summaryrefslogtreecommitdiff
path: root/plugins/omega/coq_omega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/omega/coq_omega.ml')
-rw-r--r--plugins/omega/coq_omega.ml1823
1 files changed, 1823 insertions, 0 deletions
diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml
new file mode 100644
index 00000000..60616845
--- /dev/null
+++ b/plugins/omega/coq_omega.ml
@@ -0,0 +1,1823 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(**************************************************************************)
+
+(* $Id$ *)
+
+open Util
+open Pp
+open Reduction
+open Proof_type
+open Names
+open Nameops
+open Term
+open Termops
+open Declarations
+open Environ
+open Sign
+open Inductive
+open Tacticals
+open Tacmach
+open Evar_refiner
+open Tactics
+open Clenv
+open Logic
+open Libnames
+open Nametab
+open Contradiction
+
+module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
+open OmegaSolver
+
+(* Added by JCF, 09/03/98 *)
+
+let elim_id id gl = simplest_elim (pf_global gl id) gl
+let resolve_id id gl = apply (pf_global gl id) gl
+
+let timing timer_name f arg = f arg
+
+let display_time_flag = ref false
+let display_system_flag = ref false
+let display_action_flag = ref false
+let old_style_flag = ref false
+
+let read f () = !f
+let write f x = f:=x
+
+open Goptions
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega system time displaying flag";
+ optkey = ["Omega";"System"];
+ optread = read display_system_flag;
+ optwrite = write display_system_flag }
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega action display flag";
+ optkey = ["Omega";"Action"];
+ optread = read display_action_flag;
+ optwrite = write display_action_flag }
+
+let _ =
+ declare_bool_option
+ { optsync = false;
+ optname = "Omega old style flag";
+ optkey = ["Omega";"OldStyle"];
+ optread = read old_style_flag;
+ optwrite = write old_style_flag }
+
+
+let all_time = timing "Omega "
+let solver_time = timing "Solver "
+let exact_time = timing "Rewrites "
+let elim_time = timing "Elim "
+let simpl_time = timing "Simpl "
+let generalize_time = timing "Generalize"
+
+let new_identifier =
+ let cpt = ref 0 in
+ (fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let new_identifier_state =
+ let cpt = ref 0 in
+ (fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s)
+
+let new_identifier_var =
+ let cpt = ref 0 in
+ (fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
+
+let new_id =
+ let cpt = ref 0 in fun () -> incr cpt; !cpt
+
+let new_var_num =
+ let cpt = ref 1000 in (fun () -> incr cpt; !cpt)
+
+let new_var =
+ let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
+
+let display_var i = Printf.sprintf "X%d" i
+
+let intern_id,unintern_id =
+ let cpt = ref 0 in
+ let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in
+ (fun (name : identifier) ->
+ try Hashtbl.find table name with Not_found ->
+ let idx = !cpt in
+ Hashtbl.add table name idx;
+ Hashtbl.add co_table idx name;
+ incr cpt; idx),
+ (fun idx ->
+ try Hashtbl.find co_table idx with Not_found ->
+ let v = new_var () in
+ Hashtbl.add table v idx; Hashtbl.add co_table idx v; v)
+
+let mk_then = tclTHENLIST
+
+let exists_tac c = constructor_tac false (Some 1) 1 (Rawterm.ImplicitBindings [c])
+
+let generalize_tac t = generalize_time (generalize t)
+let elim t = elim_time (simplest_elim t)
+let exact t = exact_time (Tactics.refine t)
+let unfold s = Tactics.unfold_in_concl [all_occurrences, Lazy.force s]
+
+let rev_assoc k =
+ let rec loop = function
+ | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
+ in
+ loop
+
+let tag_hypothesis,tag_of_hyp, hyp_of_tag =
+ let l = ref ([]:(identifier * int) list) in
+ (fun h id -> l := (h,id):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "tag_hypothesis"),
+ (fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis")
+
+let hide_constr,find_constr,clear_tables,dump_tables =
+ let l = ref ([]:(constr * (identifier * identifier * bool)) list) in
+ (fun h id eg b -> l := (h,(id,eg,b)):: !l),
+ (fun h -> try List.assoc h !l with Not_found -> failwith "find_contr"),
+ (fun () -> l := []),
+ (fun () -> !l)
+
+(* Lazy evaluation is used for Coq constants, because this code
+ is evaluated before the compiled modules are loaded.
+ To use the constant Zplus, one must type "Lazy.force coq_Zplus"
+ This is the right way to access to Coq constants in tactics ML code *)
+
+open Coqlib
+
+let logic_dir = ["Coq";"Logic";"Decidable"]
+let coq_modules =
+ init_modules @arith_modules @ [logic_dir] @ zarith_base_modules
+ @ [["Coq"; "omega"; "OmegaLemmas"]]
+
+let init_constant = gen_constant_in_modules "Omega" init_modules
+let constant = gen_constant_in_modules "Omega" coq_modules
+
+(* Zarith *)
+let coq_xH = lazy (constant "xH")
+let coq_xO = lazy (constant "xO")
+let coq_xI = lazy (constant "xI")
+let coq_Z0 = lazy (constant "Z0")
+let coq_Zpos = lazy (constant "Zpos")
+let coq_Zneg = lazy (constant "Zneg")
+let coq_Z = lazy (constant "Z")
+let coq_comparison = lazy (constant "comparison")
+let coq_Gt = lazy (constant "Gt")
+let coq_Zplus = lazy (constant "Zplus")
+let coq_Zmult = lazy (constant "Zmult")
+let coq_Zopp = lazy (constant "Zopp")
+let coq_Zminus = lazy (constant "Zminus")
+let coq_Zsucc = lazy (constant "Zsucc")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zle = lazy (constant "Zle")
+let coq_Z_of_nat = lazy (constant "Z_of_nat")
+let coq_inj_plus = lazy (constant "inj_plus")
+let coq_inj_mult = lazy (constant "inj_mult")
+let coq_inj_minus1 = lazy (constant "inj_minus1")
+let coq_inj_minus2 = lazy (constant "inj_minus2")
+let coq_inj_S = lazy (constant "inj_S")
+let coq_inj_le = lazy (constant "inj_le")
+let coq_inj_lt = lazy (constant "inj_lt")
+let coq_inj_ge = lazy (constant "inj_ge")
+let coq_inj_gt = lazy (constant "inj_gt")
+let coq_inj_neq = lazy (constant "inj_neq")
+let coq_inj_eq = lazy (constant "inj_eq")
+let coq_fast_Zplus_assoc_reverse = lazy (constant "fast_Zplus_assoc_reverse")
+let coq_fast_Zplus_assoc = lazy (constant "fast_Zplus_assoc")
+let coq_fast_Zmult_assoc_reverse = lazy (constant "fast_Zmult_assoc_reverse")
+let coq_fast_Zplus_permute = lazy (constant "fast_Zplus_permute")
+let coq_fast_Zplus_comm = lazy (constant "fast_Zplus_comm")
+let coq_fast_Zmult_comm = lazy (constant "fast_Zmult_comm")
+let coq_Zmult_le_approx = lazy (constant "Zmult_le_approx")
+let coq_OMEGA1 = lazy (constant "OMEGA1")
+let coq_OMEGA2 = lazy (constant "OMEGA2")
+let coq_OMEGA3 = lazy (constant "OMEGA3")
+let coq_OMEGA4 = lazy (constant "OMEGA4")
+let coq_OMEGA5 = lazy (constant "OMEGA5")
