summaryrefslogtreecommitdiff
path: root/plugins/nsatz/nsatz.ml4
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/nsatz/nsatz.ml4')
-rw-r--r--plugins/nsatz/nsatz.ml4608
1 files changed, 608 insertions, 0 deletions
diff --git a/plugins/nsatz/nsatz.ml4 b/plugins/nsatz/nsatz.ml4
new file mode 100644
index 00000000..892d6037
--- /dev/null
+++ b/plugins/nsatz/nsatz.ml4
@@ -0,0 +1,608 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Pp
+open Util
+open Names
+open Term
+open Closure
+open Environ
+open Libnames
+open Tactics
+open Rawterm
+open Tacticals
+open Tacexpr
+open Pcoq
+open Tactic
+open Constr
+open Proof_type
+open Coqlib
+open Tacmach
+open Mod_subst
+open Tacinterp
+open Libobject
+open Printer
+open Declare
+open Decl_kinds
+open Entries
+
+open Num
+open Unix
+open Utile
+
+(***********************************************************************
+ Operations on coefficients
+*)
+
+let num_0 = Int 0
+and num_1 = Int 1
+and num_2 = Int 2
+and num_10 = Int 10
+
+let numdom r =
+ let r' = Ratio.normalize_ratio (ratio_of_num r) in
+ num_of_big_int(Ratio.numerator_ratio r'),
+ num_of_big_int(Ratio.denominator_ratio r')
+
+module BigInt = struct
+ open Big_int
+
+ type t = big_int
+ let of_int = big_int_of_int
+ let coef0 = of_int 0
+ let coef1 = of_int 1
+ let of_num = Num.big_int_of_num
+ let to_num = Num.num_of_big_int
+ let equal = eq_big_int
+ let lt = lt_big_int
+ let le = le_big_int
+ let abs = abs_big_int
+ let plus =add_big_int
+ let mult = mult_big_int
+ let sub = sub_big_int
+ let opp = minus_big_int
+ let div = div_big_int
+ let modulo = mod_big_int
+ let to_string = string_of_big_int
+ let to_int x = int_of_big_int x
+ let hash x =
+ try (int_of_big_int x)
+ with _-> 1
+ let puis = power_big_int_positive_int
+
+ (* a et b positifs, résultat positif *)
+ let rec pgcd a b =
+ if equal b coef0
+ then a
+ else if lt a b then pgcd b a else pgcd b (modulo a b)
+
+
+ (* signe du pgcd = signe(a)*signe(b) si non nuls. *)
+ let pgcd2 a b =
+ if equal a coef0 then b
+ else if equal b coef0 then a
+ else let c = pgcd (abs a) (abs b) in
+ if ((lt coef0 a)&&(lt b coef0))
+ ||((lt coef0 b)&&(lt a coef0))
+ then opp c else c
+end
+
+(*
+module Ent = struct
+ type t = Entiers.entiers
+ let of_int = Entiers.ent_of_int
+ let of_num x = Entiers.ent_of_string(Num.string_of_num x)
+ let to_num x = Num.num_of_string (Entiers.string_of_ent x)
+ let equal = Entiers.eq_ent
+ let lt = Entiers.lt_ent
+ let le = Entiers.le_ent
+ let abs = Entiers.abs_ent
+ let plus =Entiers.add_ent
+ let mult = Entiers.mult_ent
+ let sub = Entiers.moins_ent
+ let opp = Entiers.opp_ent
+ let div = Entiers.div_ent
+ let modulo = Entiers.mod_ent
+ let coef0 = Entiers.ent0
+ let coef1 = Entiers.ent1
+ let to_string = Entiers.string_of_ent
+ let to_int x = Entiers.int_of_ent x
+ let hash x =Entiers.hash_ent x
+ let signe = Entiers.signe_ent
+
+ let rec puis p n = match n with
+ 0 -> coef1
+ |_ -> (mult p (puis p (n-1)))
+
+ (* a et b positifs, résultat positif *)
+ let rec pgcd a b =
+ if equal b coef0
+ then a
+ else if lt a b then pgcd b a else pgcd b (modulo a b)
+
+
+ (* signe du pgcd = signe(a)*signe(b) si non nuls. *)
+ let pgcd2 a b =
+ if equal a coef0 then b
+ else if equal b coef0 then a
