summaryrefslogtreecommitdiff
path: root/plugins/micromega/coq_micromega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/coq_micromega.ml')
-rw-r--r--plugins/micromega/coq_micromega.ml1710
1 files changed, 1710 insertions, 0 deletions
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
new file mode 100644
index 00000000..abe4b368
--- /dev/null
+++ b/plugins/micromega/coq_micromega.ml
@@ -0,0 +1,1710 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* ** Toplevel definition of tactics ** *)
+(* *)
+(* - Modules ISet, M, Mc, Env, Cache, CacheZ *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2009 *)
+(* *)
+(************************************************************************)
+
+open Mutils
+
+(**
+ * Debug flag
+ *)
+
+let debug = false
+
+(**
+ * Time function
+ *)
+
+let time str f x =
+ let t0 = (Unix.times()).Unix.tms_utime in
+ let res = f x in
+ let t1 = (Unix.times()).Unix.tms_utime in
+ (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ;
+ flush stdout);
+ res
+
+(**
+ * Initialize a tag type to the Tag module declaration (see Mutils).
+ *)
+
+type tag = Tag.t
+
+(**
+ * An atom is of the form:
+ * pExpr1 {<,>,=,<>,<=,>=} pExpr2
+ * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are
+ * parametrized by 'cst, which is used as the type of constants.
+ *)
+
+type 'cst atom = 'cst Micromega.formula
+
+(**
+ * Micromega's encoding of formulas.
+ * By order of appearance: boolean constants, variables, atoms, conjunctions,
+ * disjunctions, negation, implication.
+ *)
+
+type 'cst formula =
+ | TT
+ | FF
+ | X of Term.constr
+ | A of 'cst atom * tag * Term.constr
+ | C of 'cst formula * 'cst formula
+ | D of 'cst formula * 'cst formula
+ | N of 'cst formula
+ | I of 'cst formula * Names.identifier option * 'cst formula
+
+(**
+ * Formula pretty-printer.
+ *)
+
+let rec pp_formula o f =
+ match f with
+ | TT -> output_string o "tt"
+ | FF -> output_string o "ff"
+ | X c -> output_string o "X "
+ | A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t
+ | C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2
+ | D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2
+ | I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)"
+ pp_formula f1
+ (match n with
+ | Some id -> Names.string_of_id id
+ | None -> "") pp_formula f2
+ | N(f) -> Printf.fprintf o "N(%a)" pp_formula f
+
+(**
+ * Collect the identifiers of a (string of) implications. Implication labels
+ * are inherited from Coq/CoC's higher order dependent type constructor (Pi).
+ *)
+
+let rec ids_of_formula f =
+ match f with
+ | I(f1,Some id,f2) -> id::(ids_of_formula f2)
+ | _ -> []
+
+(**
+ * A clause is a list of (tagged) nFormulas.
+ * nFormulas are normalized formulas, i.e., of the form:
+ * cPol {=,<>,>,>=} 0
+ * with cPol compact polynomials (see the Pol inductive type in EnvRing.v).
+ *)
+
+type 'cst clause = ('cst Micromega.nFormula * tag) list
+
+(**
+ * A CNF is a list of clauses.
+ *)
+
+type 'cst cnf = ('cst clause) list
+
+(**
+ * True and False are empty cnfs and clauses.
+ *)
+
+let tt : 'cst cnf = []
+
+let ff : 'cst cnf = [ [] ]
+
+(**
+ * A refinement of cnf with tags left out. This is an intermediary form
+ * between the cnf tagged list representation ('cst cnf) used to solve psatz,
+ * and the freeform formulas ('cst formula) that is retrieved from Coq.
+ *)
+
+type 'cst mc_cnf = ('cst Micromega.nFormula) list list
+
+(**
+ * From a freeform formula, build a cnf.
+ * The parametric functions negate and normalize are theory-dependent, and
+ * originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v
+ * and RingMicromega.v).
+ *)
+
+let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (f:'cst formula) =
+ let negate a t =
+ List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in
+
+ let normalise a t =
+ List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in
+
+ let and_cnf x y = x @ y in
+
+ let or_clause_cnf t f = List.map (fun x -> t@x) f in
+
+ let rec or_cnf f f' =
+ match f with
+ | [] -> tt
+ | e :: rst -> (or_cnf rst f') @ (or_clause_cnf e f') in
+
+ let rec xcnf (polarity : bool) f =
+ match f with
+ | TT -> if polarity then tt else ff
+ | FF -> if polarity then ff else tt
+ | X p -> if polarity then ff else ff
+ | A(x,t,_) -> if polarity then normalise x t else negate x t
+ | N(e) -> xcnf (not polarity) e
+ | C(e1,e2) ->
+ (if polarity then and_cnf else or_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ | D(e1,e2) ->
+ (if polarity then or_cnf else and_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ | I(e1,_,e2) ->
+ (if polarity then or_cnf else and_cnf) (xcnf (not polarity) e1) (xcnf polarity e2) in
+
+ xcnf true f
+
+(**
+ * MODULE: Ordered set of integers.
