summaryrefslogtreecommitdiff
path: root/plugins/nsatz/Nsatz.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/nsatz/Nsatz.v')
-rw-r--r--plugins/nsatz/Nsatz.v663
1 files changed, 663 insertions, 0 deletions
diff --git a/plugins/nsatz/Nsatz.v b/plugins/nsatz/Nsatz.v
new file mode 100644
index 00000000..aa32b386
--- /dev/null
+++ b/plugins/nsatz/Nsatz.v
@@ -0,0 +1,663 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*
+ Tactic nsatz: proofs of polynomials equalities in a domain (ring without zero divisor).
+ Reification is done by type classes, following a technique shown by Mathieu
+Sozeau. Verification of certificate is done by a code written by Benjamin
+Gregoire, following an idea of Laurent Théry.
+
+Examples: see test-suite/success/Nsatz.v
+
+Loïc Pottier, july 2010
+*)
+
+Require Import List.
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinList.
+Require Import Znumtheory.
+Require Import Ring_polynom Ring_tac InitialRing.
+Require Export Morphisms Setoid Bool.
+
+Declare ML Module "nsatz_plugin".
+
+Class Zero (A : Type) := {zero : A}.
+Notation "0" := zero.
+Class One (A : Type) := {one : A}.
+Notation "1" := one.
+Class Addition (A : Type) := {addition : A -> A -> A}.
+Notation "x + y" := (addition x y).
+Class Multiplication (A : Type) := {multiplication : A -> A -> A}.
+Notation "x * y" := (multiplication x y).
+Class Subtraction (A : Type) := {subtraction : A -> A -> A}.
+Notation "x - y" := (subtraction x y).
+Class Opposite (A : Type) := {opposite : A -> A}.
+Notation "- x" := (opposite x).
+
+Class Ring (R:Type) := {
+ ring0: R; ring1: R;
+ ring_plus: R->R->R; ring_mult: R->R->R;
+ ring_sub: R->R->R; ring_opp: R->R;
+ ring_eq : R -> R -> Prop;
+ ring_ring:
+ ring_theory ring0 ring1 ring_plus ring_mult ring_sub
+ ring_opp ring_eq;
+ ring_setoid: Equivalence ring_eq;
+ ring_plus_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_plus;
+ ring_mult_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_mult;
+ ring_sub_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_sub;
+ ring_opp_comp: Proper (ring_eq==>ring_eq) ring_opp
+}.
+
+Class Domain (R : Type) := {
+ domain_ring:> Ring R;
+ domain_axiom_product:
+ forall x y, ring_eq (ring_mult x y) ring0 -> (ring_eq x ring0) \/ (ring_eq y ring0);
+ domain_axiom_one_zero: not (ring_eq ring1 ring0)}.
+
+Section domain.
+
+Variable R: Type.
+Variable Rd: Domain R.
+
+Existing Instance ring_setoid.
+Existing Instance ring_plus_comp.
+Existing Instance ring_mult_comp.
+Existing Instance ring_sub_comp.
+Existing Instance ring_opp_comp.
+
+Add Ring Rr: (@ring_ring R (@domain_ring R Rd)).
+
+Instance zero_ring : Zero R := {zero := ring0}.
+Instance one_ring : One R := {one := ring1}.
+Instance addition_ring : Addition R := {addition x y := ring_plus x y}.
+Instance multiplication_ring : Multiplication R := {multiplication x y := ring_mult x y}.
+Instance subtraction_ring : Subtraction R := {subtraction x y := ring_sub x y}.
+Instance opposite_ring : Opposite R := {opposite x := ring_opp x}.
+
+Infix "==" := ring_eq (at level 70, no associativity).
+
+Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y.
+intros x y H; setoid_replace x with ((x - y) + y); simpl;
+ [setoid_rewrite H | idtac]; simpl; ring.
+Qed.
+
+Lemma psos_r1: forall x y, x == y -> x - y == 0.
+intros x y H; simpl; setoid_rewrite H; simpl; ring.
+Qed.
+
+Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0).
+intros.
+intro; apply H.
+simpl; setoid_replace x with ((x - y) + y). simpl.
+setoid_rewrite H0.
+simpl; ring.
+simpl. simpl; ring.
+Qed.
+
+(* adpatation du code de Benjamin aux setoides *)
+Require Import ZArith.