+let coq_OMEGA6 = lazy (constant "OMEGA6")
+let coq_OMEGA7 = lazy (constant "OMEGA7")
+let coq_OMEGA8 = lazy (constant "OMEGA8")
+let coq_OMEGA9 = lazy (constant "OMEGA9")
+let coq_fast_OMEGA10 = lazy (constant "fast_OMEGA10")
+let coq_fast_OMEGA11 = lazy (constant "fast_OMEGA11")
+let coq_fast_OMEGA12 = lazy (constant "fast_OMEGA12")
+let coq_fast_OMEGA13 = lazy (constant "fast_OMEGA13")
+let coq_fast_OMEGA14 = lazy (constant "fast_OMEGA14")
+let coq_fast_OMEGA15 = lazy (constant "fast_OMEGA15")
+let coq_fast_OMEGA16 = lazy (constant "fast_OMEGA16")
+let coq_OMEGA17 = lazy (constant "OMEGA17")
+let coq_OMEGA18 = lazy (constant "OMEGA18")
+let coq_OMEGA19 = lazy (constant "OMEGA19")
+let coq_OMEGA20 = lazy (constant "OMEGA20")
+let coq_fast_Zred_factor0 = lazy (constant "fast_Zred_factor0")
+let coq_fast_Zred_factor1 = lazy (constant "fast_Zred_factor1")
+let coq_fast_Zred_factor2 = lazy (constant "fast_Zred_factor2")
+let coq_fast_Zred_factor3 = lazy (constant "fast_Zred_factor3")
+let coq_fast_Zred_factor4 = lazy (constant "fast_Zred_factor4")
+let coq_fast_Zred_factor5 = lazy (constant "fast_Zred_factor5")
+let coq_fast_Zred_factor6 = lazy (constant "fast_Zred_factor6")
+let coq_fast_Zmult_plus_distr_l = lazy (constant "fast_Zmult_plus_distr_l")
+let coq_fast_Zmult_opp_comm = lazy (constant "fast_Zmult_opp_comm")
+let coq_fast_Zopp_plus_distr = lazy (constant "fast_Zopp_plus_distr")
+let coq_fast_Zopp_mult_distr_r = lazy (constant "fast_Zopp_mult_distr_r")
+let coq_fast_Zopp_eq_mult_neg_1 = lazy (constant "fast_Zopp_eq_mult_neg_1")
+let coq_fast_Zopp_involutive = lazy (constant "fast_Zopp_involutive")
+let coq_Zegal_left = lazy (constant "Zegal_left")
+let coq_Zne_left = lazy (constant "Zne_left")
+let coq_Zlt_left = lazy (constant "Zlt_left")
+let coq_Zge_left = lazy (constant "Zge_left")
+let coq_Zgt_left = lazy (constant "Zgt_left")
+let coq_Zle_left = lazy (constant "Zle_left")
+let coq_new_var = lazy (constant "new_var")
+let coq_intro_Z = lazy (constant "intro_Z")
+
+let coq_dec_eq = lazy (constant "dec_eq")
+let coq_dec_Zne = lazy (constant "dec_Zne")
+let coq_dec_Zle = lazy (constant "dec_Zle")
+let coq_dec_Zlt = lazy (constant "dec_Zlt")
+let coq_dec_Zgt = lazy (constant "dec_Zgt")
+let coq_dec_Zge = lazy (constant "dec_Zge")
+
+let coq_not_Zeq = lazy (constant "not_Zeq")
+let coq_Znot_le_gt = lazy (constant "Znot_le_gt")
+let coq_Znot_lt_ge = lazy (constant "Znot_lt_ge")
+let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt")
+let coq_Znot_gt_le = lazy (constant "Znot_gt_le")
+let coq_neq = lazy (constant "neq")
+let coq_Zne = lazy (constant "Zne")
+let coq_Zle = lazy (constant "Zle")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zge = lazy (constant "Zge")
+let coq_Zlt = lazy (constant "Zlt")
+
+(* Peano/Datatypes *)
+let coq_le = lazy (init_constant "le")
+let coq_lt = lazy (init_constant "lt")
+let coq_ge = lazy (init_constant "ge")
+let coq_gt = lazy (init_constant "gt")
+let coq_minus = lazy (init_constant "minus")
+let coq_plus = lazy (init_constant "plus")
+let coq_mult = lazy (init_constant "mult")
+let coq_pred = lazy (init_constant "pred")
+let coq_nat = lazy (init_constant "nat")
+let coq_S = lazy (init_constant "S")
+let coq_O = lazy (init_constant "O")
+
+(* Compare_dec/Peano_dec/Minus *)
+let coq_pred_of_minus = lazy (constant "pred_of_minus")
+let coq_le_gt_dec = lazy (constant "le_gt_dec")
+let coq_dec_eq_nat = lazy (constant "dec_eq_nat")
+let coq_dec_le = lazy (constant "dec_le")
+let coq_dec_lt = lazy (constant "dec_lt")
+let coq_dec_ge = lazy (constant "dec_ge")
+let coq_dec_gt = lazy (constant "dec_gt")
+let coq_not_eq = lazy (constant "not_eq")
+let coq_not_le = lazy (constant "not_le")
+let coq_not_lt = lazy (constant "not_lt")
+let coq_not_ge = lazy (constant "not_ge")
+let coq_not_gt = lazy (constant "not_gt")
+
+(* Logic/Decidable *)
+let coq_eq_ind_r = lazy (constant "eq_ind_r")
+
+let coq_dec_or = lazy (constant "dec_or")
+let coq_dec_and = lazy (constant "dec_and")
+let coq_dec_imp = lazy (constant "dec_imp")
+let coq_dec_iff = lazy (constant "dec_iff")
+let coq_dec_not = lazy (constant "dec_not")
+let coq_dec_False = lazy (constant "dec_False")
+let coq_dec_not_not = lazy (constant "dec_not_not")
+let coq_dec_True = lazy (constant "dec_True")
+
+let coq_not_or = lazy (constant "not_or")
+let coq_not_and = lazy (constant "not_and")
+let coq_not_imp = lazy (constant "not_imp")
+let coq_not_iff = lazy (constant "not_iff")
+let coq_not_not = lazy (constant "not_not")
+let coq_imp_simp = lazy (constant "imp_simp")
+let coq_iff = lazy (constant "iff")
+
+(* uses build_coq_and, build_coq_not, build_coq_or, build_coq_ex *)
+
+(* For unfold *)
+open Closure
+let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with
+ | Const kn when Tacred.is_evaluable (Global.env()) (EvalConstRef kn) ->
+ EvalConstRef kn
+ | _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant")
+
+let sp_Zsucc = lazy (evaluable_ref_of_constr "Zsucc" coq_Zsucc)
+let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus)
+let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle)
+let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt)
+let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge)
+let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt)
+let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ())))
+
+let mk_var v = mkVar (id_of_string v)
+let mk_plus t1 t2 = mkApp (Lazy.force coq_Zplus, [| t1; t2 |])
+let mk_times t1 t2 = mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
+let mk_minus t1 t2 = mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
+let mk_eq t1 t2 = mkApp (build_coq_eq (), [| Lazy.force coq_Z; t1; t2 |])
+let mk_le t1 t2 = mkApp (Lazy.force coq_Zle, [| t1; t2 |])
+let mk_gt t1 t2 = mkApp (Lazy.force coq_Zgt, [| t1; t2 |])
+let mk_inv t = mkApp (Lazy.force coq_Zopp, [| t |])
+let mk_and t1 t2 = mkApp (build_coq_and (), [| t1; t2 |])
+let mk_or t1 t2 = mkApp (build_coq_or (), [| t1; t2 |])
+let mk_not t = mkApp (build_coq_not (), [| t |])
+let mk_eq_rel t1 t2 = mkApp (build_coq_eq (),
+ [| Lazy.force coq_comparison; t1; t2 |])
+let mk_inj t = mkApp (Lazy.force coq_Z_of_nat, [| t |])
+
+let mk_integer n =
+ let rec loop n =
+ if n =? one then Lazy.force coq_xH else
+ mkApp((if n mod two =? zero then Lazy.force coq_xO else Lazy.force coq_xI),
+ [| loop (n/two) |])
+ in
+ if n =? zero then Lazy.force coq_Z0
+ else mkApp ((if n >? zero then Lazy.force coq_Zpos else Lazy.force coq_Zneg),
+ [| loop (abs n) |])
+
+type omega_constant =
