynomial_normalize l) (spolynomial_normalize r)
+ | SPmult l r =>
+ canonical_sum_prod (spolynomial_normalize l) (spolynomial_normalize r)
+ end.
+
+(* Deletion of useless 0 and 1 in canonical sums *)
+Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
+ match s with
+ | Cons_monom c l t =>
+ if Aeq c Azero
+ then canonical_sum_simplify t
+ else
+ if Aeq c Aone
+ then Cons_varlist l (canonical_sum_simplify t)
+ else Cons_monom c l (canonical_sum_simplify t)
+ | Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
+ | Nil_monom => Nil_monom
+ end.
+
+Definition spolynomial_simplify (x:spolynomial) :=
+ canonical_sum_simplify (spolynomial_normalize x).
+
+(* End definitions. *)
+
+(* Section interpretation. *)
+
+(*** Here a variable map is defined and the interpetation of a spolynom
+ acording to a certain variables map. Once again the choosen definition
+ is generic and could be changed ****)
+
+Variable vm : varmap A.
+
+(* Interpretation of list of variables
+ * [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
+ * The unbound variables are mapped to 0. Normally this case sould
+ * never occur. Since we want only to prove correctness theorems, which form
+ * is : for any varmap and any spolynom ... this is a safe and pain-saving
+ * choice *)
+Definition interp_var (i:index) := varmap_find Azero i vm.
+
+(* Local *) Definition ivl_aux :=
+ (fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
+ match t with
+ | Nil_var => interp_var x
+ | Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
+ end).
+
+Definition interp_vl (l:varlist) :=
+ match l with
+ | Nil_var => Aone
+ | Cons_var x t => ivl_aux x t
+ end.
+
+(* Local *) Definition interp_m (c:A) (l:varlist) :=
+ match l with
+ | Nil_var => c
+ | Cons_var x t => Amult c (ivl_aux x t)
+ end.
+
+(* Local *) Definition ics_aux :=
+ (fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
+ match s with
+ | Nil_monom => a
+ | Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
+ | Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
+ end).
+
+(* Interpretation of a canonical sum *)
+Definition interp_cs (s:canonical_sum) : A :=
+ match s with
+ | Nil_monom => Azero
+ | Cons_varlist l t => ics_aux (interp_vl l) t
+ | Cons_monom c l t => ics_aux (interp_m c l) t
+ end.
+
+Fixpoint interp_sp (p:spolynomial) : A :=
+ match p with
+ | SPconst c => c
+ | SPvar i => interp_var i
+ | SPplus p1 p2 => Aplus (interp_sp p1) (interp_sp p2)
+ | SPmult p1 p2 => Amult (interp_sp p1) (interp_sp p2)
+ end.
+
+
+(* End interpretation. *)
+
+Unset Implicit Arguments.
+
+(* Section properties. *)
+
+Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
+
+Hint Resolve (SR_plus_comm T).
+Hint Resolve (SR_plus_assoc T).
+Hint Resolve (SR_plus_assoc2 T).
+Hint Resolve (SR_mult_comm T).
+Hint Resolve (SR_mult_assoc T).
+Hint Resolve (SR_mult_assoc2 T).
+Hint Resolve (SR_plus_zero_left T).
+Hint Resolve (SR_plus_zero_left2 T).
+Hint Resolve (SR_mult_one_left T).
+Hint Resolve (SR_mult_one_left2 T).
+Hint Resolve (SR_mult_zero_left T).
+Hint Resolve (SR_mult_zero_left2 T).
+Hint Resolve (SR_distr_left T).
+Hint Resolve (SR_distr_left2 T).
+(*Hint Resolve (SR_plus_reg_left T).*)
+Hint Resolve (SR_plus_permute T).
+Hint Resolve (SR_mult_permute T).
+Hint Resolve (SR_distr_right T).
+Hint Resolve (SR_distr_right2 T).
+Hint Resolve (SR_mult_zero_right T).
+Hint Resolve (SR_mult_zero_right2 T).