+ else let c = pgcd (abs a) (abs b) in
+ if ((lt coef0 a)&&(lt b coef0))
+ ||((lt coef0 b)&&(lt a coef0))
+ then opp c else c
+end
+*)
+
+(* ------------------------------------------------------------------------- *)
+(* ------------------------------------------------------------------------- *)
+
+type vname = string
+
+type term =
+ | Zero
+ | Const of Num.num
+ | Var of vname
+ | Opp of term
+ | Add of term * term
+ | Sub of term * term
+ | Mul of term * term
+ | Pow of term * int
+
+let const n =
+ if eq_num n num_0 then Zero else Const n
+let pow(p,i) = if i=1 then p else Pow(p,i)
+let add = function
+ (Zero,q) -> q
+ | (p,Zero) -> p
+ | (p,q) -> Add(p,q)
+let mul = function
+ (Zero,_) -> Zero
+ | (_,Zero) -> Zero
+ | (p,Const n) when eq_num n num_1 -> p
+ | (Const n,q) when eq_num n num_1 -> q
+ | (p,q) -> Mul(p,q)
+
+let unconstr = mkRel 1
+
+let tpexpr =
+ lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PExpr")
+let ttconst = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEc")
+let ttvar = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEX")
+let ttadd = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEadd")
+let ttsub = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEsub")
+let ttmul = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEmul")
+let ttopp = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEopp")
+let ttpow = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEpow")
+
+let tlist = lazy (gen_constant "CC" ["Lists";"List"] "list")
+let lnil = lazy (gen_constant "CC" ["Lists";"List"] "nil")
+let lcons = lazy (gen_constant "CC" ["Lists";"List"] "cons")
+
+let tz = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Z")
+let z0 = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Z0")
+let zpos = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Zpos")
+let zneg = lazy(gen_constant "CC" ["ZArith";"BinInt"] "Zneg")
+
+let pxI = lazy(gen_constant "CC" ["NArith";"BinPos"] "xI")
+let pxO = lazy(gen_constant "CC" ["NArith";"BinPos"] "xO")
+let pxH = lazy(gen_constant "CC" ["NArith";"BinPos"] "xH")
+
+let nN0 = lazy (gen_constant "CC" ["NArith";"BinNat"] "N0")
+let nNpos = lazy(gen_constant "CC" ["NArith";"BinNat"] "Npos")
+
+let mkt_app name l = mkApp (Lazy.force name, Array.of_list l)
+
+let tlp () = mkt_app tlist [mkt_app tpexpr [Lazy.force tz]]
+let tllp () = mkt_app tlist [tlp()]
+
+let rec mkt_pos n =
+ if n =/ num_1 then Lazy.force pxH
+ else if mod_num n num_2 =/ num_0 then
+ mkt_app pxO [mkt_pos (quo_num n num_2)]
+ else
+ mkt_app pxI [mkt_pos (quo_num n num_2)]
+
+let mkt_n n =
+ if n=num_0
+ then Lazy.force nN0
+ else mkt_app nNpos [mkt_pos n]
+
+let mkt_z z =
+ if z =/ num_0 then Lazy.force z0
+ else if z >/ num_0 then
+ mkt_app zpos [mkt_pos z]
+ else
+ mkt_app zneg [mkt_pos ((Int 0) -/ z)]
+
+let rec mkt_term t = match t with
+| Zero -> mkt_term (Const num_0)
+| Const r -> let (n,d) = numdom r in
+ mkt_app ttconst [Lazy.force tz; mkt_z n]
+| Var v -> mkt_app ttvar [Lazy.force tz; mkt_pos (num_of_string v)]
+| Opp t1 -> mkt_app ttopp [Lazy.force tz; mkt_term t1]
+| Add (t1,t2) -> mkt_app ttadd [Lazy.force tz; mkt_term t1; mkt_term t2]
+| Sub (t1,t2) -> mkt_app ttsub [Lazy.force tz; mkt_term t1; mkt_term t2]