+
+Definition PolZ := Pol Z.
+Definition PEZ := PExpr Z.
+
+Definition P0Z : PolZ := @P0 Z 0%Z.
+
+Definition PolZadd : PolZ -> PolZ -> PolZ :=
+ @Padd Z 0%Z Zplus Zeq_bool.
+
+Definition PolZmul : PolZ -> PolZ -> PolZ :=
+ @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool.
+
+Definition PolZeq := @Peq Z Zeq_bool.
+
+Definition norm :=
+ @norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
+
+Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ :=
+ match la, lp with
+ | a::la, p::lp => PolZadd (PolZmul (norm a) p) (mult_l la lp)
+ | _, _ => P0Z
+ end.
+
+Fixpoint compute_list (lla: list (list PEZ)) (lp:list PolZ) :=
+ match lla with
+ | List.nil => lp
+ | la::lla => compute_list lla ((mult_l la lp)::lp)
+ end.
+
+Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) :=
+ let (lla, lq) := certif in
+ let lp := List.map norm lpe in
+ PolZeq (norm qe) (mult_l lq (compute_list lla lp)).
+
+
+(* Correction *)
+Definition PhiR : list R -> PolZ -> R :=
+ (Pphi 0 ring_plus ring_mult (gen_phiZ 0 1 ring_plus ring_mult ring_opp)).
+
+Definition pow (r : R) (n : nat) := pow_N 1 ring_mult r (Nnat.N_of_nat n).
+
+Definition PEevalR : list R -> PEZ -> R :=
+ PEeval 0 ring_plus ring_mult ring_sub ring_opp
+ (gen_phiZ 0 1 ring_plus ring_mult ring_opp)
+ Nnat.nat_of_N pow.
+
+Lemma P0Z_correct : forall l, PhiR l P0Z = 0.
+Proof. trivial. Qed.
+
+Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp ring_eq.
+apply mk_reqe. intros. setoid_rewrite H; rewrite H0; ring.
+ intros. setoid_rewrite H; setoid_rewrite H0; ring.
+intros. setoid_rewrite H; ring. Qed.
+
+Lemma Rset : Setoid_Theory R ring_eq.
+apply ring_setoid.
+Qed.
+
+Lemma PolZadd_correct : forall P' P l,
+ PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')).
+Proof.
+simpl.
+ refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
+ (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+Qed.
+
+Lemma PolZmul_correct : forall P P' l,
+ PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')).
+Proof.
+ refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
+ (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+Qed.
+
+Lemma R_power_theory
+ : power_theory 1 ring_mult ring_eq Nnat.nat_of_N pow.
+apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. ring. Qed.
+
+Lemma norm_correct :
+ forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe).
+Proof.
+ intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
+ (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))) R_power_theory)
+ with (lmp:= List.nil).
+ compute;trivial.
+Qed.
+
+Lemma PolZeq_correct : forall P P' l,
+ PolZeq P P' = true ->
+ PhiR l P == PhiR l P'.
+Proof.
+ intros;apply
+ (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))));trivial.
+Qed.
+
+Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop :=
+ match l with
+ | List.nil => True
+ | a::l => Interp a == 0 /\ Cond0 A Interp l
+ end.
+
+Lemma mult_l_correct : forall l la lp,
+ Cond0 PolZ (PhiR l) lp ->
+ PhiR l (mult_l la lp) == 0.
+Proof.
+ induction la;simpl;intros. ring.
+ destruct lp;trivial. simpl. ring.
+ simpl in H;destruct H.
+ setoid_rewrite PolZadd_correct.
+ simpl. setoid_rewrite PolZmul_correct. simpl. setoid_rewrite H.
+ setoid_rewrite IHla. unfold zero. simpl. ring. trivial.
+Qed.
+
+Lemma compute_list_correct : forall l lla lp,
+ Cond0 PolZ (PhiR l) lp ->
+ Cond0 PolZ (PhiR l) (compute_list lla lp).
+Proof.
+ induction lla;simpl;intros;trivial.
+ apply IHlla;simpl;split;trivial.
+ apply mult_l_correct;trivial.
+Qed.
+
+Lemma check_correct :
+ forall l lpe qe certif,
+ check lpe qe certif = true ->
+ Cond0 PEZ (PEevalR l) lpe ->
+ PEevalR l qe == 0.
