summaryrefslogtreecommitdiff
path: root/plugins/omega/OmegaLemmas.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/omega/OmegaLemmas.v')
-rw-r--r--plugins/omega/OmegaLemmas.v269
1 files changed, 117 insertions, 152 deletions
diff --git a/plugins/omega/OmegaLemmas.v b/plugins/omega/OmegaLemmas.v
index ec9faedd..1872f576 100644
--- a/plugins/omega/OmegaLemmas.v
+++ b/plugins/omega/OmegaLemmas.v
@@ -6,234 +6,192 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(*i $Id: OmegaLemmas.v 12337 2009-09-17 15:58:14Z glondu $ i*)
-
-Require Import ZArith_base.
-Open Local Scope Z_scope.
+Require Import BinInt Znat.
+Local Open Scope Z_scope.
(** Factorization lemmas *)
-Theorem Zred_factor0 : forall n:Z, n = n * 1.
- intro x; rewrite (Zmult_1_r x); reflexivity.
+Theorem Zred_factor0 n : n = n * 1.
+Proof.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor1 : forall n:Z, n + n = n * 2.
+Theorem Zred_factor1 n : n + n = n * 2.
Proof.
- exact Zplus_diag_eq_mult_2.
+ rewrite Z.mul_comm. apply Z.add_diag.
Qed.
-Theorem Zred_factor2 : forall n m:Z, n + n * m = n * (1 + m).
+Theorem Zred_factor2 n m : n + n * m = n * (1 + m).
Proof.
- intros x y; pattern x at 1 in |- *; rewrite <- (Zmult_1_r x);
- rewrite <- Zmult_plus_distr_r; trivial with arith.
+ rewrite Z.mul_add_distr_l; now Z.nzsimpl.
Qed.
-Theorem Zred_factor3 : forall n m:Z, n * m + n = n * (1 + m).
+Theorem Zred_factor3 n m : n * m + n = n * (1 + m).
Proof.
- intros x y; pattern x at 2 in |- *; rewrite <- (Zmult_1_r x);
- rewrite <- Zmult_plus_distr_r; rewrite Zplus_comm;
- trivial with arith.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor4 : forall n m p:Z, n * m + n * p = n * (m + p).
+Theorem Zred_factor4 n m p : n * m + n * p = n * (m + p).
Proof.
- intros x y z; symmetry in |- *; apply Zmult_plus_distr_r.
+ symmetry; apply Z.mul_add_distr_l.
Qed.
-Theorem Zred_factor5 : forall n m:Z, n * 0 + m = m.
+Theorem Zred_factor5 n m : n * 0 + m = m.
Proof.
- intros x y; rewrite <- Zmult_0_r_reverse; auto with arith.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor6 : forall n:Z, n = n + 0.
+Theorem Zred_factor6 n : n = n + 0.
Proof.
- intro; rewrite Zplus_0_r; trivial with arith.
+ now Z.nzsimpl.
Qed.
(** Other specific variants of theorems dedicated for the Omega tactic *)
Lemma new_var : forall x : Z, exists y : Z, x = y.
-intros x; exists x; trivial with arith.
+Proof.
+intros x; now exists x.
Qed.
-Lemma OMEGA1 : forall x y : Z, x = y -> 0 <= x -> 0 <= y.
-intros x y H; rewrite H; auto with arith.
+Lemma OMEGA1 x y : x = y -> 0 <= x -> 0 <= y.
+Proof.
+now intros ->.
Qed.
-Lemma OMEGA2 : forall x y : Z, 0 <= x -> 0 <= y -> 0 <= x + y.
-exact Zplus_le_0_compat.
+Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
+Proof.
+Z.order_pos.
Qed.
-Lemma OMEGA3 : forall x y k : Z, k > 0 -> x = y * k -> x = 0 -> y = 0.
