summaryrefslogtreecommitdiff
path: root/plugins/micromega/micromega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/micromega.ml')
-rw-r--r--plugins/micromega/micromega.ml1703
1 files changed, 1703 insertions, 0 deletions
diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml
new file mode 100644
index 00000000..c350ed0f
--- /dev/null
+++ b/plugins/micromega/micromega.ml
@@ -0,0 +1,1703 @@
+(** val negb : bool -> bool **)
+
+let negb = function
+ | true -> false
+ | false -> true
+
+type nat =
+ | O
+ | S of nat
+
+type comparison =
+ | Eq
+ | Lt
+ | Gt
+
+(** val compOpp : comparison -> comparison **)
+
+let compOpp = function
+ | Eq -> Eq
+ | Lt -> Gt
+ | Gt -> Lt
+
+(** val plus : nat -> nat -> nat **)
+
+let rec plus n0 m =
+ match n0 with
+ | O -> m
+ | S p -> S (plus p m)
+
+(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+
+let rec app l m =
+ match l with
+ | [] -> m
+ | a :: l1 -> a :: (app l1 m)
+
+(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
+
+let rec nth n0 l default =
+ match n0 with
+ | O -> (match l with
+ | [] -> default
+ | x :: l' -> x)
+ | S m -> (match l with
+ | [] -> default
+ | x :: t0 -> nth m t0 default)
+
+(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
+
+let rec map f = function
+ | [] -> []
+ | a :: t0 -> (f a) :: (map f t0)
+
+type positive =
+ | XI of positive
+ | XO of positive
+ | XH
+
+(** val psucc : positive -> positive **)
+
+let rec psucc = function
+ | XI p -> XO (psucc p)
+ | XO p -> XI p
+ | XH -> XO XH
+
+(** val pplus : positive -> positive -> positive **)
+
+let rec pplus x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XO (pplus_carry p q0)
+ | XO q0 -> XI (pplus p q0)
+ | XH -> XO (psucc p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XI (pplus p q0)
+ | XO q0 -> XO (pplus p q0)
+ | XH -> XI p)
+ | XH ->
+ (match y with
+ | XI q0 -> XO (psucc q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+(** val pplus_carry : positive -> positive -> positive **)
+
+and pplus_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XI (pplus_carry p q0)
+ | XO q0 -> XO (pplus_carry p q0)
+ | XH -> XI (psucc p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XO (pplus_carry p q0)
+ | XO q0 -> XI (pplus p q0)
+ | XH -> XO (psucc p))
+ | XH ->
+ (match y with
+ | XI q0 -> XI (psucc q0)
+ | XO q0 -> XO (psucc q0)
+ | XH -> XI XH)
+
+(** val p_of_succ_nat : nat -> positive **)
+
+let rec p_of_succ_nat = function
+ | O -> XH
+ | S x -> psucc (p_of_succ_nat x)
+
+(** val pdouble_minus_one : positive -> positive **)
+
+let rec pdouble_minus_one = function
+ | XI p -> XI (XO p)
+ | XO p -> XI (pdouble_minus_one p)
+ | XH -> XH
+
+type positive_mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+(** val pdouble_plus_one_mask : positive_mask -> positive_mask **)
+
+let pdouble_plus_one_mask = function
+ | IsNul -> IsPos XH
+ | IsPos p -> IsPos (XI p)
+ | IsNeg -> IsNeg
+
+(** val pdouble_mask : positive_mask -> positive_mask **)
+
+let pdouble_mask = function
+ | IsNul -> IsNul
+ | IsPos p -> IsPos (XO p)
+ | IsNeg -> IsNeg
+
+(** val pdouble_minus_two : positive -> positive_mask **)
+
+let pdouble_minus_two = function
+ | XI p -> IsPos (XO (XO p))
+ | XO p -> IsPos (XO (pdouble_minus_one p))
+ | XH -> IsNul
+
+(** val pminus_mask : positive -> positive -> positive_mask **)
+
+let rec pminus_mask x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> pdouble_mask (pminus_mask p q0)
+ | XO q0 -> pdouble_plus_one_mask (pminus_mask p q0)
+ | XH -> IsPos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
+ | XO q0 -> pdouble_mask (pminus_mask p q0)
+ | XH -> IsPos (pdouble_minus_one p))
+ | XH -> (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+(** val pminus_mask_carry : positive -> positive -> positive_mask **)
+
+and pminus_mask_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
+ | XO q0 -> pdouble_mask (pminus_mask p q0)
+ | XH -> IsPos (pdouble_minus_one p))
+ | XO p ->
+ (match y with
+ | XI q0 -> pdouble_mask (pminus_mask_carry p q0)
+ | XO q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
+ | XH -> pdouble_minus_two p)
+ | XH -> IsNeg
+
+(** val pminus : positive -> positive -> positive **)
+
+let pminus x y =
+ match pminus_mask x y with
+ | IsPos z0 -> z0
+ | _ -> XH
+
+(** val pmult : positive -> positive -> positive **)
+
+let rec pmult x y =
+ match x with
+ | XI p -> pplus y (XO (pmult p y))
+ | XO p -> XO (pmult p y)
+ | XH -> y
+
+(** val pcompare : positive -> positive -> comparison -> comparison **)
+
+let rec pcompare x y r =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> pcompare p q0 r
+ | XO q0 -> pcompare p q0 Gt
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> pcompare p q0 Lt
+ | XO q0 -> pcompare p q0 r
+ | XH -> Gt)
+ | XH -> (match y with
+ | XH -> r
+ | _ -> Lt)
+
+(** val psize : positive -> nat **)
+
+let rec psize = function
+ | XI p2 -> S (psize p2)
+ | XO p2 -> S (psize p2)
+ | XH -> S O
+
+type n =
+ | N0
+ | Npos of positive
+
+(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **)
+
+let rec pow_pos rmul x = function
+ | XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
+ | XO i0 -> let p = pow_pos rmul x i0 in rmul p p
+ | XH -> x
+
+type z =
+ | Z0
+ | Zpos of positive
+ | Zneg of positive
+
+(** val zdouble_plus_one : z -> z **)
+
+let zdouble_plus_one = function
+ | Z0 -> Zpos XH
+ | Zpos p -> Zpos (XI p)
+ | Zneg p -> Zneg (pdouble_minus_one p)
+
+(** val zdouble_minus_one : z -> z **)
+
+let zdouble_minus_one = function
+ | Z0 -> Zneg XH
+ | Zpos p -> Zpos (pdouble_minus_one p)
+ | Zneg p -> Zneg (XI p)
+
+(** val zdouble : z -> z **)
+
+let zdouble = function
+ | Z0 -> Z0
+ | Zpos p -> Zpos (XO p)
+ | Zneg p -> Zneg (XO p)
+
+(** val zPminus : positive -> positive -> z **)
+
+let rec zPminus x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> zdouble (zPminus p q0)
+ | XO q0 -> zdouble_plus_one (zPminus p q0)
+ | XH -> Zpos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> zdouble_minus_one (zPminus p q0)
+ | XO q0 -> zdouble (zPminus p q0)
+ | XH -> Zpos (pdouble_minus_one p))
+ | XH ->
+ (match y with
+ | XI q0 -> Zneg (XO q0)
+ | XO q0 -> Zneg (pdouble_minus_one q0)
+ | XH -> Z0)
+
+(** val zplus : z -> z -> z **)
+
+let zplus x y =
+ match x with
+ | Z0 -> y
+ | Zpos x' ->
+ (match y with
+ | Z0 -> Zpos x'
+ | Zpos y' -> Zpos (pplus x' y')
+ | Zneg y' ->
+ (match pcompare x' y' Eq with
+ | Eq -> Z0
+ | Lt -> Zneg (pminus y' x')
+ | Gt -> Zpos (pminus x' y')))
+ | Zneg x' ->
+ (match y with
+ | Z0 -> Zneg x'
+ | Zpos y' ->
+ (match pcompare x' y' Eq with
+ | Eq -> Z0
+ | Lt -> Zpos (pminus y' x')
+ | Gt -> Zneg (pminus x' y'))
+ | Zneg y' -> Zneg (pplus x' y'))
+
+(** val zopp : z -> z **)
+
+let zopp = function
+ | Z0 -> Z0
+ | Zpos x0 -> Zneg x0
+ | Zneg x0 -> Zpos x0
+
+(** val zminus : z -> z -> z **)
+
+let zminus m n0 =
+ zplus m (zopp n0)
+
+(** val zmult : z -> z -> z **)
+
+let zmult x y =
+ match x with
+ | Z0 -> Z0
+ | Zpos x' ->
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zpos (pmult x' y')
+ | Zneg y' -> Zneg (pmult x' y'))
+ | Zneg x' ->
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zneg (pmult x' y')
+ | Zneg y' -> Zpos (pmult x' y'))
+
+(** val zcompare : z -> z -> comparison **)
+
+let zcompare x y =
+ match x with
+ | Z0 -> (match y with
+ | Z0 -> Eq
+ | Zpos y' -> Lt
+ | Zneg y' -> Gt)
+ | Zpos x' -> (match y with
+ | Zpos y' -> pcompare x' y' Eq
+ | _ -> Gt)
+ | Zneg x' ->
+ (match y with
+ | Zneg y' -> compOpp (pcompare x' y' Eq)
+ | _ -> Lt)
+
+(** val zabs : z -> z **)
+
+let zabs = function
+ | Z0 -> Z0
+ | Zpos p -> Zpos p
+ | Zneg p -> Zpos p
+
+(** val zmax : z -> z -> z **)
+
+let zmax m n0 =
+ match zcompare m n0 with
+ | Lt -> n0
+ | _ -> m
+
+(** val zle_bool : z -> z -> bool **)
+
+let zle_bool x y =
+ match zcompare x y with
+ | Gt -> false
+ | _ -> true
+
+(** val zge_bool : z -> z -> bool **)
+
+let zge_bool x y =
+ match zcompare x y with
+ | Lt -> false
+ | _ -> true
+
+(** val zgt_bool : z -> z -> bool **)
+
+let zgt_bool x y =
+ match zcompare x y with
+ | Gt -> true
+ | _ -> false
+
+(** val zeq_bool : z -> z -> bool **)
+
+let zeq_bool x y =
+ match zcompare x y with
+ | Eq -> true
+ | _ -> false
+
+(** val n_of_nat : nat -> n **)
+
+let n_of_nat = function
+ | O -> N0
+ | S n' -> Npos (p_of_succ_nat n')
+
+(** val zdiv_eucl_POS : positive -> z -> z * z **)
+
+let rec zdiv_eucl_POS a b =
+ match a with
+ | XI a' ->
+ let q0 , r = zdiv_eucl_POS a' b in
+ let r' = zplus (zmult (Zpos (XO XH)) r) (Zpos XH) in
+ if zgt_bool b r'
+ then (zmult (Zpos (XO XH)) q0) , r'
+ else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
+ | XO a' ->
+ let q0 , r = zdiv_eucl_POS a' b in
+ let r' = zmult (Zpos (XO XH)) r in
+ if zgt_bool b r'
+ then (zmult (Zpos (XO XH)) q0) , r'
+ else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
+ | XH ->
+ if zge_bool b (Zpos (XO XH)) then Z0 , (Zpos XH) else (Zpos XH) , Z0
+
+(** val zdiv_eucl : z -> z -> z * z **)
+
+let zdiv_eucl a b =
+ match a with
+ | Z0 -> Z0 , Z0
+ | Zpos a' ->
+ (match b with
+ | Z0 -> Z0 , Z0
+ | Zpos p -> zdiv_eucl_POS a' b
+ | Zneg b' ->
+ let q0 , r = zdiv_eucl_POS a' (Zpos b') in
+ (match r with
+ | Z0 -> (zopp q0) , Z0
+ | _ -> (zopp (zplus q0 (Zpos XH))) , (zplus b r)))
+ | Zneg a' ->
+ (match b with
+ | Z0 -> Z0 , Z0
+ | Zpos p ->
+ let q0 , r = zdiv_eucl_POS a' b in
+ (match r with
+ | Z0 -> (zopp q0) , Z0
+ | _ -> (zopp (zplus q0 (Zpos XH))) , (zminus b r))
+ | Zneg b' ->
+ let q0 , r = zdiv_eucl_POS a' (Zpos b') in q0 , (zopp r))
+
+(** val zdiv : z -> z -> z **)
+
+let zdiv a b =
+ let q0 , x = zdiv_eucl a b in q0
+
+type 'c pol =
+ | Pc of 'c
+ | Pinj of positive * 'c pol
+ | PX of 'c pol * positive * 'c pol
+
+(** val p0 : 'a1 -> 'a1 pol **)
+
+let p0 cO =
+ Pc cO
+
+(** val p1 : 'a1 -> 'a1 pol **)
+
+let p1 cI =
+ Pc cI
+
+(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **)
+
+let rec peq ceqb p p' =
+ match p with
+ | Pc c -> (match p' with
+ | Pc c' -> ceqb c c'
+ | _ -> false)
+ | Pinj (j, q0) ->
+ (match p' with
+ | Pinj (j', q') ->
+ (match pcompare j j' Eq with
+ | Eq -> peq ceqb q0 q'
+ | _ -> false)
