diff options
Diffstat (limited to 'plugins/ring/LegacyRing_theory.v')
-rw-r--r-- | plugins/ring/LegacyRing_theory.v | 42 |
1 files changed, 21 insertions, 21 deletions
diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v index ca3355a6..09de1bb4 100644 --- a/plugins/ring/LegacyRing_theory.v +++ b/plugins/ring/LegacyRing_theory.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -58,22 +58,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_mult_one_left2 : forall n:A, n = 1 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p). intros. @@ -100,7 +100,7 @@ eauto. Qed. Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p). -symmetry in |- *; apply SR_distr_right. Qed. +symmetry ; apply SR_distr_right. Qed. Lemma SR_mult_zero_right : forall n:A, n * 0 = 0. intro; rewrite mult_comm; eauto. @@ -176,22 +176,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left (* Lemmas whose form is x=y are also provided in form y=x because Auto does not symmetry *) Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_one_left2 : forall n:A, n = 1 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_opp_def2 : forall n:A, 0 = n + - n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p). intros. @@ -214,7 +214,7 @@ Hint Resolve Th_plus_permute Th_mult_permute. Lemma aux1 : forall a:A, a + a = a -> a = 0. intros. generalize (opp_def a). -pattern a at 1 in |- *. +pattern a at 1. rewrite <- H. rewrite <- plus_assoc. rewrite opp_def. @@ -233,7 +233,7 @@ Qed. Hint Resolve Th_mult_zero_left. Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z. intros. @@ -255,7 +255,7 @@ Qed. Hint Resolve Th_opp_mult_left. Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y). -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_zero_right : forall n:A, n * 0 = 0. intro; elim mult_comm; eauto. @@ -306,14 +306,14 @@ Qed. Hint Resolve Th_opp_opp. Lemma Th_opp_opp2 : forall n:A, n = - - n. -symmetry in |- *; eauto. Qed. +symmetry ; eauto. Qed. Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y. intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto. Qed. Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y. -symmetry in |- *; apply Th_mult_opp_opp. Qed. +symmetry ; apply Th_mult_opp_opp. Qed. Lemma Th_opp_zero : - 0 = 0. rewrite <- (plus_zero_left (- 0)). @@ -342,7 +342,7 @@ eauto. Qed. Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p). -symmetry in |- *; apply Th_distr_right. +symmetry ; apply Th_distr_right. Qed. End Theory_of_rings. @@ -357,7 +357,7 @@ Definition Semi_Ring_Theory_of : Ring_Theory Aplus Amult Aone Azero Aopp Aeq -> Semi_Ring_Theory Aplus Amult Aone Azero Aeq. intros until 1; case H. -split; intros; simpl in |- *; eauto. +split; intros; simpl; eauto. Defined. (* Every ring can be viewed as a semi-ring : this property will be used |