+| Mul (t1,t2) -> mkt_app ttmul [Lazy.force tz; mkt_term t1; mkt_term t2]
+| Pow (t1,n) -> if (n = 0) then
+ mkt_app ttconst [Lazy.force tz; mkt_z num_1]
+else
+ mkt_app ttpow [Lazy.force tz; mkt_term t1; mkt_n (num_of_int n)]
+
+let rec parse_pos p =
+ match kind_of_term p with
+| App (a,[|p2|]) ->
+ if a = Lazy.force pxO then num_2 */ (parse_pos p2)
+ else num_1 +/ (num_2 */ (parse_pos p2))
+| _ -> num_1
+
+let parse_z z =
+ match kind_of_term z with
+| App (a,[|p2|]) ->
+ if a = Lazy.force zpos then parse_pos p2 else (num_0 -/ (parse_pos p2))
+| _ -> num_0
+
+let parse_n z =
+ match kind_of_term z with
+| App (a,[|p2|]) ->
+ parse_pos p2
+| _ -> num_0
+
+let rec parse_term p =
+ match kind_of_term p with
+| App (a,[|_;p2|]) ->
+ if a = Lazy.force ttvar then Var (string_of_num (parse_pos p2))
+ else if a = Lazy.force ttconst then Const (parse_z p2)
+ else if a = Lazy.force ttopp then Opp (parse_term p2)
+ else Zero
+| App (a,[|_;p2;p3|]) ->
+ if a = Lazy.force ttadd then Add (parse_term p2, parse_term p3)
+ else if a = Lazy.force ttsub then Sub (parse_term p2, parse_term p3)
+ else if a = Lazy.force ttmul then Mul (parse_term p2, parse_term p3)
+ else if a = Lazy.force ttpow then
+ Pow (parse_term p2, int_of_num (parse_n p3))
+ else Zero
+| _ -> Zero
+
+let rec parse_request lp =
+ match kind_of_term lp with
+ | App (_,[|_|]) -> []
+ | App (_,[|_;p;lp1|]) ->
+ (parse_term p)::(parse_request lp1)
+ |_-> assert false
+
+let nvars = ref 0
+
+let set_nvars_term t =
+ let rec aux t =
+ match t with
+ | Zero -> ()
+ | Const r -> ()
+ | Var v -> let n = int_of_string v in
+ nvars:= max (!nvars) n
+ | Opp t1 -> aux t1
+ | Add (t1,t2) -> aux t1; aux t2
+ | Sub (t1,t2) -> aux t1; aux t2
+ | Mul (t1,t2) -> aux t1; aux t2
+ | Pow (t1,n) -> aux t1
+ in aux t
+
+let string_of_term p =
+ let rec aux p =
+ match p with
+ | Zero -> "0"
+ | Const r -> string_of_num r
+ | Var v -> "x"^v
+ | Opp t1 -> "(-"^(aux t1)^")"
+ | Add (t1,t2) -> "("^(aux t1)^"+"^(aux t2)^")"
+ | Sub (t1,t2) -> "("^(aux t1)^"-"^(aux t2)^")"
+ | Mul (t1,t2) -> "("^(aux t1)^"*"^(aux t2)^")"
+ | Pow (t1,n) -> (aux t1)^"^"^(string_of_int n)
+ in aux p
+
+
+(***********************************************************************
+ Coefficients: recursive polynomials
+ *)
+
+module Coef = BigInt
+(*module Coef = Ent*)
+module Poly = Polynom.Make(Coef)
+module PIdeal = Ideal.Make(Poly)
+open PIdeal
+
+(* term to sparse polynomial
+ varaibles <=np are in the coefficients
+*)
+
+let term_pol_sparse np t=
+ let d = !nvars in
+ let rec aux t =
+ match t with
+ | Zero -> zeroP
+ | Const r ->
+ if r = num_0
+ then zeroP
+ else polconst d (Poly.Pint (Coef.of_num r))
+ | Var v ->
+ let v = int_of_string v in
+ if v <= np
+ then polconst d (Poly.x v)
+ else gen d v
+ | Opp t1 -> oppP (aux t1)
+ | Add (t1,t2) -> plusP (aux t1) (aux t2)
+ | Sub (t1,t2) -> plusP (aux t1) (oppP (aux t2))
+ | Mul (t1,t2) -> multP (aux t1) (aux t2)
+ | Pow (t1,n) -> puisP (aux t1) n
+ in (*info ("conversion de: "^(string_of_term t)^"\n");*)
+ let res= aux t in
+ (*info ("donne: "^(stringP res)^"\n");*)
+ res
+
+(* sparse polynomial to term *)
+
+let polrec_to_term p =
+ let rec aux p =
+ match p with