+ | _ -> false)
+ | PX (p2, i, q0) ->
+ (match p' with
+ | PX (p'0, i', q') ->
+ (match pcompare i i' Eq with
+ | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
+ | _ -> false)
+ | _ -> false)
+
+(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPinj_pred j p =
+ match j with
+ | XI j0 -> Pinj ((XO j0), p)
+ | XO j0 -> Pinj ((pdouble_minus_one j0), p)
+ | XH -> p
+
+(** val mkPX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPX cO ceqb p i q0 =
+ match p with
+ | Pc c ->
+ if ceqb c cO
+ then (match q0 with
+ | Pc c0 -> q0
+ | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
+ | PX (p2, p3, p4) -> Pinj (XH, q0))
+ else PX (p, i, q0)
+ | Pinj (p2, p3) -> PX (p, i, q0)
+ | PX (p', i', q') ->
+ if peq ceqb q' (p0 cO)
+ then PX (p', (pplus i' i), q0)
+ else PX (p, i, q0)
+
+(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)
+
+let mkXi cO cI i =
+ PX ((p1 cI), i, (p0 cO))
+
+(** val mkX : 'a1 -> 'a1 -> 'a1 pol **)
+
+let mkX cO cI =
+ mkXi cO cI XH
+
+(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)
+
+let rec popp copp = function
+ | Pc c -> Pc (copp c)
+ | Pinj (j, q0) -> Pinj (j, (popp copp q0))
+ | PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
+
+(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
+
+let rec paddC cadd p c =
+ match p with
+ | Pc c1 -> Pc (cadd c1 c)
+ | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
+
+(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
+
+let rec psubC csub p c =
+ match p with
+ | Pc c1 -> Pc (csub c1 c)
+ | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
+
+(** val paddI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
+ positive -> 'a1 pol -> 'a1 pol **)
+
+let rec paddI cadd pop q0 j = function
+ | Pc c ->
+ let p2 = paddC cadd q0 c in
+ (match p2 with
+ | Pc c0 -> p2
+ | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Pinj (j', q') ->
+ (match zPminus j' j with
+ | Z0 ->
+ let p2 = pop q' q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zpos k ->
+ let p2 = pop (Pinj (k, q')) q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zneg k ->
+ let p2 = paddI cadd pop q0 k q' in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j', p2)))
+ | PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i, (paddI cadd pop q0 (pdouble_minus_one j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
+
+(** val psubI :
+ ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
+ 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec psubI cadd copp pop q0 j = function
+ | Pc c ->
+ let p2 = paddC cadd (popp copp q0) c in
+ (match p2 with
+ | Pc c0 -> p2
+ | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Pinj (j', q') ->
+ (match zPminus j' j with
+ | Z0 ->
+ let p2 = pop q' q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zpos k ->
+ let p2 = pop (Pinj (k, q')) q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zneg k ->
+ let p2 = psubI cadd copp pop q0 k q' in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j', p2)))
+ | PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i,
+ (psubI cadd copp pop q0 (pdouble_minus_one j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
+
+(** val paddX :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
+ -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec paddX cO ceqb pop p' i' p = match p with
+ | Pc c -> PX (p', i', p)
+ | Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX (p', i', (Pinj ((pdouble_minus_one j0), q')))
+ | XH -> PX (p', i', q'))
+ | PX (p2, i, q') ->
+ (match zPminus i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
+
+(** val psubX :
+ 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
+ pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec psubX cO copp ceqb pop p' i' p = match p with
+ | Pc c -> PX ((popp copp p'), i', p)
+ | Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX ((popp copp p'), i', (Pinj (
+ (pdouble_minus_one j0), q')))
+ | XH -> PX ((popp copp p'), i', q'))
+ | PX (p2, i, q') ->
+ (match zPminus i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
+
+(** val padd :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
+ -> 'a1 pol **)
+
+let rec padd cO cadd ceqb p = function
+ | Pc c' -> paddC cadd p c'
+ | Pinj (j', q') -> paddI cadd (fun x x0 -> padd cO cadd ceqb x x0) q' j' p
+ | PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX (p'0, i', (paddC cadd q' c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 -> PX (p'0, i',
+ (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 -> PX (p'0, i',
+ (padd cO cadd ceqb (Pinj ((pdouble_minus_one j0), q0))
+ q'))
+ | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match zPminus i i' with
+ | Z0 ->
+ mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i
+ (padd cO cadd ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb
+ (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
+ (padd cO cadd ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb
+ (paddX cO ceqb (fun x x0 -> padd cO cadd ceqb x x0) p'0
+ k p2) i (padd cO cadd ceqb q0 q')))
+