+ | Zplus | Zmult | Zminus | Zsucc | Zopp
+ | Plus | Mult | Minus | Pred | S | O
+ | Zpos | Zneg | Z0 | Z_of_nat
+ | Eq | Neq
+ | Zne | Zle | Zlt | Zge | Zgt
+ | Z | Nat
+ | And | Or | False | True | Not | Iff
+ | Le | Lt | Ge | Gt
+ | Other of string
+
+type omega_proposition =
+ | Keq of constr * constr * constr
+ | Kn
+
+type result =
+ | Kvar of identifier
+ | Kapp of omega_constant * constr list
+ | Kimp of constr * constr
+ | Kufo
+
+let destructurate_prop t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [_;_;_] when c = build_coq_eq () -> Kapp (Eq,args)
+ | _, [_;_] when c = Lazy.force coq_neq -> Kapp (Neq,args)
+ | _, [_;_] when c = Lazy.force coq_Zne -> Kapp (Zne,args)
+ | _, [_;_] when c = Lazy.force coq_Zle -> Kapp (Zle,args)
+ | _, [_;_] when c = Lazy.force coq_Zlt -> Kapp (Zlt,args)
+ | _, [_;_] when c = Lazy.force coq_Zge -> Kapp (Zge,args)
+ | _, [_;_] when c = Lazy.force coq_Zgt -> Kapp (Zgt,args)
+ | _, [_;_] when c = build_coq_and () -> Kapp (And,args)
+ | _, [_;_] when c = build_coq_or () -> Kapp (Or,args)
+ | _, [_;_] when c = Lazy.force coq_iff -> Kapp (Iff, args)
+ | _, [_] when c = build_coq_not () -> Kapp (Not,args)
+ | _, [] when c = build_coq_False () -> Kapp (False,args)
+ | _, [] when c = build_coq_True () -> Kapp (True,args)
+ | _, [_;_] when c = Lazy.force coq_le -> Kapp (Le,args)
+ | _, [_;_] when c = Lazy.force coq_lt -> Kapp (Lt,args)
+ | _, [_;_] when c = Lazy.force coq_ge -> Kapp (Ge,args)
+ | _, [_;_] when c = Lazy.force coq_gt -> Kapp (Gt,args)
+ | Const sp, args ->
+ Kapp (Other (string_of_id (basename_of_global (ConstRef sp))),args)
+ | Construct csp , args ->
+ Kapp (Other (string_of_id (basename_of_global (ConstructRef csp))), args)
+ | Ind isp, args ->
+ Kapp (Other (string_of_id (basename_of_global (IndRef isp))),args)
+ | Var id,[] -> Kvar id
+ | Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
+ | Prod (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+let destructurate_type t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [] when c = Lazy.force coq_Z -> Kapp (Z,args)
+ | _, [] when c = Lazy.force coq_nat -> Kapp (Nat,args)
+ | _ -> Kufo
+
+let destructurate_term t =
+ let c, args = decompose_app t in
+ match kind_of_term c, args with
+ | _, [_;_] when c = Lazy.force coq_Zplus -> Kapp (Zplus,args)
+ | _, [_;_] when c = Lazy.force coq_Zmult -> Kapp (Zmult,args)
+ | _, [_;_] when c = Lazy.force coq_Zminus -> Kapp (Zminus,args)
+ | _, [_] when c = Lazy.force coq_Zsucc -> Kapp (Zsucc,args)
+ | _, [_] when c = Lazy.force coq_Zopp -> Kapp (Zopp,args)
+ | _, [_;_] when c = Lazy.force coq_plus -> Kapp (Plus,args)
+ | _, [_;_] when c = Lazy.force coq_mult -> Kapp (Mult,args)
+ | _, [_;_] when c = Lazy.force coq_minus -> Kapp (Minus,args)
+ | _, [_] when c = Lazy.force coq_pred -> Kapp (Pred,args)
+ | _, [_] when c = Lazy.force coq_S -> Kapp (S,args)
+ | _, [] when c = Lazy.force coq_O -> Kapp (O,args)
+ | _, [_] when c = Lazy.force coq_Zpos -> Kapp (Zneg,args)
+ | _, [_] when c = Lazy.force coq_Zneg -> Kapp (Zpos,args)
+ | _, [] when c = Lazy.force coq_Z0 -> Kapp (Z0,args)
+ | _, [_] when c = Lazy.force coq_Z_of_nat -> Kapp (Z_of_nat,args)
+ | Var id,[] -> Kvar id
+ | _ -> Kufo
+
+let recognize_number t =
+ let rec loop t =
+ match decompose_app t with
+ | f, [t] when f = Lazy.force coq_xI -> one + two * loop t
+ | f, [t] when f = Lazy.force coq_xO -> two * loop t
+ | f, [] when f = Lazy.force coq_xH -> one
+ | _ -> failwith "not a number"
+ in
+ match decompose_app t with
+ | f, [t] when f = Lazy.force coq_Zpos -> loop t
+ | f, [t] when f = Lazy.force coq_Zneg -> neg (loop t)
+ | f, [] when f = Lazy.force coq_Z0 -> zero
+ | _ -> failwith "not a number"
+
+type constr_path =
+ | P_APP of int
+ (* Abstraction and product *)
+ | P_BODY
+ | P_TYPE
+ (* Case *)
+ | P_BRANCH of int
+ | P_ARITY
+ | P_ARG
+
+let context operation path (t : constr) =
+ let rec loop i p0 t =
+ match (p0,kind_of_term t) with
+ | (p, Cast (c,k,t)) -> mkCast (loop i p c,k,t)
+ | ([], _) -> operation i t
+ | ((P_APP n :: p), App (f,v)) ->
+ let v' = Array.copy v in
+ v'.(pred n) <- loop i p v'.(pred n); mkApp (f, v')
+ | ((P_BRANCH n :: p), Case (ci,q,c,v)) ->
+ (* avant, y avait mkApp... anyway, BRANCH seems nowhere used *)
+ let v' = Array.copy v in
+ v'.(n) <- loop i p v'.(n); (mkCase (ci,q,c,v'))
+ | ((P_ARITY :: p), App (f,l)) ->
+ appvect (loop i p f,l)
+ | ((P_ARG :: p), App (f,v)) ->
+ let v' = Array.copy v in
+ v'.(0) <- loop i p v'.(0); mkApp (f,v')
+ | (p, Fix ((_,n as ln),(tys,lna,v))) ->
+ let l = Array.length v in
+ let v' = Array.copy v in
+ v'.(n)<- loop (Pervasives.(+) i l) p v.(n); (mkFix (ln,(tys,lna,v')))
+ | ((P_BODY :: p), Prod (n,t,c)) ->
+ (mkProd (n,t,loop (succ i) p c))
+ | ((P_BODY :: p), Lambda (n,t,c)) ->
+ (mkLambda (n,t,loop (succ i) p c))
+ | ((P_BODY :: p), LetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,t,loop (succ i) p c))
+ | ((P_TYPE :: p), Prod (n,t,c)) ->
+ (mkProd (n,loop i p t,c))
+ | ((P_TYPE :: p), Lambda (n,t,c)) ->
+ (mkLambda (n,loop i p t,c))
+ | ((P_TYPE :: p), LetIn (n,b,t,c)) ->
+ (mkLetIn (n,b,loop i p t,c))
+ | (p, _) ->
+ ppnl (Printer.pr_lconstr t);
+ failwith ("abstract_path " ^ string_of_int(List.length p))
+ in
+ loop 1 path t
+
+let occurence path (t : constr) =
+ let rec loop p0 t = match (p0,kind_of_term t) with
+ | (p, Cast (c,_,_)) -> loop p c
+ | ([], _) -> t
+ | ((P_APP n :: p), App (f,v)) -> loop p v.(pred n)
+ | ((P_BRANCH n :: p), Case (_,_,_,v)) -> loop p v.(n)
+ | ((P_ARITY :: p), App (f,_)) -> loop p f
+ | ((P_ARG :: p), App (f,v)) -> loop p v.(0)
+ | (p, Fix((_,n) ,(_,_,v))) -> loop p v.(n)
+ | ((P_BODY :: p), Prod (n,t,c)) -> loop p c
+ | ((P_BODY :: p), Lambda (n,t,c)) -> loop p c
+ | ((P_BODY :: p), LetIn (n,b,t,c)) -> loop p c
+ | ((P_TYPE :: p), Prod (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term
+ | ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term
+ | (p, _) ->
+ ppnl (Printer.pr_lconstr t);
+ failwith ("occurence " ^ string_of_int(List.length p))
+ in
+ loop path t
+
+let abstract_path typ path t =
+ let term_occur = ref (mkRel 0) in
+ let abstract = context (fun i t -> term_occur:= t; mkRel i) path t in
+ mkLambda (Name (id_of_string "x"), typ, abstract), !term_occur
+
+let focused_simpl path gl =
+ let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
+ convert_concl_no_check newc DEFAULTcast gl
+
+let focused_simpl path = simpl_time (focused_simpl path)
+
+type oformula =
+ | Oplus of oformula * oformula
+ | Oinv of oformula
+ | Otimes of oformula * oformula
+ | Oatom of identifier