-
-intros x y k H1 H2 H3; apply (Zmult_integral_l k);
- [ unfold not in |- *; intros H4; absurd (k > 0);
- [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate
- | assumption ]
- | rewrite <- H2; assumption ].
+Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0.
+Proof.
+intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst.
Qed.
-Lemma OMEGA4 : forall x y z : Z, x > 0 -> y > x -> z * y + x <> 0.
-
-unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0);
- [ intros H4; cut (0 <= z * y + x);
- [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6;
- absurd (z * y + x > 0);
- [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate
- | apply Zle_gt_trans with x;
- [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x);
- apply Zplus_le_compat_r; rewrite Zmult_comm;
- generalize H4; unfold Zgt in |- *; case y;
- [ simpl in |- *; intros H7; discriminate H7
- | intros p H7; rewrite <- (Zmult_0_r (Zpos p));
- unfold Zle in |- *; rewrite Zcompare_mult_compat;
- exact H6
- | simpl in |- *; intros p H7; discriminate H7 ]
- | assumption ] ]
- | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ]
- | apply Zgt_trans with x; [ assumption | assumption ] ].
+Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0.
+Proof.
+Z.swap_greater. intros Hx Hxy.
+rewrite Z.add_move_0_l, <- Z.mul_opp_l.
+destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]].
+- intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0).
+ apply Z.mul_pos_cancel_r with y; Z.order.
+- Z.nzsimpl. Z.order.
+- rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order.
Qed.
-Lemma OMEGA5 : forall x y z : Z, x = 0 -> y = 0 -> x + y * z = 0.
-
-intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith.
+Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0.
+Proof.
+now intros -> ->.
Qed.
-Lemma OMEGA6 : forall x y z : Z, 0 <= x -> y = 0 -> 0 <= x + y * z.
-
-intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption.
+Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z.
+Proof.
+intros H ->. now Z.nzsimpl.
Qed.
-Lemma OMEGA7 :
- forall x y z t : Z, z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
-
-intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat;
- apply Zmult_gt_0_le_0_compat; assumption.
+Lemma OMEGA7 x y z t :
+ z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
+Proof.
+intros. Z.swap_greater. Z.order_pos.
Qed.
-Lemma OMEGA8 : forall x y : Z, 0 <= x -> 0 <= y -> x = - y -> x = 0.
-
-intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1);
- [ intros H4; absurd (0 < x);
- [ change (0 >= x) in |- *; apply Zle_ge; apply Zplus_le_reg_l with y;
- rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r;
- assumption
- | assumption ]
- | intros H4; rewrite H4; trivial with arith ].
+Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0.
+Proof.
+intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order.
Qed.
-Lemma OMEGA9 : forall x y z t : Z, y = 0 -> x = z -> y + (- x + z) * t = 0.
-
-intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l;
- rewrite Zplus_0_r; assumption.
+Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0.
+Proof.
+intros. subst. now rewrite Z.add_opp_diag_l.
Qed.
-Lemma OMEGA10 :
- forall v c1 c2 l1 l2 k1 k2 : Z,
+Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 :
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3.
Qed.
-Lemma OMEGA11 :
- forall v1 c1 l1 l2 k1 : Z,
+Lemma OMEGA11 v1 c1 l1 l2 k1 :
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+now rewrite Z.add_assoc.
Qed.
-Lemma OMEGA12 :
- forall v2 c2 l1 l2 k2 : Z,
+Lemma OMEGA12 v2 c2 l1 l2 k2 :
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite Zplus_permute; trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+apply Z.add_shuffle3.
Qed.
-Lemma OMEGA13 :
- forall (v l1 l2 : Z) (x : positive),
+Lemma OMEGA13 (v l1 l2 : Z) (x : positive) :
v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2.
-
-intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1);
- rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
- rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x));
- rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r;
- trivial with arith.
+Proof.
+ rewrite Z.add_shuffle1.
+ rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
+ now Z.nzsimpl.
Qed.