+(** val psub :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let rec psub cO cadd csub copp ceqb p = function
+ | Pc c' -> psubC csub p c'
+ | Pinj (j', q') ->
+ psubI cadd copp (fun x x0 -> psub cO cadd csub copp ceqb x x0) q' j' p
+ | PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 -> PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 -> PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj
+ ((pdouble_minus_one j0), q0)) q'))
+ | XH -> PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match zPminus i i' with
+ | Z0 ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
+ (psub cO cadd csub copp ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb
+ (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
+ i' (psub cO cadd csub copp ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb
+ (psubX cO copp ceqb (fun x x0 ->
+ psub cO cadd csub copp ceqb x x0) p'0 k p2) i
+ (psub cO cadd csub copp ceqb q0 q')))
+
+(** val pmulC_aux :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
+ 'a1 pol **)
+
+let rec pmulC_aux cO cmul ceqb p c =
+ match p with
+ | Pc c' -> Pc (cmul c' c)
+ | Pinj (j, q0) ->
+ let p2 = pmulC_aux cO cmul ceqb q0 c in
+ (match p2 with
+ | Pc c0 -> p2
+ | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | PX (p2, i, q0) ->
+ mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i
+ (pmulC_aux cO cmul ceqb q0 c)
+
+(** val pmulC :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
+ 'a1 -> 'a1 pol **)
+
+let pmulC cO cI cmul ceqb p c =
+ if ceqb c cO
+ then p0 cO
+ else if ceqb c cI then p else pmulC_aux cO cmul ceqb p c
+
+(** val pmulI :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
+ 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
+
+let rec pmulI cO cI cmul ceqb pmul0 q0 j = function
+ | Pc c ->
+ let p2 = pmulC cO cI cmul ceqb q0 c in
+ (match p2 with
+ | Pc c0 -> p2
+ | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Pinj (j', q') ->
+ (match zPminus j' j with
+ | Z0 ->
+ let p2 = pmul0 q' q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zpos k ->
+ let p2 = pmul0 (Pinj (k, q')) q0 in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j, p2))
+ | Zneg k ->
+ let p2 = pmulI cO cI cmul ceqb pmul0 q0 k q' in
+ (match p2 with
+ | Pc c -> p2
+ | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
+ | PX (p3, p4, p5) -> Pinj (j', p2)))
+ | PX (p', i', q') ->
+ (match j with
+ | XI j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
+ | XO j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (pdouble_minus_one j') q')
+ | XH ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i'
+ (pmul0 q' q0))
+
+(** val pmul :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
+ | Pc c -> pmulC cO cI cmul ceqb p c
+ | Pinj (j', q') ->
+ pmulI cO cI cmul ceqb (fun x x0 -> pmul cO cI cadd cmul ceqb x x0) q'
+ j' p
+ | PX (p', i', q') ->
+ (match p with
+ | Pc c -> pmulC cO cI cmul ceqb p'' c
+ | Pinj (j, q0) ->
+ mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i'
+ (match j with
+ | XI j0 ->
+ pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
+ | XO j0 ->
+ pmul cO cI cadd cmul ceqb (Pinj
+ ((pdouble_minus_one j0), q0)) q'
+ | XH -> pmul cO cI cadd cmul ceqb q0 q')
+ | PX (p2, i, q0) ->
+ padd cO cadd ceqb
+ (mkPX cO ceqb
+ (padd cO cadd ceqb
+ (mkPX cO ceqb (pmul cO cI cadd cmul ceqb p2 p') i (p0 cO))
+ (pmul cO cI cadd cmul ceqb
+ (match q0 with
+ | Pc c -> q0
+ | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
+ | PX (p3, p4, p5) -> Pinj (XH, q0)) p')) i'
+ (p0 cO))
+ (mkPX cO ceqb
+ (pmulI cO cI cmul ceqb (fun x x0 ->
+ pmul cO cI cadd cmul ceqb x x0) q' XH p2) i
+ (pmul cO cI cadd cmul ceqb q0 q')))
+
+(** val psquare :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 pol -> 'a1 pol **)
+
+let rec psquare cO cI cadd cmul ceqb = function
+ | Pc c -> Pc (cmul c c)
+ | Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
+ | PX (p2, i, q0) ->
+ mkPX cO ceqb
+ (padd cO cadd ceqb
+ (mkPX cO ceqb (psquare cO cI cadd cmul ceqb p2) i (p0 cO))
+ (pmul cO cI cadd cmul ceqb p2
+ (let p3 = pmulC cO cI cmul ceqb q0 (cadd cI cI) in
+ match p3 with
+ | Pc c -> p3
+ | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
+ | PX (p4, p5, p6) -> Pinj (XH, p3)))) i
+ (psquare cO cI cadd cmul ceqb q0)
+
+type 'c pExpr =
+ | PEc of 'c
+ | PEX of positive
+ | PEadd of 'c pExpr * 'c pExpr
+ | PEsub of 'c pExpr * 'c pExpr
+ | PEmul of 'c pExpr * 'c pExpr
+ | PEopp of 'c pExpr
+ | PEpow of 'c pExpr * n
+
+(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)
+
+let mk_X cO cI j =
+ mkPinj_pred j (mkX cO cI)
+
+(** val ppow_pos :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1
+ pol **)
+
+let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
+ | XI p3 ->
+ subst_l
+ (pmul cO cI cadd cmul ceqb
+ (ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
+ | XO p3 ->
+ ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
+ | XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
+
+(** val ppow_N :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)
+
+let ppow_N cO cI cadd cmul ceqb subst_l p = function