+Hint Resolve (SR_plus_zero_right T).
+Hint Resolve (SR_plus_zero_right2 T).
+Hint Resolve (SR_mult_one_right T).
+Hint Resolve (SR_mult_one_right2 T).
+(*Hint Resolve (SR_plus_reg_right T).*)
+Hint Resolve refl_equal sym_equal trans_equal.
+(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
+Hint Immediate T.
+
+Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
+Proof.
+ simple induction x; simple induction y; contradiction || (try reflexivity).
+ simpl in |- *; intros.
+ generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
+ rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
+Qed.
+
+Remark ivl_aux_ok :
+ forall (v:varlist) (i:index),
+ ivl_aux i v = Amult (interp_var i) (interp_vl v).
+Proof.
+ simple induction v; simpl in |- *; intros.
+ trivial.
+ rewrite H; trivial.
+Qed.
+
+Lemma varlist_merge_ok :
+ forall x y:varlist,
+ interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
+Proof.
+ simple induction x.
+ simpl in |- *; trivial.
+ simple induction y.
+ simpl in |- *; trivial.
+ simpl in |- *; intros.
+ elim (index_lt i i0); simpl in |- *; intros.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H. simpl in |- *.
+ rewrite ivl_aux_ok.
+ eauto.
+
+ repeat rewrite ivl_aux_ok.
+ rewrite H0.
+ rewrite ivl_aux_ok.
+ eauto.
+Qed.
+
+Remark ics_aux_ok :
+ forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
+Proof.
+ simple induction s; simpl in |- *; intros.
+ trivial.
+ reflexivity.
+ reflexivity.
+Qed.
+
+Remark interp_m_ok :
+ forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
+Proof.
+ destruct l as [| i v].
+ simpl in |- *; trivial.
+ reflexivity.
+Qed.
+
+Lemma canonical_sum_merge_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
+
+simple induction x; simpl in |- *.
+trivial.
+
+simple induction y; simpl in |- *; intros.
+(* monom and nil *)
+eauto.
+
+(* monom and monom *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+(* monom and varlist *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
+rewrite (SR_mult_one_left T).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+simple induction y; simpl in |- *; intros.
+(* varlist and nil *)
+trivial.
+
+(* varlist and monom *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+
+(* varlist and varlist *)
+generalize (varlist_eq_prop v v0).
+elim (varlist_eq v v0).
+intros; rewrite (H1 I).
+simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+repeat rewrite interp_m_ok.
+rewrite (SR_distr_left T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_one_left T).
+apply f_equal with (f := Aplus (interp_vl v0)).
+trivial.
+
+elim (varlist_lt v v0); simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+ eauto.
+Qed.
+
+Lemma monom_insert_ok :
+ forall (a:A) (l:varlist) (s:canonical_sum),
+ interp_cs (monom_insert a l s) =
+ Aplus (Amult a (interp_vl l)) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; rewrite interp_m_ok; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
+
+Lemma varlist_insert_ok :
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
+intros; generalize s; simple induction s0.
+
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+
+simpl in |- *; intros.
+generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+ repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
+ rewrite (SR_mult_one_left T); eauto.
+elim (varlist_lt l v); simpl in |- *;
+ [ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
+ | repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
+ rewrite ics_aux_ok; eauto ].
+Qed.
+
+Lemma canonical_sum_scalar_ok :
+ forall (a:A) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
+simple induction s.
+simpl in |- *; eauto.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar2_ok :
+ forall (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
+simple induction s.
+simpl in |- *; trivial.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite varlist_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_scalar3_ok :
+ forall (c:A) (l:varlist) (s:canonical_sum),
+ interp_cs (canonical_sum_scalar3 c l s) =
+ Amult c (Amult (interp_vl l) (interp_cs s)).
+simple induction s.
+simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
+reflexivity.
+
+simpl in |- *; intros.
+rewrite monom_insert_ok.
+repeat rewrite ics_aux_ok.
+repeat rewrite interp_m_ok.