+ |Poly.Pint n -> const (Coef.to_num n)
+ |Poly.Prec (v,coefs) ->
+ let res = ref Zero in
+ Array.iteri
+ (fun i c ->
+ res:=add(!res, mul(aux c,
+ pow (Var (string_of_int v),
+ i))))
+ coefs;
+ !res
+ in aux p
+
+(* approximation of the Horner form used in the tactic ring *)
+
+let pol_sparse_to_term n2 p =
+ info "pol_sparse_to_term ->\n";
+ let p = PIdeal.repr p in
+ let rec aux p =
+ match p with
+ [] -> const (num_of_string "0")
+ | (a,m)::p1 ->
+ let n = (Array.length m)-1 in
+ let (i0,e0) =
+ List.fold_left (fun (r,d) (a,m) ->
+ let i0= ref 0 in
+ for k=1 to n do
+ if m.(k)>0
+ then i0:=k
+ done;
+ if !i0 = 0
+ then (r,d)
+ else if !i0 > r
+ then (!i0, m.(!i0))
+ else if !i0 = r && m.(!i0)<d
+ then (!i0, m.(!i0))
+ else (r,d))
+ (0,0)
+ p in
+ if i0=0
+ then
+ let mp = ref (polrec_to_term a) in
+ if p1=[]
+ then !mp
+ else add(!mp,aux p1)
+ else (
+ let p1=ref [] in
+ let p2=ref [] in
+ List.iter
+ (fun (a,m) ->
+ if m.(i0)>=e0
+ then (m.(i0)<-m.(i0)-e0;
+ p1:=(a,m)::(!p1))
+ else p2:=(a,m)::(!p2))
+ p;
+ let vm =
+ if e0=1
+ then Var (string_of_int (i0))
+ else pow (Var (string_of_int (i0)),e0) in
+ add(mul(vm, aux (List.rev (!p1))), aux (List.rev (!p2))))
+ in info "-> pol_sparse_to_term\n";
+ aux p
+
+
+let rec remove_list_tail l i =
+ let rec aux l i =
+ if l=[]
+ then []
+ else if i<0
+ then l
+ else if i=0
+ then List.tl l
+ else
+ match l with
+ |(a::l1) ->
+ a::(aux l1 (i-1))
+ |_ -> assert false
+ in
+ List.rev (aux (List.rev l) i)
+
+(*
+ lq = [cn+m+1 n+m ...cn+m+1 1]
+ lci=[[cn+1 n,...,cn1 1]
+ ...
+ [cn+m n+m-1,...,cn+m 1]]
+
+ removes intermediate polynomials not useful to compute the last one.
+ *)
+
+let remove_zeros zero lci =
+ let n = List.length (List.hd lci) in
+ let m=List.length lci in
+ let u = Array.create m false in
+ let rec utiles k =
+ if k>=m
+ then ()
+ else (
+ u.(k)<-true;
+ let lc = List.nth lci k in
+ for i=0 to List.length lc - 1 do
+ if not (zero (List.nth lc i))
+ then utiles (i+k+1);
+ done)
+ in utiles 0;
+ let lr = ref [] in
+ for i=0 to m-1 do
+ if u.(i)
+ then lr:=(List.nth lci i)::(!lr)
+ done;
+ let lr=List.rev !lr in
+ let lr = List.map
+ (fun lc ->
+ let lcr=ref lc in
+ for i=0 to m-1 do
+ if not u.(i)
+ then lcr:=remove_list_tail !lcr (m-i+(n-m))
+ done;
+ !lcr)
+ lr in
+ info ("unuseful spolynomials: "
+ ^string_of_int (m-List.length lr)^"\n");
+ info ("useful spolynomials: "
+ ^string_of_int (List.length lr)^"\n");
+ lr
+
+let theoremedeszeros lpol p =
+ let t1 = Unix.gettimeofday() in
+ let m = !nvars in
+ let (lp0,p,cert) = in_ideal m lpol p in
+ let lpc = List.rev !poldepcontent in
+ info ("time: "^Format.sprintf "@[%10.3f@]s\n" (Unix.gettimeofday ()-.t1));
+ (cert,lp0,p,lpc)
+
+open Ideal
+
+let theoremedeszeros_termes lp =
+ nvars:=0;(* mise a jour par term_pol_sparse *)
+ List.iter set_nvars_term lp;
+ match lp with
+ | Const (Int sugarparam)::Const (Int nparam)::lp ->
+ ((match sugarparam with
+ |0 -> info "calcul sans sugar\n";
+ lexico:=false;
+ sugar_flag := false;
+ divide_rem_with_critical_pair := false
+ |1 -> info "calcul avec sugar\n";
+ lexico:=false;
+ sugar_flag := true;
+ divide_rem_with_critical_pair := false
+ |2 -> info "ordre lexico calcul sans sugar\n";
+ lexico:=true;
+ sugar_flag := false;
