summaryrefslogtreecommitdiff
path: root/plugins/micromega/mutils.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/mutils.ml')
-rw-r--r--plugins/micromega/mutils.ml402
1 files changed, 402 insertions, 0 deletions
diff --git a/plugins/micromega/mutils.ml b/plugins/micromega/mutils.ml
new file mode 100644
index 00000000..ec06fa58
--- /dev/null
+++ b/plugins/micromega/mutils.ml
@@ -0,0 +1,402 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* *)
+(************************************************************************)
+
+let debug = false
+
+let finally f rst =
+ try
+ let res = f () in
+ rst () ; res
+ with x ->
+ (try rst ()
+ with _ -> raise x
+ ); raise x
+
+let map_option f x =
+ match x with
+ | None -> None
+ | Some v -> Some (f v)
+
+let from_option = function
+ | None -> failwith "from_option"
+ | Some v -> v
+
+let rec try_any l x =
+ match l with
+ | [] -> None
+ | (f,s)::l -> match f x with
+ | None -> try_any l x
+ | x -> x
+
+let iteri f l =
+ let rec xiter i l =
+ match l with
+ | [] -> ()
+ | e::l -> f i e ; xiter (i+1) l in
+ xiter 0 l
+
+let mapi f l =
+ let rec xmap i l =
+ match l with
+ | [] -> []
+ | e::l -> (f i e)::xmap (i+1) l in
+ xmap 0 l
+
+let rec map3 f l1 l2 l3 =
+ match l1 , l2 ,l3 with
+ | [] , [] , [] -> []
+ | e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3)
+ | _ -> raise (Invalid_argument "map3")
+
+
+
+let rec is_sublist l1 l2 =
+ match l1 ,l2 with
+ | [] ,_ -> true
+ | e::l1', [] -> false
+ | e::l1' , e'::l2' ->
+ if e = e' then is_sublist l1' l2'
+ else is_sublist l1 l2'
+
+
+
+let list_try_find f =
+ let rec try_find_f = function
+ | [] -> failwith "try_find"
+ | h::t -> try f h with Failure _ -> try_find_f t
+ in
+ try_find_f
+
+let rec list_fold_right_elements f l =
+ let rec aux = function
+ | [] -> invalid_arg "list_fold_right_elements"
+ | [x] -> x
+ | x::l -> f x (aux l) in
+ aux l
+
+let interval n m =
+ let rec interval_n (l,m) =
+ if n > m then l else interval_n (m::l,pred m)
+ in
+ interval_n ([],m)
+
+open Num
+open Big_int
+
+let ppcm x y =
+ let g = gcd_big_int x y in
+ let x' = div_big_int x g in
+ let y' = div_big_int y g in
+ mult_big_int g (mult_big_int x' y')
+
+
+let denominator = function
+ | Int _ | Big_int _ -> unit_big_int
+ | Ratio r -> Ratio.denominator_ratio r
+
+let numerator = function
+ | Ratio r -> Ratio.numerator_ratio r
+ | Int i -> Big_int.big_int_of_int i
+ | Big_int i -> i
+
+let rec ppcm_list c l =
+ match l with
+ | [] -> c
+ | e::l -> ppcm_list (ppcm c (denominator e)) l
+
+let rec rec_gcd_list c l =
+ match l with
+ | [] -> c
+ | e::l -> rec_gcd_list (gcd_big_int c (numerator e)) l
+
+let rec gcd_list l =
+ let res = rec_gcd_list zero_big_int l in
+ if compare_big_int res zero_big_int = 0
+ then unit_big_int else res
+
+
+
+let rats_to_ints l =
+ let c = ppcm_list unit_big_int l in
+ List.map (fun x -> (div_big_int (mult_big_int (numerator x) c)
+ (denominator x))) l
+
+(* Nasty reordering of lists - useful to trim certificate down *)
+let mapi f l =
+ let rec xmapi i l =
+ match l with
+ | [] -> []
+ | e::l -> (f e i)::(xmapi (i+1) l) in
+ xmapi 0 l
+
+
+let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l)
+
+(* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *)
+let assoc_pos j l = (mapi (fun e i -> e,i+j) l, j + (List.length l))
+
+let assoc_pos_assoc l =
+ let rec xpos i l =
+ match l with
+ | [] -> []
+ | (x,l) ::rst -> let (l',j) = assoc_pos i l in
+ (x,l')::(xpos j rst) in
+ xpos 0 l
+
+let filter_pos f l =
+ (* Could sort ... take care of duplicates... *)
+ let rec xfilter l =
+ match l with
+ | [] -> []
+ | (x,e)::l ->
+ if List.exists (fun ee -> List.mem ee f) (List.map snd e)
+ then (x,e)::(xfilter l)
+ else xfilter l in
+ xfilter l
+
+let select_pos lpos l =
+ let rec xselect i lpos l =
+ match lpos with
+ | [] -> []
+ | j::rpos ->
+ match l with
+ | [] -> failwith "select_pos"
+ | e::l ->
+ if i = j
+ then e:: (xselect (i+1) rpos l)
+ else xselect (i+1) lpos l in
+ xselect 0 lpos l
+
+
+module CoqToCaml =
+struct
+ open Micromega
+
+ let rec nat = function
+ | O -> 0
+ | S n -> (nat n) + 1
+
+
+ let rec positive p =
+ match p with
+ | XH -> 1
+ | XI p -> 1+ 2*(positive p)
+ | XO p -> 2*(positive p)
+
+
+ let n nt =
+ match nt with
+ | N0 -> 0
+ | Npos p -> positive p
+
+
+ let rec index i = (* Swap left-right ? *)