+Proof.
+ unfold check;intros l lpe qe (lla, lq) H2 H1.
+ apply PolZeq_correct with (l:=l) in H2.
+ rewrite norm_correct, H2.
+ apply mult_l_correct.
+ apply compute_list_correct.
+ clear H2 lq lla qe;induction lpe;simpl;trivial.
+ simpl in H1;destruct H1.
+ rewrite <- norm_correct;auto.
+Qed.
+
+(* fin *)
+
+Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0.
+induction n. unfold pow; simpl. intros. absurd (1 == 0).
+simpl. apply domain_axiom_one_zero.
+ trivial. setoid_replace (pow p (S n)) with (p * (pow p n)). intros.
+case (@domain_axiom_product _ _ _ _ H). trivial. trivial.
+unfold pow; simpl.
+clear IHn. induction n; simpl; try ring.
+ rewrite pow_pos_Psucc. ring. exact Rset.
+ intros. setoid_rewrite H; setoid_rewrite H0; ring.
+ intros. simpl; ring. intros. simpl; ring. Qed.
+
+Lemma Rdomain_pow: forall c p r, ~c == ring0 -> ring_mult c (pow p r) == ring0 -> p == ring0.
+intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c == ring0); auto.
+intros. apply pow_not_zero with r. trivial. Qed.
+
+Definition R2:= ring_plus ring1 ring1.
+
+Fixpoint IPR p {struct p}: R :=
+ match p with
+ xH => ring1
+ | xO xH => ring_plus ring1 ring1
+ | xO p1 => ring_mult R2 (IPR p1)
+ | xI xH => ring_plus ring1 (ring_plus ring1 ring1)
+ | xI p1 => ring_plus ring1 (ring_mult R2 (IPR p1))
+ end.
+
+Definition IZR1 z :=
+ match z with Z0 => ring0
+ | Zpos p => IPR p
+ | Zneg p => ring_opp(IPR p)
+ end.
+
+Fixpoint interpret3 t fv {struct t}: R :=
+ match t with
+ | (PEadd t1 t2) =>
+ let v1 := interpret3 t1 fv in
+ let v2 := interpret3 t2 fv in (ring_plus v1 v2)
+ | (PEmul t1 t2) =>
+ let v1 := interpret3 t1 fv in
+ let v2 := interpret3 t2 fv in (ring_mult v1 v2)
+ | (PEsub t1 t2) =>
+ let v1 := interpret3 t1 fv in
+ let v2 := interpret3 t2 fv in (ring_sub v1 v2)
+ | (PEopp t1) =>
+ let v1 := interpret3 t1 fv in (ring_opp v1)
+ | (PEpow t1 t2) =>
+ let v1 := interpret3 t1 fv in pow v1 (Nnat.nat_of_N t2)
+ | (PEc t1) => (IZR1 t1)
+ | (PEX n) => List.nth (pred (nat_of_P n)) fv 0
+ end.
+
+
+End domain.
+
+Ltac equalities_to_goal :=
+ lazymatch goal with
+ | H: (@ring_eq _ _ ?x ?y) |- _ =>
+ try generalize (@psos_r1 _ _ _ _ H); clear H
+ end.
+
+Ltac nsatz_domain_begin tacsimpl :=
+ intros;
+ try apply (@psos_r1b _ _);
+ repeat equalities_to_goal;
+ tacsimpl.
+
+Ltac generalise_eq_hyps:=
+ repeat
+ (match goal with
+ |h : (@ring_eq _ _ ?p ?q)|- _ => revert h
+ end).
+
+Ltac lpol_goal t :=
+ match t with
+ | ?a = ring0 -> ?b =>
+ let r:= lpol_goal b in
+ constr:(a::r)
+ | ?a = ring0 => constr:(a::nil)
+ end.
+
+(* lp est incluse dans fv. La met en tete. *)
+
+Ltac parametres_en_tete fv lp :=
+ match fv with
+ | (@nil _) => lp
+ | (@cons _ ?x ?fv1) =>
+ let res := AddFvTail x lp in
+ parametres_en_tete fv1 res
+ end.
+
+Ltac append1 a l :=
+ match l with
+ | (@nil _) => constr:(cons a l)
+ | (cons ?x ?l) => let l' := append1 a l in constr:(cons x l')
+ end.