+ | N0 -> p1 cI
+ | Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
+
+(** val norm_aux :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
+
+let rec norm_aux cO cI cadd cmul csub copp ceqb = function
+ | PEc c -> Pc c
+ | PEX j -> mk_X cO cI j
+ | PEadd (pe1, pe2) ->
+ (match pe1 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ (match pe2 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ padd cO cadd ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
+ | PEsub (pe1, pe2) ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ | PEmul (pe1, pe2) ->
+ pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ | PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ | PEpow (pe1, n0) ->
+ ppow_N cO cI cadd cmul ceqb (fun p -> p)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
+
+type 'a bFormula =
+ | TT
+ | FF
+ | X
+ | A of 'a
+ | Cj of 'a bFormula * 'a bFormula
+ | D of 'a bFormula * 'a bFormula
+ | N of 'a bFormula
+ | I of 'a bFormula * 'a bFormula
+
+type 'term' clause = 'term' list
+
+type 'term' cnf = 'term' clause list
+
+(** val tt : 'a1 cnf **)
+
+let tt =
+ []
+
+(** val ff : 'a1 cnf **)
+
+let ff =
+ [] :: []
+
+(** val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf **)
+
+let or_clause_cnf t0 f =
+ map (fun x -> app t0 x) f
+
+(** val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
+
+let rec or_cnf f f' =
+ match f with
+ | [] -> tt
+ | e :: rst -> app (or_cnf rst f') (or_clause_cnf e f')
+
+(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
+
+let and_cnf f1 f2 =
+ app f1 f2
+
+(** val xcnf :
+ ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
+
+let rec xcnf normalise0 negate0 pol0 = function
+ | TT -> if pol0 then tt else ff
+ | FF -> if pol0 then ff else tt
+ | X -> ff
+ | A x -> if pol0 then normalise0 x else negate0 x
+ | Cj (e1, e2) ->
+ if pol0
+ then and_cnf (xcnf normalise0 negate0 pol0 e1)
+ (xcnf normalise0 negate0 pol0 e2)
+ else or_cnf (xcnf normalise0 negate0 pol0 e1)
+ (xcnf normalise0 negate0 pol0 e2)
+ | D (e1, e2) ->
+ if pol0
+ then or_cnf (xcnf normalise0 negate0 pol0 e1)
+ (xcnf normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf normalise0 negate0 pol0 e1)
+ (xcnf normalise0 negate0 pol0 e2)
+ | N e -> xcnf normalise0 negate0 (negb pol0) e
+ | I (e1, e2) ->
+ if pol0
+ then or_cnf (xcnf normalise0 negate0 (negb pol0) e1)
+ (xcnf normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf normalise0 negate0 (negb pol0) e1)
+ (xcnf normalise0 negate0 pol0 e2)
+
+(** val cnf_checker :
+ ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **)
+
+let rec cnf_checker checker f l =
+ match f with
+ | [] -> true
+ | e :: f0 ->
+ (match l with
+ | [] -> false
+ | c :: l0 ->
+ if checker e c then cnf_checker checker f0 l0 else false)
+
+(** val tauto_checker :
+ ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1
+ bFormula -> 'a3 list -> bool **)
+
+let tauto_checker normalise0 negate0 checker f w =
+ cnf_checker checker (xcnf normalise0 negate0 true f) w
+
+type 'c polC = 'c pol
+
+type op1 =
+ | Equal
+ | NonEqual
+ | Strict
+ | NonStrict
+
+type 'c nFormula = 'c polC * op1
+
+(** val opAdd : op1 -> op1 -> op1 option **)
+
+let opAdd o o' =
+ match o with
+ | Equal -> Some o'
+ | NonEqual -> (match o' with
+ | Equal -> Some NonEqual
+ | _ -> None)
+ | Strict -> (match o' with
+ | NonEqual -> None
+ | _ -> Some Strict)
+ | NonStrict ->
+ (match o' with
+ | NonEqual -> None
+ | Strict -> Some Strict
+ | _ -> Some NonStrict)
+
+type 'c psatz =
+ | PsatzIn of nat
+ | PsatzSquare of 'c polC
+ | PsatzMulC of 'c polC * 'c psatz
+ | PsatzMulE of 'c psatz * 'c psatz
+ | PsatzAdd of 'c psatz * 'c psatz
+ | PsatzC of 'c
+ | PsatzZ
+
+(** val pexpr_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)
+
+let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
+ | ef , o ->
+ (match o with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef) , Equal)
+ | _ -> None)
+
+(** val nformula_times_nformula :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)
+
+let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
+ let e1 , o1 = f1 in
+ let e2 , o2 = f2 in
+ (match o1 with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
+ | NonEqual ->
+ (match o2 with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
+ | NonEqual -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) ,
+ NonEqual)
+ | _ -> None)
+ | Strict ->
+ (match o2 with
+ | NonEqual -> None
+ | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , o2))
+ | NonStrict ->
+ (match o2 with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
+ | NonEqual -> None
+ | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , NonStrict)))
+
+(** val nformula_plus_nformula :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
+ nFormula -> 'a1 nFormula option **)
+
+let nformula_plus_nformula cO cplus ceqb f1 f2 =
+ let e1 , o1 = f1 in
+ let e2 , o2 = f2 in
+ (match opAdd o1 o2 with
+ | Some x -> Some ((padd cO cplus ceqb e1 e2) , x)
+ | None -> None)
+
+(** val eval_Psatz :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