+ | Oz of bigint
+ | Oufo of constr
+
+let rec oprint = function
+ | Oplus(t1,t2) ->
+ print_string "("; oprint t1; print_string "+";
+ oprint t2; print_string ")"
+ | Oinv t -> print_string "~"; oprint t
+ | Otimes (t1,t2) ->
+ print_string "("; oprint t1; print_string "*";
+ oprint t2; print_string ")"
+ | Oatom s -> print_string (string_of_id s)
+ | Oz i -> print_string (string_of_bigint i)
+ | Oufo f -> print_string "?"
+
+let rec weight = function
+ | Oatom c -> intern_id c
+ | Oz _ -> -1
+ | Oinv c -> weight c
+ | Otimes(c,_) -> weight c
+ | Oplus _ -> failwith "weight"
+ | Oufo _ -> -1
+
+let rec val_of = function
+ | Oatom c -> mkVar c
+ | Oz c -> mk_integer c
+ | Oinv c -> mkApp (Lazy.force coq_Zopp, [| val_of c |])
+ | Otimes (t1,t2) -> mkApp (Lazy.force coq_Zmult, [| val_of t1; val_of t2 |])
+ | Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |])
+ | Oufo c -> c
+
+let compile name kind =
+ let rec loop accu = function
+ | Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
+ | Oz n ->
+ let id = new_id () in
+ tag_hypothesis name id;
+ {kind = kind; body = List.rev accu; constant = n; id = id}
+ | _ -> anomaly "compile_equation"
+ in
+ loop []
+
+let rec decompile af =
+ let rec loop = function
+ | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
+ | [] -> Oz af.constant
+ in
+ loop af.body
+
+let mkNewMeta () = mkMeta (Evarutil.new_meta())
+
+let clever_rewrite_base_poly typ p result theorem gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path typ (List.rev p) full in
+ let t =
+ applist
+ (mkLambda
+ (Name (id_of_string "P"),
+ mkArrow typ mkProp,
+ mkLambda
+ (Name (id_of_string "H"),
+ applist (mkRel 1,[result]),
+ mkApp (Lazy.force coq_eq_ind_r,
+ [| typ; result; mkRel 2; mkRel 1; occ; theorem |]))),
+ [abstracted])
+ in
+ exact (applist(t,[mkNewMeta()])) gl
+
+let clever_rewrite_base p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl
+
+let clever_rewrite_base_nat p result theorem gl =
+ clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl
+
+let clever_rewrite_gen p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base p result theorem
+
+let clever_rewrite_gen_nat p result (t,args) =
+ let theorem = applist(t, args) in
+ clever_rewrite_base_nat p result theorem
+
+let clever_rewrite p vpath t gl =
+ let full = pf_concl gl in
+ let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in
+ let vargs = List.map (fun p -> occurence p occ) vpath in
+ let t' = applist(t, (vargs @ [abstracted])) in
+ exact (applist(t',[mkNewMeta()])) gl
+
+let rec shuffle p (t1,t2) =
+ match t1,t2 with
+ | Oplus(l1,r1), Oplus(l2,r2) ->
+ if weight l1 > weight l2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ (clever_rewrite p [[P_APP 1;P_APP 1];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_reverse)
+ :: tac,
+ Oplus(l1,t'))
+ else
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ (clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t'))
+ | Oplus(l1,r1), t2 ->
+ if weight l1 > weight t2 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_reverse)
+ :: tac,
+ Oplus(l1, t')
+ else
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_comm)],
+ Oplus(t2,t1)
+ | t1,Oplus(l2,r2) ->
+ if weight l2 > weight t1 then
+ let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_permute)
+ :: tac,
+ Oplus(l2,t')
+ else [],Oplus(t1,t2)
+ | Oz t1,Oz t2 ->
+ [focused_simpl p], Oz(Bigint.add t1 t2)
+ | t1,t2 ->
+ if weight t1 < weight t2 then
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_comm)],
+ Oplus(t2,t1)
+ else [],Oplus(t1,t2)
+
+let rec shuffle_mult p_init k1 e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA10)
+ in
+ if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2];
+ [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_mult_right p_init e1 k2 e2 =
+ let rec loop p = function
+ | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ let tac =
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA15)
+ in
+ if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
+ let tac' =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5)
+ in
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ loop p (l1,l2)
+ else tac :: loop (P_APP 2 :: p) (l1,l2)
+ else if v1 > v2 then
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_reverse) ::
+ loop (P_APP 2 :: p) (l1,l2')
+ else
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) (l1',l2)
+ | ({c=c1;v=v1}::l1), [] ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_reverse) ::
+ loop (P_APP 2 :: p) (l1,[])
+ | [],({c=c2;v=v2}::l2) ->
+ clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1];
+ [P_APP 2; P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA12) ::
+ loop (P_APP 2 :: p) ([],l2)
+ | [],[] -> [focused_simpl p_init]
+ in
+ loop p_init (e1,e2)
+
+let rec shuffle_cancel p = function
+ | [] -> [focused_simpl p]
+ | ({c=c1}::l1) ->
+ let tac =
+ clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
+ [P_APP 2; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
+ (if c1 >? zero then
+ (Lazy.force coq_fast_OMEGA13)
+ else
+ (Lazy.force coq_fast_OMEGA14))
+ in
+ tac :: shuffle_cancel p l1
+
+let rec scalar p n = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
+ tac2,t2' = scalar (P_APP 2 :: p) n t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_plus_distr_l) ::
+ (tac1 @ tac2), Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_opp_comm);
+ focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(neg n))
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_assoc_reverse);
+ focused_simpl (P_APP 2 :: p)],
+ Otimes(t1,Oz (n*x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) -> [], Otimes(t,Oz n)
+ | Oz i -> [focused_simpl p],Oz(n*i)
+ | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |]))
+
+let rec scalar_norm p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | (_::l) ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _:: l ->
+ clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc_reverse) ::
+ loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec scalar_norm_add p_init =
+ let rec loop p = function
+ | [] -> [focused_simpl p_init]
+ | _ :: l ->
+ clever_rewrite p
+ [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
+ [P_APP 1; P_APP 1; P_APP 1; P_APP 2];
+ [P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
+ (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
+ in
+ loop p_init
+
+let rec negate p = function
+ | Oplus(t1,t2) ->
+ let tac1,t1' = negate (P_APP 1 :: p) t1 and
+ tac2,t2' = negate (P_APP 2 :: p) t2 in
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_plus_distr) ::