+
+Ltac rev l :=
+ match l with
+ |(@nil _) => l
+ | (cons ?x ?l) => let l' := rev l in append1 x l'
+ end.
+
+
+
+Ltac nsatz_call_n info nparam p rr lp kont :=
+ (*idtac "Trying power: " rr;*)
+ let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in
+ nsatz_compute ll;
+ (*idtac "done";*)
+ match goal with
+ | |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ =>
+ intros _;
+ set (lci:=lci0);
+ set (lq:=lq0);
+ kont c rr lq lci
+ end.
+
+Ltac nsatz_call radicalmax info nparam p lp kont :=
+ let rec try_n n :=
+ lazymatch n with
+ | 0%N => fail
+ | _ =>
+ (let r := eval compute in (Nminus radicalmax (Npred n)) in
+ nsatz_call_n info nparam p r lp kont) ||
+ let n' := eval compute in (Npred n) in try_n n'
+ end in
+ try_n radicalmax.
+
+
+Set Implicit Arguments.
+Class Cclosed_seq T (l:list T) := {}.
+Instance Iclosed_nil T : Cclosed_seq (T:=T) nil.
+Instance Iclosed_cons T t l `{Cclosed_seq (T:=T) l} : Cclosed_seq (T:=T) (t::l).
+
+Class Cfind_at (R:Type) (b:R) (l:list R) (i:nat) := {}.
+Instance Ifind0 (R:Type) (b:R) l: Cfind_at b (b::l) 0.
+Instance IfindS (R:Type) (b2 b1:R) l i `{Cfind_at R b1 l i} : Cfind_at b1 (b2::l) (S i) | 1.
+Definition Ifind0' := Ifind0.
+Definition IfindS' := IfindS.
+
+Definition li_find_at (R:Type) (b:R) l i `{Cfind_at R b l i} {H:Cclosed_seq (T:=R) l} := (l,i).
+
+Class Creify (R:Type) (e:PExpr Z) (l:list R) (b:R) := {}.
+Instance Ireify_zero (R:Type) (Rd:Domain R) l : Creify (PEc 0%Z) l ring0.
+Instance Ireify_one (R:Type) (Rd:Domain R) l : Creify (PEc 1%Z) l ring1.
+Instance Ireify_plus (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
+ : Creify (PEadd e1 e2) l (ring_plus b1 b2).
+Instance Ireify_mult (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
+ : Creify (PEmul e1 e2) l (ring_mult b1 b2).
+Instance Ireify_sub (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
+ : Creify (PEsub e1 e2) l (ring_sub b1 b2).
+Instance Ireify_opp (R:Type) (Rd:Domain R) e1 l b1 `{Creify R e1 l b1}
+ : Creify (PEopp e1) l (ring_opp b1).
+Instance Ireify_var (R:Type) b l i `{Cfind_at R b l i}
+ : Creify (PEX _ (P_of_succ_nat i)) l b | 100.
+
+
+Class Creifylist (R:Type) (le:list (PExpr Z)) (l:list R) (lb:list R) := {}.
+Instance Creify_nil (R:Type) l : Creifylist nil l (@nil R).
+Instance Creify_cons (R:Type) e1 l b1 le2 lb2 `{Creify R e1 l b1} `{Creifylist R le2 l lb2}
+ : Creifylist (e1::le2) l (b1::lb2).
+
+Definition li_reifyl (R:Type) le l lb `{Creifylist R le l lb}
+ {H:Cclosed_seq (T:=R) l} := (l,le).
+
+Unset Implicit Arguments.
+
+Ltac lterm_goal g :=
+ match g with
+ ring_eq ?b1 ?b2 => constr:(b1::b2::nil)
+ | ring_eq ?b1 ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
+ end.
+
+Ltac reify_goal l le lb Rd:=
+ match le with
+ nil => idtac
+ | ?e::?le1 =>
+ match lb with
+ ?b::?lb1 => (* idtac "b="; idtac b;*)
+ let x := fresh "B" in
+ set (x:= b) at 1;
+ change x with (@interpret3 _ Rd e l);
+ clear x;
+ reify_goal l le1 lb1 Rd
+ end
+ end.