+ nFormula option **)
+
+let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
+ | PsatzIn n0 -> Some (nth n0 l ((Pc cO) , Equal))
+ | PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0) , NonStrict)
+ | PsatzMulC (re, e0) ->
+ (match eval_Psatz cO cI cplus ctimes ceqb cleb l e0 with
+ | Some x -> pexpr_times_nformula cO cI cplus ctimes ceqb re x
+ | None -> None)
+ | PsatzMulE (f1, f2) ->
+ (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
+ | Some x ->
+ (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
+ | Some x' ->
+ nformula_times_nformula cO cI cplus ctimes ceqb x x'
+ | None -> None)
+ | None -> None)
+ | PsatzAdd (f1, f2) ->
+ (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
+ | Some x ->
+ (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
+ | Some x' -> nformula_plus_nformula cO cplus ceqb x x'
+ | None -> None)
+ | None -> None)
+ | PsatzC c ->
+ if (&&) (cleb cO c) (negb (ceqb cO c))
+ then Some ((Pc c) , Strict)
+ else None
+ | PsatzZ -> Some ((Pc cO) , Equal)
+
+(** val check_inconsistent :
+ 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
+ bool **)
+
+let check_inconsistent cO ceqb cleb = function
+ | e , op ->
+ (match e with
+ | Pc c ->
+ (match op with
+ | Equal -> negb (ceqb c cO)
+ | NonEqual -> ceqb c cO
+ | Strict -> cleb c cO
+ | NonStrict -> (&&) (cleb c cO) (negb (ceqb c cO)))
+ | _ -> false)
+
+(** val check_normalised_formulas :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz ->
+ bool **)
+
+let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm =
+ match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with
+ | Some f -> check_inconsistent cO ceqb cleb f
+ | None -> false
+
+type op2 =
+ | OpEq
+ | OpNEq
+ | OpLe
+ | OpGe
+ | OpLt
+ | OpGt
+
+type 'c formula = { flhs : 'c pExpr; fop : op2; frhs : 'c pExpr }
+
+(** val flhs : 'a1 formula -> 'a1 pExpr **)
+
+let flhs x = x.flhs
+
+(** val fop : 'a1 formula -> op2 **)
+
+let fop x = x.fop
+
+(** val frhs : 'a1 formula -> 'a1 pExpr **)
+
+let frhs x = x.frhs
+
+(** val norm :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
+
+let norm cO cI cplus ctimes cminus copp ceqb pe =
+ norm_aux cO cI cplus ctimes cminus copp ceqb pe
+
+(** val psub0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
+ -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
+
+let psub0 cO cplus cminus copp ceqb p p' =
+ psub cO cplus cminus copp ceqb p p'
+
+(** val padd0 :
+ 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
+ -> 'a1 pol **)
+
+let padd0 cO cplus ceqb p p' =
+ padd cO cplus ceqb p p'
+
+(** val xnormalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula list **)
+
+let xnormalise cO cI cplus ctimes cminus copp ceqb t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
+ let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
+ (match o with
+ | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
+ (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
+ | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: []
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
+ []
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
+ [])
+
+(** val cnf_normalise :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula cnf **)
+
+let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 =
+ map (fun x -> x :: []) (xnormalise cO cI cplus ctimes cminus copp ceqb t0)
+
+(** val xnegate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula list **)
+
+let xnegate cO cI cplus ctimes cminus copp ceqb t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
+ let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
+ (match o with
+ | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
+ | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
+ (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
+ []
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
+ []
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: [])
+
+(** val cnf_negate :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
+ -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
+ nFormula cnf **)
+
+let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 =
+ map (fun x -> x :: []) (xnegate cO cI cplus ctimes cminus copp ceqb t0)
+
+(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **)
+
+let rec xdenorm jmp = function
+ | Pc c -> PEc c
+ | Pinj (j, p2) -> xdenorm (pplus j jmp) p2
+ | PX (p2, j, q0) -> PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp),
+ (Npos j))))), (xdenorm (psucc jmp) q0))
+
+(** val denorm : 'a1 pol -> 'a1 pExpr **)
+
+let denorm p =
+ xdenorm XH p
+
+(** val simpl_cone :
+ 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
+ 'a1 psatz **)
+
+let simpl_cone cO cI ctimes ceqb e = match e with
+ | PsatzSquare t0 ->
+ (match t0 with
+ | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
+ | _ -> PsatzSquare t0)
+ | PsatzMulE (t1, t2) ->
+ (match t1 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC
+ (ctimes c p2)), x)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match t2 with
+ | PsatzC c ->