+ (tac1 @ tac2),
+ Oplus(t1',t2')
+ | Oinv t ->
+ [clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_involutive)], t
+ | Otimes(t1,Oz x) ->
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zopp_mult_distr_r);
+ focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (neg x))
+ | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) ->
+ let r = Otimes(t,Oz(negone)) in
+ [clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1)], r
+ | Oz i -> [focused_simpl p],Oz(neg i)
+ | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
+
+let rec transform p t =
+ let default isnat t' =
+ try
+ let v,th,_ = find_constr t' in
+ [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
+ with _ ->
+ let v = new_identifier_var ()
+ and th = new_identifier () in
+ hide_constr t' v th isnat;
+ [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
+ in
+ try match destructurate_term t with
+ | Kapp(Zplus,[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ let tac,t' = shuffle p (t1',t2') in
+ tac1 @ tac2 @ tac, t'
+ | Kapp(Zminus,[t1;t2]) ->
+ let tac,t =
+ transform p
+ (mkApp (Lazy.force coq_Zplus,
+ [| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in
+ unfold sp_Zminus :: tac,t
+ | Kapp(Zsucc,[t1]) ->
+ let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
+ [| t1; mk_integer one |])) in
+ unfold sp_Zsucc :: tac,t
+ | Kapp(Zmult,[t1;t2]) ->
+ let tac1,t1' = transform (P_APP 1 :: p) t1
+ and tac2,t2' = transform (P_APP 2 :: p) t2 in
+ begin match t1',t2' with
+ | (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
+ | (Oz n,_) ->
+ let sym =
+ clever_rewrite p [[P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zmult_comm) in
+ let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
+ | _ -> default false t
+ end
+ | Kapp((Zpos|Zneg|Z0),_) ->
+ (try ([],Oz(recognize_number t)) with _ -> default false t)
+ | Kvar s -> [],Oatom s
+ | Kapp(Zopp,[t]) ->
+ let tac,t' = transform (P_APP 1 :: p) t in
+ let tac',t'' = negate p t' in
+ tac @ tac', t''
+ | Kapp(Z_of_nat,[t']) -> default true t'
+ | _ -> default false t
+ with e when catchable_exception e -> default false t
+
+let shrink_pair p f1 f2 =
+ match f1,f2 with
+ | Oatom v,Oatom _ ->
+ let r = Otimes(Oatom v,Oz two) in
+ clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
+ | Oatom v, Otimes(_,c2) ->
+ let r = Otimes(Oatom v,Oplus(c2,Oz one)) in
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor2), r
+ | Otimes (v1,c1),Oatom v ->
+ let r = Otimes(Oatom v,Oplus(c1,Oz one)) in
+ clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor3), r
+ | Otimes (Oatom v,c1),Otimes (v2,c2) ->
+ let r = Otimes(Oatom v,Oplus(c1,c2)) in
+ clever_rewrite p
+ [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor4),r
+ | t1,t2 ->
+ begin
+ oprint t1; print_newline (); oprint t2; print_newline ();
+ flush Pervasives.stdout; error "shrink.1"
+ end
+
+let reduce_factor p = function
+ | Oatom v ->
+ let r = Otimes(Oatom v,Oz one) in
+ [clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r
+ | Otimes(Oatom v,Oz n) as f -> [],f
+ | Otimes(Oatom v,c) ->
+ let rec compute = function
+ | Oz n -> n
+ | Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2)
+ | _ -> error "condense.1"
+ in
+ [focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
+ | t -> oprint t; error "reduce_factor.1"
+
+let rec condense p = function
+ | Oplus(f1,(Oplus(f2,r) as t)) ->
+ if weight f1 = weight f2 then begin
+ let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
+ let assoc_tac =
+ clever_rewrite p
+ [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
+ (Lazy.force coq_fast_Zplus_assoc) in
+ let tac_list,t' = condense p (Oplus(t,r)) in
+ (assoc_tac :: shrink_tac :: tac_list), t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) t in
+ (tac @ tac'), Oplus(f,t')
+ end
+ | Oplus(f1,Oz n) ->
+ let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
+ | Oplus(f1,f2) ->
+ if weight f1 = weight f2 then begin
+ let tac_shrink,t = shrink_pair p f1 f2 in
+ let tac,t' = condense p t in
+ tac_shrink :: tac,t'
+ end else begin
+ let tac,f = reduce_factor (P_APP 1 :: p) f1 in
+ let tac',t' = condense (P_APP 2 :: p) f2 in
+ (tac @ tac'),Oplus(f,t')
+ end
+ | Oz _ as t -> [],t
+ | t ->
+ let tac,t' = reduce_factor p t in
+ let final = Oplus(t',Oz zero) in
+ let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
+ tac @ [tac'], final
+
+let rec clear_zero p = function
+ | Oplus(Otimes(Oatom v,Oz n),r) when n =? zero ->
+ let tac =
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ (Lazy.force coq_fast_Zred_factor5) in
+ let tac',t = clear_zero p r in
+ tac :: tac',t
+ | Oplus(f,r) ->
+ let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
+ | t -> [],t
+
+let replay_history tactic_normalisation =
+ let aux = id_of_string "auxiliary" in
+ let aux1 = id_of_string "auxiliary_1" in
+ let aux2 = id_of_string "auxiliary_2" in
+ let izero = mk_integer zero in
+ let rec loop t =
+ match t with
+ | HYP e :: l ->
+ begin
+ try
+ tclTHEN
+ (List.assoc (hyp_of_tag e.id) tactic_normalisation)
+ (loop l)
+ with Not_found -> loop l end
+ | NEGATE_CONTRADICT (e2,e1,b) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let k = if b then negone else one in
+ let p_initial = [P_APP 1;P_TYPE] in
+ let tac= shuffle_mult_right p_initial e1.body k e2.body in
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA17, [|
+ val_of eq1;
+ val_of eq2;
+ mk_integer k;
+ mkVar id1; mkVar id2 |])]);
+ (mk_then tac);
+ (intros_using [aux]);
+ (resolve_id aux);
+ reflexivity
+ ]
+ | CONTRADICTION (e1,e2) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac = shuffle_cancel p_initial e1.body in
+ let solve_le =
+ let not_sup_sup = mkApp (build_coq_eq (), [|
+ Lazy.force coq_comparison;
+ Lazy.force coq_Gt;
+ Lazy.force coq_Gt |])
+ in
+ tclTHENS
+ (tclTHENLIST [
+ (unfold sp_Zle);
+ (simpl_in_concl);
+ intro;
+ (absurd not_sup_sup) ])
+ [ assumption ; reflexivity ]
+ in
+ let theorem =
+ mkApp (Lazy.force coq_OMEGA2, [|
+ val_of eq1; val_of eq2;
+ mkVar (hyp_of_tag e1.id);
+ mkVar (hyp_of_tag e2.id) |])
+ in
+ tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le)
+ | DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
+ let id = hyp_of_tag e1.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let rhs = mk_plus (mk_times eq2 kk) dd in
+ let state_eg = mk_eq eq1 rhs in
+ let tac = scalar_norm_add [P_APP 3] e2.body in
+ tclTHENS
+ (cut state_eg)
+ [ tclTHENS
+ (tclTHENLIST [
+ (intros_using [aux]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA1,
+ [| eq1; rhs; mkVar aux; mkVar id |])]);