+
+Ltac get_lpol g :=
+ match g with
+ ring_eq (interpret3 _ _ ?p _) _ => constr:(p::nil)
+ | ring_eq (interpret3 _ _ ?p _) _ -> ?g =>
+ let l := get_lpol g in constr:(p::l)
+ end.
+
+Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd :=
+ match goal with
+ |- ?g => let lb := lterm_goal g in
+ (*idtac "lb"; idtac lb;*)
+ match eval red in (li_reifyl (lb:=lb)) with
+ | (?fv, ?le) =>
+ let fv := match lvar with
+ (@nil _) => fv
+ | _ => lvar
+ end in
+ (* idtac "variables:";idtac fv;*)
+ let nparam := eval compute in (Z_of_nat (List.length lparam)) in
+ let fv := parametres_en_tete fv lparam in
+ (*idtac "variables:"; idtac fv;
+ idtac "nparam:"; idtac nparam; *)
+ match eval red in (li_reifyl (l:=fv) (lb:=lb)) with
+ | (?fv, ?le) =>
+ (*idtac "variables:";idtac fv; idtac le; idtac lb;*)
+ reify_goal fv le lb Rd;
+ match goal with
+ |- ?g =>
+ let lp := get_lpol g in
+ let lpol := eval compute in (List.rev lp) in
+ (*idtac "polynomes:"; idtac lpol;*)
+ tacsimpl; intros;
+
+ let SplitPolyList kont :=
+ match lpol with
+ | ?p2::?lp2 => kont p2 lp2
+ | _ => idtac "polynomial not in the ideal"
+ end in
+ tacsimpl;
+ SplitPolyList ltac:(fun p lp =>
+ set (p21:=p) ;
+ set (lp21:=lp);
+ (*idtac "lp:"; idtac lp; *)
+ nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci =>
+ set (q := PEmul c (PEpow p21 r));
+ let Hg := fresh "Hg" in
+ assert (Hg:check lp21 q (lci,lq) = true);
+ [ (vm_compute;reflexivity) || idtac "invalid nsatz certificate"
+ | let Hg2 := fresh "Hg" in
+ assert (Hg2: ring_eq (interpret3 _ Rd q fv) ring0);
+ [ tacsimpl;
+ apply (@check_correct _ Rd fv lp21 q (lci,lq) Hg);
+ tacsimpl;
+ repeat (split;[assumption|idtac]); exact I
+ | simpl in Hg2; tacsimpl;
+ apply Rdomain_pow with (interpret3 _ Rd c fv) (Nnat.nat_of_N r); auto with domain;
+ tacsimpl; apply domain_axiom_one_zero
+ || (simpl) || idtac "could not prove discrimination result"
+ ]
+ ]
+)
+)
+end end end end .
+
+Ltac nsatz_domainpv pretac radicalmax info lparam lvar tacsimpl rd :=
+ pretac;
+ nsatz_domain_begin tacsimpl; auto with domain;
+ nsatz_domain_generic radicalmax info lparam lvar tacsimpl rd.
+
+Ltac nsatz_domain:=
+ intros;
+ match goal with
+ |- (@ring_eq _ (@domain_ring ?r ?rd) _ _ ) =>
+ nsatz_domainpv ltac:idtac 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd
+ end.
+
+(* Dans R *)
+Require Import Reals.
+Require Import RealField.
+
+Instance Rri : Ring R := {
+ ring0 := 0%R;
+ ring1 := 1%R;
+ ring_plus := Rplus;
+ ring_mult := Rmult;
+ ring_sub := Rminus;
+ ring_opp := Ropp;
+ ring_eq := @eq R;
+ ring_ring := RTheory}.
+
+Lemma Raxiom_one_zero: 1%R <> 0%R.
+discrR.
+Qed.
+
+Instance Rdi : Domain R := {
+ domain_ring := Rri;
+ domain_axiom_product := Rmult_integral;
+ domain_axiom_one_zero := Raxiom_one_zero}.
+
+Hint Resolve ring_setoid ring_plus_comp ring_mult_comp ring_sub_comp ring_opp_comp: domain.
+
+Ltac replaceR:=
+replace 0%R with (@ring0 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace 1%R with (@ring1 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace Rplus with (@ring_plus _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace Rmult with (@ring_mult _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace Rminus with (@ring_sub _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace Ropp with (@ring_opp _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
+replace (@eq R) with (@ring_eq _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity].