+ if ceqb cI c
+ then t1
+ else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e)))
+ | PsatzC c ->
+ (match t2 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 -> PsatzMulE ((PsatzC
+ (ctimes c p2)), x)
+ | _ ->
+ if ceqb cI c
+ then t2
+ else PsatzMulE (t1, t2)))
+ | PsatzAdd (y, z0) -> PsatzAdd ((PsatzMulE ((PsatzC c), y)),
+ (PsatzMulE ((PsatzC c), z0)))
+ | PsatzC c0 -> PsatzC (ctimes c c0)
+ | PsatzZ -> PsatzZ
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+ | PsatzZ -> PsatzZ
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e))
+ | PsatzAdd (t1, t2) ->
+ (match t1 with
+ | PsatzZ -> t2
+ | _ -> (match t2 with
+ | PsatzZ -> t1
+ | _ -> PsatzAdd (t1, t2)))
+ | _ -> e
+
+type q = { qnum : z; qden : positive }
+
+(** val qnum : q -> z **)
+
+let qnum x = x.qnum
+
+(** val qden : q -> positive **)
+
+let qden x = x.qden
+
+(** val qeq_bool : q -> q -> bool **)
+
+let qeq_bool x y =
+ zeq_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+
+(** val qle_bool : q -> q -> bool **)
+
+let qle_bool x y =
+ zle_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+
+(** val qplus : q -> q -> q **)
+
+let qplus x y =
+ { qnum = (zplus (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden)));
+ qden = (pmult x.qden y.qden) }
+
+(** val qmult : q -> q -> q **)
+
+let qmult x y =
+ { qnum = (zmult x.qnum y.qnum); qden = (pmult x.qden y.qden) }
+
+(** val qopp : q -> q **)
+
+let qopp x =
+ { qnum = (zopp x.qnum); qden = x.qden }
+
+(** val qminus : q -> q -> q **)
+
+let qminus x y =
+ qplus x (qopp y)
+
+(** val qinv : q -> q **)
+
+let qinv x =
+ match x.qnum with
+ | Z0 -> { qnum = Z0; qden = XH }
+ | Zpos p -> { qnum = (Zpos x.qden); qden = p }
+ | Zneg p -> { qnum = (Zneg x.qden); qden = p }
+
+(** val qpower_positive : q -> positive -> q **)
+
+let qpower_positive q0 p =
+ pow_pos qmult q0 p
+
+(** val qpower : q -> z -> q **)
+
+let qpower q0 = function
+ | Z0 -> { qnum = (Zpos XH); qden = XH }
+ | Zpos p -> qpower_positive q0 p
+ | Zneg p -> qinv (qpower_positive q0 p)
+
+(** val pgcdn : nat -> positive -> positive -> positive **)
+
+let rec pgcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match pcompare a' b' Eq with
+ | Eq -> a
+ | Lt -> pgcdn n1 (pminus b' a') a
+ | Gt -> pgcdn n1 (pminus a' b') b)
+ | XO b0 -> pgcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI p -> pgcdn n1 a0 b
+ | XO b0 -> XO (pgcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+(** val pgcd : positive -> positive -> positive **)
+
+let pgcd a b =
+ pgcdn (plus (psize a) (psize b)) a b
+
+(** val zgcd : z -> z -> z **)
+
+let zgcd a b =
+ match a with
+ | Z0 -> zabs b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> zabs a
+ | Zpos b0 -> Zpos (pgcd a0 b0)
+ | Zneg b0 -> Zpos (pgcd a0 b0))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> zabs a
+ | Zpos b0 -> Zpos (pgcd a0 b0)
+ | Zneg b0 -> Zpos (pgcd a0 b0))
+
+type 'a t =
+ | Empty
+ | Leaf of 'a
+ | Node of 'a t * 'a * 'a t
+
+(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **)
+
+let rec find default vm p =
+ match vm with
+ | Empty -> default
+ | Leaf i -> i
+ | Node (l, e, r) ->
+ (match p with
+ | XI p2 -> find default r p2
+ | XO p2 -> find default l p2
+ | XH -> e)
+
+type zWitness = z psatz
+
+(** val zWeakChecker : z nFormula list -> z psatz -> bool **)
+
+let zWeakChecker x x0 =
+ check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+
+(** val psub1 : z pol -> z pol -> z pol **)
+
+let psub1 p p' =
+ psub0 Z0 zplus zminus zopp zeq_bool p p'
+
+(** val padd1 : z pol -> z pol -> z pol **)
+
+let padd1 p p' =
+ padd0 Z0 zplus zeq_bool p p'
+
+(** val norm0 : z pExpr -> z pol **)
+
+let norm0 pe =
+ norm Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool pe
+
+(** val xnormalise0 : z formula -> z nFormula list **)
+
+let xnormalise0 t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm0 lhs in
+ let rhs0 = norm0 rhs in
+ (match o with
+ | OpEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
+ (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
+ | OpNEq -> ((psub1 lhs0 rhs0) , Equal) :: []
+ | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: []
+ | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
+ | OpLt -> ((psub1 lhs0 rhs0) , NonStrict) :: []
+ | OpGt -> ((psub1 rhs0 lhs0) , NonStrict) :: [])
+
+(** val normalise : z formula -> z nFormula cnf **)
+
+let normalise t0 =
+ map (fun x -> x :: []) (xnormalise0 t0)
+
+(** val xnegate0 : z formula -> z nFormula list **)
+
+let xnegate0 t0 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+ let lhs0 = norm0 lhs in
+ let rhs0 = norm0 rhs in
+ (match o with
+ | OpEq -> ((psub1 lhs0 rhs0) , Equal) :: []
+ | OpNEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
+ (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
+ | OpLe -> ((psub1 rhs0 lhs0) , NonStrict) :: []
+ | OpGe -> ((psub1 lhs0 rhs0) , NonStrict) :: []
+ | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
+ | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
+
+(** val negate : z formula -> z nFormula cnf **)
+