+ (clear [aux;id]);
+ (intros_using [id]);
+ (cut (mk_gt kk dd)) ])
+ [ tclTHENS
+ (cut (mk_gt kk izero))
+ [ tclTHENLIST [
+ (intros_using [aux1; aux2]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_Zmult_le_approx,
+ [| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]);
+ (clear [aux1;aux2;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ (simpl_in_concl);
+ reflexivity ] ];
+ tclTHENLIST [ (unfold sp_Zgt); simpl_in_concl; reflexivity ]
+ ];
+ tclTHEN (mk_then tac) reflexivity ]
+
+ | NOT_EXACT_DIVIDE (e1,k) :: l ->
+ let c = floor_div e1.constant k in
+ let d = Bigint.sub e1.constant (Bigint.mult c k) in
+ let e2 = {id=e1.id; kind=EQUA;constant = c;
+ body = map_eq_linear (fun c -> c / k) e1.body } in
+ let eq2 = val_of(decompile e2) in
+ let kk = mk_integer k
+ and dd = mk_integer d in
+ let tac = scalar_norm_add [P_APP 2] e2.body in
+ tclTHENS
+ (cut (mk_gt dd izero))
+ [ tclTHENS (cut (mk_gt kk dd))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA4,
+ [| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]);
+ (clear [aux1;aux2]);
+ (unfold sp_not);
+ (intros_using [aux]);
+ (resolve_id aux);
+ (mk_then tac);
+ assumption ] ;
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ]
+ | EXACT_DIVIDE (e1,k) :: l ->
+ let id = hyp_of_tag e1.id in
+ let e2 = map_eq_afine (fun c -> c / k) e1 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ let kk = mk_integer k in
+ let state_eq = mk_eq eq1 (mk_times eq2 kk) in
+ if e1.kind = DISE then
+ let tac = scalar_norm [P_APP 3] e2.body in
+ tclTHENS
+ (cut state_eq)
+ [tclTHENLIST [
+ (intros_using [aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA18,
+ [| eq1;eq2;kk;mkVar aux1; mkVar id |])]);
+ (clear [aux1;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (mk_then tac) reflexivity ]
+ else
+ let tac = scalar_norm [P_APP 3] e2.body in
+ tclTHENS (cut state_eq)
+ [
+ tclTHENS
+ (cut (mk_gt kk izero))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA3,
+ [| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]);
+ (clear [aux1;aux2;id]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHEN (mk_then tac) reflexivity ]
+ | (MERGE_EQ(e3,e1,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2 in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of (decompile (negate_eq e1)) in
+ let tac =
+ clever_rewrite [P_APP 3] [[P_APP 1]]
+ (Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
+ scalar_norm [P_APP 3] e1.body
+ in
+ tclTHENS
+ (cut (mk_eq eq1 (mk_inv eq2)))
+ [tclTHENLIST [
+ (intros_using [aux]);
+ (generalize_tac [mkApp (Lazy.force coq_OMEGA8,
+ [| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]);
+ (clear [id1;id2;aux]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (mk_then tac) reflexivity]
+
+ | STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l ->
+ let id = new_identifier ()
+ and id2 = hyp_of_tag orig.id in
+ tag_hypothesis id e.id;
+ let eq1 = val_of(decompile def)
+ and eq2 = val_of(decompile orig) in
+ let vid = unintern_id v in
+ let theorem =
+ mkApp (build_coq_ex (), [|
+ Lazy.force coq_Z;
+ mkLambda
+ (Name vid,
+ Lazy.force coq_Z,
+ mk_eq (mkRel 1) eq1) |])
+ in
+ let mm = mk_integer m in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac =
+ clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
+ [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
+ shuffle_mult_right p_initial
+ orig.body m ({c= negone;v= v}::def.body) in
+ tclTHENS
+ (cut theorem)
+ [tclTHENLIST [
+ (intros_using [aux]);
+ (elim_id aux);
+ (clear [aux]);
+ (intros_using [vid; aux]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA9,
+ [| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]);
+ (mk_then tac);
+ (clear [aux]);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHEN (exists_tac eq1) reflexivity ]
+ | SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
+ let id1 = new_identifier ()
+ and id2 = new_identifier () in
+ tag_hypothesis id1 e1; tag_hypothesis id2 e2;
+ let id = hyp_of_tag e.id in
+ let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
+ let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
+ let eq = val_of(decompile e) in
+ tclTHENS
+ (simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id])))
+ [tclTHENLIST [ (mk_then tac1); (intros_using [id1]); (loop act1) ];
+ tclTHENLIST [ (mk_then tac2); (intros_using [id2]); (loop act2) ]]
+ | SUM(e3,(k1,e1),(k2,e2)) :: l ->
+ let id = new_identifier () in
+ tag_hypothesis id e3;
+ let id1 = hyp_of_tag e1.id
+ and id2 = hyp_of_tag e2.id in
+ let eq1 = val_of(decompile e1)
+ and eq2 = val_of(decompile e2) in
+ if k1 =? one & e2.kind = EQUA then
+ let tac_thm =
+ match e1.kind with
+ | EQUA -> Lazy.force coq_OMEGA5
+ | INEQ -> Lazy.force coq_OMEGA6
+ | DISE -> Lazy.force coq_OMEGA20
+ in
+ let kk = mk_integer k2 in
+ let p_initial =
+ if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
+ let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]);
+ (mk_then tac);
+ (intros_using [id]);
+ (loop l)
+ ]
+ else
+ let kk1 = mk_integer k1
+ and kk2 = mk_integer k2 in
+ let p_initial = [P_APP 2;P_TYPE] in
+ let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
+ tclTHENS (cut (mk_gt kk1 izero))
+ [tclTHENS
+ (cut (mk_gt kk2 izero))
+ [tclTHENLIST [
+ (intros_using [aux2;aux1]);
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA7, [|
+ eq1;eq2;kk1;kk2;
+ mkVar aux1;mkVar aux2;
+ mkVar id1;mkVar id2 |])]);
+ (clear [aux1;aux2]);
+ (mk_then tac);
+ (intros_using [id]);
+ (loop l) ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ];
+ tclTHENLIST [
+ (unfold sp_Zgt);
+ simpl_in_concl;
+ reflexivity ] ]
+ | CONSTANT_NOT_NUL(e,k) :: l ->
+ tclTHEN (generalize_tac [mkVar (hyp_of_tag e)]) Equality.discrConcl
+ | CONSTANT_NUL(e) :: l ->
+ tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
+ | CONSTANT_NEG(e,k) :: l ->
+ tclTHENLIST [
+ (generalize_tac [mkVar (hyp_of_tag e)]);
+ (unfold sp_Zle);
+ simpl_in_concl;
+ (unfold sp_not);
+ (intros_using [aux]);
+ (resolve_id aux);
+ reflexivity
+ ]
+ | _ -> tclIDTAC
+ in
+ loop
+
+let normalize p_initial t =
+ let (tac,t') = transform p_initial t in
+ let (tac',t'') = condense p_initial t' in
+ let (tac'',t''') = clear_zero p_initial t'' in
+ tac @ tac' @ tac'' , t'''
+
+let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) =
+ let p_initial = [P_APP pos ;P_TYPE] in
+ let (tac,t') = normalize p_initial t in
+ let shift_left =
+ tclTHEN
+ (generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ])
+ (tclTRY (clear [id]))
+ in
+ if tac <> [] then
+ let id' = new_identifier () in