+ divide_rem_with_critical_pair := false
+ |3 -> info "ordre lexico calcul avec sugar\n";
+ lexico:=true;
+ sugar_flag := true;
+ divide_rem_with_critical_pair := false
+ |4 -> info "calcul sans sugar, division par les paires\n";
+ lexico:=false;
+ sugar_flag := false;
+ divide_rem_with_critical_pair := true
+ |5 -> info "calcul avec sugar, division par les paires\n";
+ lexico:=false;
+ sugar_flag := true;
+ divide_rem_with_critical_pair := true
+ |6 -> info "ordre lexico calcul sans sugar, division par les paires\n";
+ lexico:=true;
+ sugar_flag := false;
+ divide_rem_with_critical_pair := true
+ |7 -> info "ordre lexico calcul avec sugar, division par les paires\n";
+ lexico:=true;
+ sugar_flag := true;
+ divide_rem_with_critical_pair := true
+ | _ -> error "nsatz: bad parameter"
+ );
+ let m= !nvars in
+ let lvar=ref [] in
+ for i=m downto 1 do lvar:=["x"^(string_of_int i)^""]@(!lvar); done;
+ lvar:=["a";"b";"c";"d";"e";"f";"g";"h";"i";"j";"k";"l";"m";"n";"o";"p";"q";"r";"s";"t";"u";"v";"w";"x";"y";"z"] @ (!lvar); (* pour macaulay *)
+ name_var:=!lvar;
+ let lp = List.map (term_pol_sparse nparam) lp in
+ match lp with
+ | [] -> assert false
+ | p::lp1 ->
+ let lpol = List.rev lp1 in
+ let (cert,lp0,p,_lct) = theoremedeszeros lpol p in
+ let lc = cert.last_comb::List.rev cert.gb_comb in
+ match remove_zeros (fun x -> x=zeroP) lc with
+ | [] -> assert false
+ | (lq::lci) ->
+ (* lci commence par les nouveaux polynomes *)
+ let m= !nvars in
+ let c = pol_sparse_to_term m (polconst m cert.coef) in
+ let r = Pow(Zero,cert.power) in
+ let lci = List.rev lci in
+ let lci = List.map (List.map (pol_sparse_to_term m)) lci in
+ let lq = List.map (pol_sparse_to_term m) lq in
+ info ("nombre de parametres: "^string_of_int nparam^"\n");
+ info "terme calcule\n";
+ (c,r,lci,lq)
+ )
+ |_ -> assert false
+
+
+(* version avec hash-consing du certificat:
+let nsatz lpol =
+ Hashtbl.clear Dansideal.hmon;
+ Hashtbl.clear Dansideal.coefpoldep;
+ Hashtbl.clear Dansideal.sugartbl;
+ Hashtbl.clear Polynomesrec.hcontentP;
+ init_constants ();
+ let lp= parse_request lpol in
+ let (_lp0,_p,c,r,_lci,_lq as rthz) = theoremedeszeros_termes lp in
+ let certif = certificat_vers_polynome_creux rthz in
+ let certif = hash_certif certif in
+ let certif = certif_term certif in
+ let c = mkt_term c in
+ info "constr calcule\n";
+ (c, certif)
+*)
+
+let nsatz lpol =
+ let lp= parse_request lpol in
+ let (c,r,lci,lq) = theoremedeszeros_termes lp in
+ let res = [c::r::lq]@lci in
+ let res = List.map (fun lx -> List.map mkt_term lx) res in
+ let res =
+ List.fold_right
+ (fun lt r ->
+ let ltterm =
+ List.fold_right
+ (fun t r ->
+ mkt_app lcons [mkt_app tpexpr [Lazy.force tz];t;r])
+ lt
+ (mkt_app lnil [mkt_app tpexpr [Lazy.force tz]]) in
+ mkt_app lcons [tlp ();ltterm;r])
+ res
+ (mkt_app lnil [tlp ()]) in
+ info "terme calcule\n";
+ res
+
+let return_term t =
+ let a =
+ mkApp(gen_constant "CC" ["Init";"Logic"] "refl_equal",[|tllp ();t|]) in
+ generalize [a]
+
+let nsatz_compute t =
+ let lpol =
+ try nsatz t
+ with Ideal.NotInIdeal ->
+ error "nsatz cannot solve this problem" in
+ return_term lpol
+
+TACTIC EXTEND nsatz_compute
+| [ "nsatz_compute" constr(lt) ] -> [ nsatz_compute lt ]
+END
+
+