+rewrite H.
+rewrite varlist_merge_ok.
+repeat rewrite (SR_distr_right T).
+repeat rewrite <- (SR_mult_assoc T).
+repeat rewrite <- (SR_plus_assoc T).
+rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
+reflexivity.
+Qed.
+
+Lemma canonical_sum_prod_ok :
+ forall x y:canonical_sum,
+ interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
+simple induction x; simpl in |- *; intros.
+trivial.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar3_ok.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
+symmetry in |- *.
+eauto.
+
+rewrite canonical_sum_merge_ok.
+rewrite canonical_sum_scalar2_ok.
+rewrite ics_aux_ok.
+rewrite H.
+trivial.
+Qed.
+
+Theorem spolynomial_normalize_ok :
+ forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
+simple induction p; simpl in |- *; intros.
+
+reflexivity.
+reflexivity.
+
+rewrite canonical_sum_merge_ok.
+rewrite H; rewrite H0.
+reflexivity.
+
+rewrite canonical_sum_prod_ok.
+rewrite H; rewrite H0.
+reflexivity.
+Qed.
+
+Lemma canonical_sum_simplify_ok :
+ forall s:canonical_sum, interp_cs (canonical_sum_simplify s) = interp_cs s.
+simple induction s.
+
+reflexivity.
+
+(* cons_monom *)
+simpl in |- *; intros.
+generalize (SR_eq_prop T a Azero).
+elim (Aeq a Azero).
+intro Heq; rewrite (Heq I).
+rewrite H.
+rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite (SR_mult_zero_left T).
+trivial.
+
+intros; simpl in |- *.
+generalize (SR_eq_prop T a Aone).
+elim (Aeq a Aone).
+intro Heq; rewrite (Heq I).
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+rewrite (SR_mult_one_left T).
+reflexivity.
+
+simpl in |- *.
+repeat rewrite ics_aux_ok.
+rewrite interp_m_ok.
+rewrite H.
+reflexivity.
+
+(* cons_varlist *)
+simpl in |- *; intros.
+repeat rewrite ics_aux_ok.
+rewrite H.
+reflexivity.
+
+Qed.
+
+Theorem spolynomial_simplify_ok :
+ forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
+intro.
+unfold spolynomial_simplify in |- *.
+rewrite canonical_sum_simplify_ok.
+apply spolynomial_normalize_ok.
+Qed.
+
+(* End properties. *)
+End semi_rings.
+
+Implicit Arguments Cons_varlist.
+Implicit Arguments Cons_monom.
+Implicit Arguments SPconst.
+Implicit Arguments SPplus.
+Implicit Arguments SPmult.
+
+Section rings.
+
+(* Here the coercion between Ring and Semi-Ring will be useful *)
+
+Set Implicit Arguments.
+
+Variable A : Type.
+Variable Aplus : A -> A -> A.
+Variable Amult : A -> A -> A.
+Variable Aone : A.
+Variable Azero : A.
+Variable Aopp : A -> A.
+Variable Aeq : A -> A -> bool.
+Variable vm : varmap A.
+Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
+
+Hint Resolve (Th_plus_comm T).
+Hint Resolve (Th_plus_assoc T).
+Hint Resolve (Th_plus_assoc2 T).
+Hint Resolve (Th_mult_comm T).
+Hint Resolve (Th_mult_assoc T).
+Hint Resolve (Th_mult_assoc2 T).
+Hint Resolve (Th_plus_zero_left T).
+Hint Resolve (Th_plus_zero_left2 T).
+Hint Resolve (Th_mult_one_left T).
+Hint Resolve (Th_mult_one_left2 T).
+Hint Resolve (Th_mult_zero_left T).
+Hint Resolve (Th_mult_zero_left2 T).
+Hint Resolve (Th_distr_left T).
+Hint Resolve (Th_distr_left2 T).
+(*Hint Resolve (Th_plus_reg_left T).*)
+Hint Resolve (Th_plus_permute T).