-Lemma OMEGA14 :
- forall (v l1 l2 : Z) (x : positive),
+Lemma OMEGA14 (v l1 l2 : Z) (x : positive) :
v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2.
-
-intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1);
- rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
- rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r;
- rewrite Zplus_0_r; trivial with arith.
+Proof.
+ rewrite Z.add_shuffle1.
+ rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
+ now Z.nzsimpl.
Qed.
-Lemma OMEGA15 :
- forall v c1 c2 l1 l2 k2 : Z,
- v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith.
+Lemma OMEGA15 v c1 c2 l1 l2 k2 :
+ v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
+Proof.
+ rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+ apply Z.add_shuffle1.
Qed.
-Lemma OMEGA16 : forall v c l k : Z, (v * c + l) * k = v * (c * k) + l * k.
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- trivial with arith.
+Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k.
+Proof.
+ now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
Qed.
-Lemma OMEGA17 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
-
-unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1;
- apply Zplus_reg_l with (y * z); rewrite Zplus_comm;
- rewrite H3; rewrite H2; auto with arith.
+Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
+Proof.
+ unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl.
Qed.
-Lemma OMEGA18 : forall x y k : Z, x = y * k -> Zne x 0 -> Zne y 0.
-
-unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1;
- rewrite H3; auto with arith.
+Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0.
+Proof.
+ unfold Zne, not. intros. subst; auto.
Qed.
-Lemma OMEGA19 : forall x : Z, Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
-
-unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x);
- [ intros H1; elim Zle_lt_or_eq with (1 := H1);
- [ intros H2; left; change (0 <= Zpred x) in |- *; apply Zsucc_le_reg;
- rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption
- | intros H2; absurd (x = 0); auto with arith ]
- | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm;
- apply Zle_left; apply Zsucc_le_reg; simpl in |- *;
- apply Zlt_le_succ; auto with arith ].
+Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
+Proof.
+ unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx.
+ destruct Hx as [LT|GT].
+ - right. change (-1) with (-(1)).
+ rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl.
+ rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l.
+ - left. now apply Z.lt_le_pred.
Qed.
-Lemma OMEGA20 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
-
-unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3;
- simpl in H3; rewrite Zplus_0_r in H3; trivial with arith.
+Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
+Proof.
+ unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3;
+ simpl in H3; rewrite Z.add_0_r in H3; trivial with arith.
Qed.
Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop)
- (H : P (y + x)) := eq_ind_r P H (Zplus_comm x y).
+ (H : P (y + x)) := eq_ind_r P H (Z.add_comm x y).
Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p).
Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop)
- (H : P (n + m + p)) := eq_ind_r P H (Zplus_assoc n m p).
+ (H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p).
Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop)
- (H : P (m + (n + p))) := eq_ind_r P H (Zplus_permute n m p).
+ (H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p).
Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) :=
@@ -261,24 +219,24 @@ Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop)
(H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x).
Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop)
- (H : P (x * -1)) := eq_ind_r P H (Zopp_eq_mult_neg_1 x).
+ (H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x).
Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop)
- (H : P (y * x)) := eq_ind_r P H (Zmult_comm x y).
+ (H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y).
Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop)
- (H : P (- x + - y)) := eq_ind_r P H (Zopp_plus_distr x y).
+ (H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y).
Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) :=
- eq_ind_r P H (Zopp_involutive x).
+ eq_ind_r P H (Z.opp_involutive x).
Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y).
Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop)
- (H : P (n * p + m * p)) := eq_ind_r P H (Zmult_plus_distr_l n m p).
+ (H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p).
Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop)
- (H : P (x * - y)) := eq_ind_r P H (Zmult_opp_comm x y).
+ (H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y).
Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p).
@@ -300,3 +258,10 @@ Definition fast_Zred_factor5 (x y : Z) (P : Z -> Prop)
Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop)
(H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x).
+
+Theorem intro_Z :
+ forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0.
+Proof.
+ intros n; exists (Z.of_nat n); split; trivial.
+ rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg.
+Qed.