+let negate t0 =
+ map (fun x -> x :: []) (xnegate0 t0)
+
+(** val ceiling : z -> z -> z **)
+
+let ceiling a b =
+ let q0 , r = zdiv_eucl a b in
+ (match r with
+ | Z0 -> q0
+ | _ -> zplus q0 (Zpos XH))
+
+type zArithProof =
+ | DoneProof
+ | RatProof of zWitness * zArithProof
+ | CutProof of zWitness * zArithProof
+ | EnumProof of zWitness * zWitness * zArithProof list
+
+(** val zgcdM : z -> z -> z **)
+
+let zgcdM x y =
+ zmax (zgcd x y) (Zpos XH)
+
+(** val zgcd_pol : z polC -> z * z **)
+
+let rec zgcd_pol = function
+ | Pc c -> Z0 , c
+ | Pinj (p2, p3) -> zgcd_pol p3
+ | PX (p2, p3, q0) ->
+ let g1 , c1 = zgcd_pol p2 in
+ let g2 , c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2) , c2
+
+(** val zdiv_pol : z polC -> z -> z polC **)
+
+let rec zdiv_pol p x =
+ match p with
+ | Pc c -> Pc (zdiv c x)
+ | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
+ | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
+
+(** val makeCuttingPlane : z polC -> z polC * z **)
+
+let makeCuttingPlane p =
+ let g , c = zgcd_pol p in
+ if zgt_bool g Z0
+ then (zdiv_pol (psubC zminus p c) g) , (zopp (ceiling (zopp c) g))
+ else p , Z0
+
+(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
+
+let genCuttingPlane = function
+ | e , op ->
+ (match op with
+ | Equal ->
+ let g , c = zgcd_pol e in
+ if (&&) (zgt_bool g Z0)
+ ((&&) (zgt_bool c Z0) (negb (zeq_bool (zgcd g c) g)))
+ then None
+ else Some ((e , Z0) , op)
+ | NonEqual -> Some ((e , Z0) , op)
+ | Strict ->
+ let p , c = makeCuttingPlane (psubC zminus e (Zpos XH)) in
+ Some ((p , c) , NonStrict)
+ | NonStrict ->
+ let p , c = makeCuttingPlane e in Some ((p , c) , NonStrict))
+
+(** val nformula_of_cutting_plane :
+ ((z polC * z) * op1) -> z nFormula **)
+
+let nformula_of_cutting_plane = function
+ | e_z , o -> let e , z0 = e_z in (padd1 e (Pc z0)) , o
+
+(** val is_pol_Z0 : z polC -> bool **)
+
+let is_pol_Z0 = function
+ | Pc z0 -> (match z0 with
+ | Z0 -> true
+ | _ -> false)
+ | _ -> false
+
+(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)
+
+let eval_Psatz0 x x0 =
+ eval_Psatz Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+
+(** val check_inconsistent0 : z nFormula -> bool **)
+
+let check_inconsistent0 f =
+ check_inconsistent Z0 zeq_bool zle_bool f
+
+(** val zChecker : z nFormula list -> zArithProof -> bool **)
+
+let rec zChecker l = function
+ | DoneProof -> false
+ | RatProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f ->
+ if check_inconsistent0 f then true else zChecker (f :: l) pf0
+ | None -> false)
+ | CutProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f ->
+ (match genCuttingPlane f with
+ | Some cp ->
+ zChecker ((nformula_of_cutting_plane cp) :: l) pf0
+ | None -> true)
+ | None -> false)
+ | EnumProof (w1, w2, pf0) ->
+ (match eval_Psatz0 l w1 with
+ | Some f1 ->
+ (match eval_Psatz0 l w2 with
+ | Some f2 ->
+ (match genCuttingPlane f1 with
+ | Some p ->
+ let p2 , op3 = p in
+ let e1 , z1 = p2 in
+ (match genCuttingPlane f2 with
+ | Some p3 ->
+ let p4 , op4 = p3 in
+ let e2 , z2 = p4 in
+ (match op3 with
+ | NonStrict ->
+ (match op4 with
+ | NonStrict ->
+ if is_pol_Z0 (padd1 e1 e2)
+ then
+ let rec label pfs lb ub =
+
+ match pfs with
+ |
+ [] -> zgt_bool lb ub
+ |
+ pf1 :: rsr ->
+ (&&)
+ (zChecker
+ (((psub1 e1 (Pc lb)) ,
+ Equal) :: l) pf1)
+ (label rsr
+ (zplus lb (Zpos XH)) ub)
+ in label pf0 (zopp z1) z2
+ else false
+ | _ -> false)
+ | _ -> false)
+ | None -> false)
+ | None -> false)
+ | None -> false)
+ | None -> false)
+
+(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)
+
+let zTautoChecker f w =
+ tauto_checker normalise negate zChecker f w
+
+(** val n_of_Z : z -> n **)
+
+let n_of_Z = function
+ | Zpos p -> Npos p
+ | _ -> N0
+
+type qWitness = q psatz
+
+(** val qWeakChecker : q nFormula list -> q psatz -> bool **)
+
+let qWeakChecker x x0 =
+ check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
+ qden = XH } qplus qmult qeq_bool qle_bool x x0
+
+(** val qnormalise : q formula -> q nFormula cnf **)
+
+let qnormalise t0 =
+ cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
+ qplus qmult qminus qopp qeq_bool t0
+
+(** val qnegate : q formula -> q nFormula cnf **)
+
+let qnegate t0 =
+ cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
+ qmult qminus qopp qeq_bool t0
+
+(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **)
+
+let qTautoChecker f w =
+ tauto_checker qnormalise qnegate qWeakChecker f w
+
+type rWitness = z psatz
+
+(** val rWeakChecker : z nFormula list -> z psatz -> bool **)
+
+let rWeakChecker x x0 =
+ check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+
+(** val rnormalise : z formula -> z nFormula cnf **)
+
+let rnormalise t0 =
+ cnf_normalise Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+
+(** val rnegate : z formula -> z nFormula cnf **)
+
+let rnegate t0 =
+ cnf_negate Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+
+(** val rTautoChecker : z formula bFormula -> rWitness list -> bool **)
+
+let rTautoChecker f w =
+ tauto_checker rnormalise rnegate rWeakChecker f w
+