+Hint Resolve (Th_mult_permute T).
+Hint Resolve (Th_distr_right T).
+Hint Resolve (Th_distr_right2 T).
+Hint Resolve (Th_mult_zero_right T).
+Hint Resolve (Th_mult_zero_right2 T).
+Hint Resolve (Th_plus_zero_right T).
+Hint Resolve (Th_plus_zero_right2 T).
+Hint Resolve (Th_mult_one_right T).
+Hint Resolve (Th_mult_one_right2 T).
+(*Hint Resolve (Th_plus_reg_right T).*)
+Hint Resolve refl_equal sym_equal trans_equal.
+(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Immediate T.
+
+(*** Definitions *)
+
+Inductive polynomial : Type :=
+ | Pvar : index -> polynomial
+ | Pconst : A -> polynomial
+ | Pplus : polynomial -> polynomial -> polynomial
+ | Pmult : polynomial -> polynomial -> polynomial
+ | Popp : polynomial -> polynomial.
+
+Fixpoint polynomial_normalize (x:polynomial) : canonical_sum A :=
+ match x with
+ | Pplus l r =>
+ canonical_sum_merge Aplus Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pmult l r =>
+ canonical_sum_prod Aplus Amult Aone (polynomial_normalize l)
+ (polynomial_normalize r)
+ | Pconst c => Cons_monom c Nil_var (Nil_monom A)
+ | Pvar i => Cons_varlist (Cons_var i Nil_var) (Nil_monom A)
+ | Popp p =>
+ canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (polynomial_normalize p)
+ end.
+
+Definition polynomial_simplify (x:polynomial) :=
+ canonical_sum_simplify Aone Azero Aeq (polynomial_normalize x).
+
+Fixpoint spolynomial_of (x:polynomial) : spolynomial A :=
+ match x with
+ | Pplus l r => SPplus (spolynomial_of l) (spolynomial_of r)
+ | Pmult l r => SPmult (spolynomial_of l) (spolynomial_of r)
+ | Pconst c => SPconst c
+ | Pvar i => SPvar A i
+ | Popp p => SPmult (SPconst (Aopp Aone)) (spolynomial_of p)
+ end.
+
+(*** Interpretation *)
+
+Fixpoint interp_p (p:polynomial) : A :=
+ match p with
+ | Pconst c => c
+ | Pvar i => varmap_find Azero i vm
+ | Pplus p1 p2 => Aplus (interp_p p1) (interp_p p2)
+ | Pmult p1 p2 => Amult (interp_p p1) (interp_p p2)
+ | Popp p1 => Aopp (interp_p p1)
+ end.
+
+(*** Properties *)
+
+Unset Implicit Arguments.
+
+Lemma spolynomial_of_ok :
+ forall p:polynomial,
+ interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H.
+rewrite (Th_opp_mult_left2 T).
+rewrite (Th_mult_one_left T).
+reflexivity.
+Qed.
+
+Theorem polynomial_normalize_ok :
+ forall p:polynomial,
+ polynomial_normalize p =
+ spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
+simple induction p; reflexivity || (simpl in |- *; intros).
+rewrite H; rewrite H0; reflexivity.
+rewrite H; rewrite H0; reflexivity.
+rewrite H; simpl in |- *.
+elim
+ (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
+ (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
+ [ reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity
+ | simpl in |- *; intros; rewrite H0; reflexivity ].
+Qed.
+
+Theorem polynomial_simplify_ok :
+ forall p:polynomial,
+ interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
+intro.
+unfold polynomial_simplify in |- *.
+rewrite spolynomial_of_ok.
+rewrite polynomial_normalize_ok.
+rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
+rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
+reflexivity.
+Qed.
+
+End rings.
+
+Infix "+" := Pplus : ring_scope.
+Infix "*" := Pmult : ring_scope.
+Notation "- x" := (Popp x) : ring_scope.
+Notation "[ x ]" := (Pvar x) (at level 0) : ring_scope.
+
+Delimit Scope ring_scope with ring.