+
+Ltac simplR:=
+ simpl; replaceR.
+
+Ltac pretacR:=
+ replaceR;
+ replace Rri with (@domain_ring _ Rdi) in *; [idtac | reflexivity].
+
+Ltac nsatz_domainR:=
+ nsatz_domainpv ltac:pretacR 6%N 1%Z (@Datatypes.nil R) (@Datatypes.nil R)
+ ltac:simplR Rdi;
+ discrR.
+
+
+Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
+nsatz_domainR.
+Qed.
+
+
+(* Dans Z *)
+Instance Zri : Ring Z := {
+ ring0 := 0%Z;
+ ring1 := 1%Z;
+ ring_plus := Zplus;
+ ring_mult := Zmult;
+ ring_sub := Zminus;
+ ring_opp := Zopp;
+ ring_eq := (@eq Z);
+ ring_ring := Zth}.
+
+Lemma Zaxiom_one_zero: 1%Z <> 0%Z.
+discriminate.
+Qed.
+
+Instance Zdi : Domain Z := {
+ domain_ring := Zri;
+ domain_axiom_product := Zmult_integral;
+ domain_axiom_one_zero := Zaxiom_one_zero}.
+
+Ltac replaceZ :=
+replace 0%Z with (@ring0 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace 1%Z with (@ring1 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace Zplus with (@ring_plus _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace Zmult with (@ring_mult _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace Zminus with (@ring_sub _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace Zopp with (@ring_opp _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
+replace (@eq Z) with (@ring_eq _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity].
+
+Ltac simplZ:=
+ simpl; replaceZ.
+
+Ltac pretacZ :=
+replaceZ;
+replace Zri with (@domain_ring _ Zdi) in *; [idtac | reflexivity].
+
+Ltac nsatz_domainZ:=
+nsatz_domainpv ltac:pretacZ 6%N 1%Z (@Datatypes.nil Z) (@Datatypes.nil Z) ltac:simplZ Zdi.
+
+
+(* Dans Q *)
+Require Import QArith.
+
+Instance Qri : Ring Q := {
+ ring0 := 0%Q;
+ ring1 := 1%Q;
+ ring_plus := Qplus;
+ ring_mult := Qmult;
+ ring_sub := Qminus;
+ ring_opp := Qopp;
+ ring_eq := Qeq;
+ ring_ring := Qsrt}.
+
+Lemma Qaxiom_one_zero: not (Qeq 1%Q 0%Q).
+discriminate.
+Qed.
+
+Instance Qdi : Domain Q := {
+ domain_ring := Qri;
+ domain_axiom_product := Qmult_integral;
+ domain_axiom_one_zero := Qaxiom_one_zero}.
+
+Ltac replaceQ :=
+replace 0%Q with (@ring0 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace 1%Q with (@ring1 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace Qplus with (@ring_plus _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace Qmult with (@ring_mult _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace Qminus with (@ring_sub _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace Qopp with (@ring_opp _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
+replace Qeq with (@ring_eq _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity].
+
+Ltac simplQ:=
+ simpl; replaceQ.
+
+Ltac pretacQ :=
+replaceQ;
+replace Qri with (@domain_ring _ Qdi) in *; [idtac | reflexivity].
+
+Ltac nsatz_domainQ:=
+nsatz_domainpv ltac:pretacQ 6%N 1%Z (@Datatypes.nil Q) (@Datatypes.nil Q) ltac:simplQ Qdi.
+
+(* tactique générique *)
+
+Ltac nsatz :=
+ intros;
+ match goal with
+ | |- (@eq R _ _) => nsatz_domainR
+ | |- (@eq Z _ _) => nsatz_domainZ
+ | |- (@Qeq _ _) => nsatz_domainQ
+ | |- _ => nsatz_domain
+ end.
+(*
+Goal forall x y:Q, Qeq x y -> Qeq (x*x-x+1)%Q ((y*y-y)+1+0)%Q.
+nsatz.
+Qed.
+
+Goal forall x y:Z, x = y -> (x*x-x+1)%Z = ((y*y-y)+1+0)%Z.
+nsatz.
+Qed.
+
+Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
+nsatz.
+Qed.
+*)