+ ((id',(tclTHENLIST [ (shift_left); (mk_then tac); (intros_using [id']) ]))
+ :: tactic,
+ compile id' flag t' :: defs)
+ else
+ (tactic,defs)
+
+let destructure_omega gl tac_def (id,c) =
+ if atompart_of_id id = "State" then
+ tac_def
+ else
+ try match destructurate_prop c with
+ | Kapp(Eq,[typ;t1;t2])
+ when destructurate_type (pf_nf gl typ) = Kapp(Z,[]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
+ | Kapp(Zne,[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def
+ | Kapp(Zle,[t1;t2]) ->
+ let t = mk_plus t2 (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def
+ | Kapp(Zlt,[t1;t2]) ->
+ let t = mk_plus (mk_plus t2 (mk_integer negone)) (mk_inv t1) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def
+ | Kapp(Zge,[t1;t2]) ->
+ let t = mk_plus t1 (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def
+ | Kapp(Zgt,[t1;t2]) ->
+ let t = mk_plus (mk_plus t1 (mk_integer negone)) (mk_inv t2) in
+ normalize_equation
+ id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def
+ | _ -> tac_def
+ with e when catchable_exception e -> tac_def
+
+let reintroduce id =
+ (* [id] cannot be cleared if dependent: protect it by a try *)
+ tclTHEN (tclTRY (clear [id])) (intro_using id)
+
+let coq_omega gl =
+ clear_tables ();
+ let tactic_normalisation, system =
+ List.fold_left (destructure_omega gl) ([],[]) (pf_hyps_types gl) in
+ let prelude,sys =
+ List.fold_left
+ (fun (tac,sys) (t,(v,th,b)) ->
+ if b then
+ let id = new_identifier () in
+ let i = new_id () in
+ tag_hypothesis id i;
+ (tclTHENLIST [
+ (simplest_elim (applist (Lazy.force coq_intro_Z, [t])));
+ (intros_using [v; id]);
+ (elim_id id);
+ (clear [id]);
+ (intros_using [th;id]);
+ tac ]),
+ {kind = INEQ;
+ body = [{v=intern_id v; c=one}];
+ constant = zero; id = i} :: sys
+ else
+ (tclTHENLIST [
+ (simplest_elim (applist (Lazy.force coq_new_var, [t])));
+ (intros_using [v;th]);
+ tac ]),
+ sys)
+ (tclIDTAC,[]) (dump_tables ())
+ in
+ let system = system @ sys in
+ if !display_system_flag then display_system display_var system;
+ if !old_style_flag then begin
+ try
+ let _ = simplify (new_id,new_var_num,display_var) false system in
+ tclIDTAC gl
+ with UNSOLVABLE ->
+ let _,path = depend [] [] (history ()) in
+ if !display_action_flag then display_action display_var path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ end else begin
+ try
+ let path = simplify_strong (new_id,new_var_num,display_var) system in
+ if !display_action_flag then display_action display_var path;
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ with NO_CONTRADICTION -> error "Omega can't solve this system"
+ end
+
+let coq_omega = solver_time coq_omega
+
+let nat_inject gl =
+ let rec explore p t =
+ try match destructurate_term t with
+ | Kapp(Plus,[t1;t2]) ->
+ tclTHENLIST [
+ (clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_plus),[t1;t2]));
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2)
+ ]
+ | Kapp(Mult,[t1;t2]) ->
+ tclTHENLIST [
+ (clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_mult),[t1;t2]));
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2)
+ ]
+ | Kapp(Minus,[t1;t2]) ->
+ let id = new_identifier () in
+ tclTHENS
+ (tclTHEN
+ (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
+ (intros_using [id]))
+ [
+ tclTHENLIST [
+ (clever_rewrite_gen p
+ (mk_minus (mk_inj t1) (mk_inj t2))
+ ((Lazy.force coq_inj_minus1),[t1;t2;mkVar id]));
+ (loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]);
+ (explore (P_APP 1 :: p) t1);
+ (explore (P_APP 2 :: p) t2) ];
+ (tclTHEN
+ (clever_rewrite_gen p (mk_integer zero)
+ ((Lazy.force coq_inj_minus2),[t1;t2;mkVar id]))
+ (loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])]))
+ ]
+ | Kapp(S,[t']) ->
+ let rec is_number t =
+ try match destructurate_term t with
+ Kapp(S,[t]) -> is_number t
+ | Kapp(O,[]) -> true
+ | _ -> false
+ with e when catchable_exception e -> false
+ in
+ let rec loop p t =
+ try match destructurate_term t with
+ Kapp(S,[t]) ->
+ (tclTHEN
+ (clever_rewrite_gen p
+ (mkApp (Lazy.force coq_Zsucc, [| mk_inj t |]))
+ ((Lazy.force coq_inj_S),[t]))
+ (loop (P_APP 1 :: p) t))
+ | _ -> explore p t
+ with e when catchable_exception e -> explore p t
+ in
+ if is_number t' then focused_simpl p else loop p t
+ | Kapp(Pred,[t]) ->
+ let t_minus_one =
+ mkApp (Lazy.force coq_minus, [| t;
+ mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in
+ tclTHEN
+ (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
+ ((Lazy.force coq_pred_of_minus),[t]))
+ (explore p t_minus_one)
+ | Kapp(O,[]) -> focused_simpl p
+ | _ -> tclIDTAC
+ with e when catchable_exception e -> tclIDTAC
+
+ and loop = function
+ | [] -> tclIDTAC
+ | (i,t)::lit ->
+ begin try match destructurate_prop t with
+ Kapp(Le,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Lt,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Ge,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Gt,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_gt, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Neq,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_neq, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 1; P_TYPE] t1);
+ (explore [P_APP 2; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ | Kapp(Eq,[typ;t1;t2]) ->
+ if pf_conv_x gl typ (Lazy.force coq_nat) then
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]);
+ (explore [P_APP 2; P_TYPE] t1);
+ (explore [P_APP 3; P_TYPE] t2);
+ (reintroduce i);
+ (loop lit)
+ ]
+ else loop lit
+ | _ -> loop lit
+ with e when catchable_exception e -> loop lit end
+ in
+ loop (List.rev (pf_hyps_types gl)) gl
+
+let rec decidability gl t =
+ match destructurate_prop t with
+ | Kapp(Or,[t1;t2]) ->
+ mkApp (Lazy.force coq_dec_or, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kapp(And,[t1;t2]) ->
+ mkApp (Lazy.force coq_dec_and, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kapp(Iff,[t1;t2]) ->
+ mkApp (Lazy.force coq_dec_iff, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kimp(t1,t2) ->
+ mkApp (Lazy.force coq_dec_imp, [| t1; t2;
+ decidability gl t1; decidability gl t2 |])
+ | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1;
+ decidability gl t1 |])
+ | Kapp(Eq,[typ;t1;t2]) ->
+ begin match destructurate_type (pf_nf gl typ) with
+ | Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
+ | Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
+ | _ -> errorlabstrm "decidability"
+ (str "Omega: Can't solve a goal with equality on " ++
+ Printer.pr_lconstr typ)
+ end
+ | Kapp(Zne,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zne, [| t1;t2 |])