+ match i with
+ | XH -> 1
+ | XI i -> 1+(2*(index i))
+ | XO i -> 2*(index i)
+
+
+ let z x =
+ match x with
+ | Z0 -> 0
+ | Zpos p -> (positive p)
+ | Zneg p -> - (positive p)
+
+ open Big_int
+
+ let rec positive_big_int p =
+ match p with
+ | XH -> unit_big_int
+ | XI p -> add_int_big_int 1 (mult_int_big_int 2 (positive_big_int p))
+ | XO p -> (mult_int_big_int 2 (positive_big_int p))
+
+
+ let z_big_int x =
+ match x with
+ | Z0 -> zero_big_int
+ | Zpos p -> (positive_big_int p)
+ | Zneg p -> minus_big_int (positive_big_int p)
+
+
+ let num x = Num.Big_int (z_big_int x)
+
+ let q_to_num {qnum = x ; qden = y} =
+ Big_int (z_big_int x) // (Big_int (z_big_int (Zpos y)))
+
+end
+
+
+module CamlToCoq =
+struct
+ open Micromega
+
+ let rec nat = function
+ | 0 -> O
+ | n -> S (nat (n-1))
+
+
+ let rec positive n =
+ if n=1 then XH
+ else if n land 1 = 1 then XI (positive (n lsr 1))
+ else XO (positive (n lsr 1))
+
+ let n nt =
+ if nt < 0
+ then assert false
+ else if nt = 0 then N0
+ else Npos (positive nt)
+
+ let rec index n =
+ if n=1 then XH
+ else if n land 1 = 1 then XI (index (n lsr 1))
+ else XO (index (n lsr 1))
+
+
+ let idx n =
+ (*a.k.a path_of_int *)
+ (* returns the list of digits of n in reverse order with
+ initial 1 removed *)
+ let rec digits_of_int n =
+ if n=1 then []
+ else (n mod 2 = 1)::(digits_of_int (n lsr 1))
+ in
+ List.fold_right
+ (fun b c -> (if b then XI c else XO c))
+ (List.rev (digits_of_int n))
+ (XH)
+
+ let z x =
+ match compare x 0 with
+ | 0 -> Z0
+ | 1 -> Zpos (positive x)
+ | _ -> (* this should be -1 *)
+ Zneg (positive (-x))
+
+ open Big_int
+
+ let positive_big_int n =
+ let two = big_int_of_int 2 in
+ let rec _pos n =
+ if eq_big_int n unit_big_int then XH
+ else
+ let (q,m) = quomod_big_int n two in
+ if eq_big_int unit_big_int m
+ then XI (_pos q)
+ else XO (_pos q) in
+ _pos n
+
+ let bigint x =
+ match sign_big_int x with
+ | 0 -> Z0
+ | 1 -> Zpos (positive_big_int x)
+ | _ -> Zneg (positive_big_int (minus_big_int x))
+
+ let q n =
+ {Micromega.qnum = bigint (numerator n) ;
+ Micromega.qden = positive_big_int (denominator n)}
+
+end
+
+module Cmp =
+struct
+
+ let rec compare_lexical l =
+ match l with
+ | [] -> 0 (* Equal *)
+ | f::l ->
+ let cmp = f () in
+ if cmp = 0 then compare_lexical l else cmp
+
+ let rec compare_list cmp l1 l2 =
+ match l1 , l2 with
+ | [] , [] -> 0
+ | [] , _ -> -1
+ | _ , [] -> 1
+ | e1::l1 , e2::l2 ->
+ let c = cmp e1 e2 in
+ if c = 0 then compare_list cmp l1 l2 else c
+
+ let hash_list hash l =
+ let rec _hash_list l h =
+ match l with
+ | [] -> h lxor (Hashtbl.hash [])
+ | e::l -> _hash_list l ((hash e) lxor h) in
+
+ _hash_list l 0
+end
+
+module type Tag =
+sig
+ type t
+
+ val from : int -> t
+ val next : t -> t
+ val pp : out_channel -> t -> unit
+ val compare : t -> t -> int
+end
+
+module Tag : Tag =
+struct
+ type t = int
+ let from i = i
+ let next i = i + 1
+ let pp o i = output_string o (string_of_int i)
+ let compare : int -> int -> int = Pervasives.compare
+end
+
+module TagSet = Set.Make(Tag)
+
+
+let command exe_path args vl =
+ (* creating pipes for stdin, stdout, stderr *)
+ let (stdin_read,stdin_write) = Unix.pipe ()
+ and (stdout_read,stdout_write) = Unix.pipe ()
+ and (stderr_read,stderr_write) = Unix.pipe () in
+
+
+ (* Create the process *)
+ let pid = Unix.create_process exe_path args stdin_read stdout_write stderr_write in
+
+ (* Write the data on the stdin of the created process *)
+ let outch = Unix.out_channel_of_descr stdin_write in
+ output_value outch vl ;
+ flush outch ;
+
+ (* Wait for its completion *)
+ let _pid,status = Unix.waitpid [] pid in
+
+ finally
+ (fun () ->
+ (* Recover the result *)
+ match status with
+ | Unix.WEXITED 0 ->
+ let inch = Unix.in_channel_of_descr stdout_read in
+ begin try Marshal.from_channel inch with x -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string x)) end
+ | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i)
+ | Unix.WSIGNALED i -> failwith (Printf.sprintf "command \"%s\" killed %i" exe_path i)
+ | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i))
+ (fun () ->
+ (* Cleanup *)
+ List.iter (fun x -> try Unix.close x with _ -> ()) [stdin_read; stdin_write; stdout_read ; stdout_write ; stderr_read; stderr_write]
+ )
+
+
+
+
+
+
+(* Local Variables: *)
+(* coding: utf-8 *)
+(* End: *)