+ | Kapp(Zle,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zle, [| t1;t2 |])
+ | Kapp(Zlt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zlt, [| t1;t2 |])
+ | Kapp(Zge,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zge, [| t1;t2 |])
+ | Kapp(Zgt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zgt, [| t1;t2 |])
+ | Kapp(Le, [t1;t2]) -> mkApp (Lazy.force coq_dec_le, [| t1;t2 |])
+ | Kapp(Lt, [t1;t2]) -> mkApp (Lazy.force coq_dec_lt, [| t1;t2 |])
+ | Kapp(Ge, [t1;t2]) -> mkApp (Lazy.force coq_dec_ge, [| t1;t2 |])
+ | Kapp(Gt, [t1;t2]) -> mkApp (Lazy.force coq_dec_gt, [| t1;t2 |])
+ | Kapp(False,[]) -> Lazy.force coq_dec_False
+ | Kapp(True,[]) -> Lazy.force coq_dec_True
+ | Kapp(Other t,_::_) -> error
+ ("Omega: Unrecognized predicate or connective: "^t)
+ | Kapp(Other t,[]) -> error ("Omega: Unrecognized atomic proposition: "^t)
+ | Kvar _ -> error "Omega: Can't solve a goal with proposition variables"
+ | _ -> error "Omega: Unrecognized proposition"
+
+let onClearedName id tac =
+ (* We cannot ensure that hyps can be cleared (because of dependencies), *)
+ (* so renaming may be necessary *)
+ tclTHEN
+ (tclTRY (clear [id]))
+ (fun gl ->
+ let id = fresh_id [] id gl in
+ tclTHEN (introduction id) (tac id) gl)
+
+let destructure_hyps gl =
+ let rec loop = function
+ | [] -> (tclTHEN nat_inject coq_omega)
+ | (i,body,t)::lit ->
+ begin try match destructurate_prop t with
+ | Kapp(False,[]) -> elim_id i
+ | Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit
+ | Kapp(Or,[t1;t2]) ->
+ (tclTHENS
+ (elim_id i)
+ [ onClearedName i (fun i -> (loop ((i,None,t1)::lit)));
+ onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ])
+ | Kapp(And,[t1;t2]) ->
+ tclTHENLIST [
+ (elim_id i);
+ (tclTRY (clear [i]));
+ (fun gl ->
+ let i1 = fresh_id [] (add_suffix i "_left") gl in
+ let i2 = fresh_id [] (add_suffix i "_right") gl in
+ tclTHENLIST [
+ (introduction i1);
+ (introduction i2);
+ (loop ((i1,None,t1)::(i2,None,t2)::lit)) ] gl)
+ ]
+ | Kapp(Iff,[t1;t2]) ->
+ tclTHENLIST [
+ (elim_id i);
+ (tclTRY (clear [i]));
+ (fun gl ->
+ let i1 = fresh_id [] (add_suffix i "_left") gl in
+ let i2 = fresh_id [] (add_suffix i "_right") gl in
+ tclTHENLIST [
+ introduction i1;
+ generalize_tac
+ [mkApp (Lazy.force coq_imp_simp,
+ [| t1; t2; decidability gl t1; mkVar i1|])];
+ onClearedName i1 (fun i1 ->
+ tclTHENLIST [
+ introduction i2;
+ generalize_tac
+ [mkApp (Lazy.force coq_imp_simp,
+ [| t2; t1; decidability gl t2; mkVar i2|])];
+ onClearedName i2 (fun i2 ->
+ loop
+ ((i1,None,mk_or (mk_not t1) t2)::
+ (i2,None,mk_or (mk_not t2) t1)::lit))
+ ])] gl)
+ ]
+ | Kimp(t1,t2) ->
+ if
+ is_Prop (pf_type_of gl t1) &
+ is_Prop (pf_type_of gl t2) &
+ closed0 t2
+ then
+ tclTHENLIST [
+ (generalize_tac [mkApp (Lazy.force coq_imp_simp,
+ [| t1; t2; decidability gl t1; mkVar i|])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_or (mk_not t1) t2)::lit))))
+ ]
+ else
+ loop lit
+ | Kapp(Not,[t]) ->
+ begin match destructurate_prop t with
+ Kapp(Or,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit))))
+ ]
+ | Kapp(And,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_and, [| t1; t2;
+ decidability gl t1; mkVar i|])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_or (mk_not t1) (mk_not t2))::lit))))
+ ]
+ | Kapp(Iff,[t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_iff, [| t1; t2;
+ decidability gl t1; decidability gl t2; mkVar i|])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,
+ mk_or (mk_and t1 (mk_not t2))
+ (mk_and (mk_not t1) t2))::lit))))
+ ]
+ | Kimp(t1,t2) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_imp, [| t1; t2;
+ decidability gl t1;mkVar i |])]);
+ (onClearedName i (fun i ->
+ (loop ((i,None,mk_and t1 (mk_not t2)) :: lit))))
+ ]
+ | Kapp(Not,[t]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_not, [| t;
+ decidability gl t; mkVar i |])]);
+ (onClearedName i (fun i -> (loop ((i,None,t)::lit))))
+ ]
+ | Kapp(Zle, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_Znot_le_gt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zge, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_Znot_ge_lt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zlt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_Znot_lt_ge, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Zgt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_Znot_gt_le, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Le, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_le, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Ge, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_ge, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Lt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_lt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Gt, [t1;t2]) ->
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_gt, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Eq,[typ;t1;t2]) ->
+ if !old_style_flag then begin
+ match destructurate_type (pf_nf gl typ) with
+ | Kapp(Nat,_) ->
+ tclTHENLIST [
+ (simplest_elim
+ (mkApp
+ (Lazy.force coq_not_eq, [|t1;t2;mkVar i|])));
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | Kapp(Z,_) ->
+ tclTHENLIST [
+ (simplest_elim
+ (mkApp
+ (Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|])));
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ | _ -> loop lit
+ end else begin
+ match destructurate_type (pf_nf gl typ) with
+ | Kapp(Nat,_) ->
+ (tclTHEN
+ (convert_hyp_no_check
+ (i,body,
+ (mkApp (Lazy.force coq_neq, [| t1;t2|]))))
+ (loop lit))
+ | Kapp(Z,_) ->
+ (tclTHEN
+ (convert_hyp_no_check
+ (i,body,
+ (mkApp (Lazy.force coq_Zne, [| t1;t2|]))))
+ (loop lit))
+ | _ -> loop lit
+ end
+ | _ -> loop lit
+ end
+ | _ -> loop lit
+ with e when catchable_exception e -> loop lit
+ end
+ in
+ loop (pf_hyps gl) gl
+
+let destructure_goal gl =
+ let concl = pf_concl gl in
+ let rec loop t =
+ match destructurate_prop t with
+ | Kapp(Not,[t]) ->
+ (tclTHEN
+ (tclTHEN (unfold sp_not) intro)
+ destructure_hyps)
+ | Kimp(a,b) -> (tclTHEN intro (loop b))
+ | Kapp(False,[]) -> destructure_hyps
+ | _ ->
+ (tclTHEN
+ (tclTHEN
+ (Tactics.refine
+ (mkApp (Lazy.force coq_dec_not_not, [| t;
+ decidability gl t; mkNewMeta () |])))
+ intro)
+ (destructure_hyps))
+ in
+ (loop concl) gl
+
+let destructure_goal = all_time (destructure_goal)
+
+let omega_solver gl =
+ Coqlib.check_required_library ["Coq";"omega";"Omega"];
+ let result = destructure_goal gl in
+ (* if !display_time_flag then begin text_time ();
+ flush Pervasives.stdout end; *)
+ result