+ *)
+
+module ISet = Set.Make(struct type t = int let compare : int -> int -> int = Pervasives.compare end)
+
+(**
+ * Given a set of integers s={i0,...,iN} and a list m, return the list of
+ * elements of m that are at position i0,...,iN.
+ *)
+
+let selecti s m =
+ let rec xselecti i m =
+ match m with
+ | [] -> []
+ | e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in
+ xselecti 0 m
+
+(**
+ * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted
+ * code. This includes initializing Caml variables based on Coq terms, parsing
+ * various Coq expressions into Caml, and dumping Caml expressions into Coq.
+ *
+ * Opened here and in csdpcert.ml.
+ *)
+
+module M =
+struct
+
+ open Coqlib
+ open Term
+
+ (**
+ * Location of the Coq libraries.
+ *)
+
+ let logic_dir = ["Coq";"Logic";"Decidable"]
+ let coq_modules =
+ init_modules @
+ [logic_dir] @ arith_modules @ zarith_base_modules @
+ [ ["Coq";"Lists";"List"];
+ ["ZMicromega"];
+ ["Tauto"];
+ ["RingMicromega"];
+ ["EnvRing"];
+ ["Coq"; "micromega"; "ZMicromega"];
+ ["Coq" ; "micromega" ; "Tauto"];
+ ["Coq" ; "micromega" ; "RingMicromega"];
+ ["Coq" ; "micromega" ; "EnvRing"];
+ ["Coq";"QArith"; "QArith_base"];
+ ["Coq";"Reals" ; "Rdefinitions"];
+ ["Coq";"Reals" ; "Rpow_def"];
+ ["LRing_normalise"]]
+
+ (**
+ * Initialization : a large amount of Caml symbols are derived from
+ * ZMicromega.v
+ *)
+
+ let init_constant = gen_constant_in_modules "ZMicromega" init_modules
+ let constant = gen_constant_in_modules "ZMicromega" coq_modules
+ (* let constant = gen_constant_in_modules "Omicron" coq_modules *)
+
+ let coq_and = lazy (init_constant "and")
+ let coq_or = lazy (init_constant "or")
+ let coq_not = lazy (init_constant "not")
+ let coq_iff = lazy (init_constant "iff")
+ let coq_True = lazy (init_constant "True")
+ let coq_False = lazy (init_constant "False")
+
+ let coq_cons = lazy (constant "cons")
+ let coq_nil = lazy (constant "nil")
+ let coq_list = lazy (constant "list")
+
+ let coq_O = lazy (init_constant "O")
+ let coq_S = lazy (init_constant "S")
+ let coq_nat = lazy (init_constant "nat")
+
+ let coq_NO = lazy
+ (gen_constant_in_modules "N" [ ["Coq";"NArith";"BinNat" ]] "N0")
+ let coq_Npos = lazy
+ (gen_constant_in_modules "N" [ ["Coq";"NArith"; "BinNat"]] "Npos")
+ (* let coq_n = lazy (constant "N")*)
+
+ let coq_pair = lazy (constant "pair")
+ let coq_None = lazy (constant "None")
+ let coq_option = lazy (constant "option")
+ let coq_positive = lazy (constant "positive")
+ let coq_xH = lazy (constant "xH")
+ let coq_xO = lazy (constant "xO")
+ let coq_xI = lazy (constant "xI")
+
+ let coq_N0 = lazy (constant "N0")
+ let coq_N0 = lazy (constant "Npos")
+
+ let coq_Z = lazy (constant "Z")
+ let coq_Q = lazy (constant "Q")
+ let coq_R = lazy (constant "R")
+
+ let coq_ZERO = lazy (constant "Z0")
+ let coq_POS = lazy (constant "Zpos")
+ let coq_NEG = lazy (constant "Zneg")
+
+ let coq_Build_Witness = lazy (constant "Build_Witness")
+
+ let coq_Qmake = lazy (constant "Qmake")
+ let coq_R0 = lazy (constant "R0")
+ let coq_R1 = lazy (constant "R1")
+
+ let coq_proofTerm = lazy (constant "ZArithProof")
+ let coq_doneProof = lazy (constant "DoneProof")
+ let coq_ratProof = lazy (constant "RatProof")
+ let coq_cutProof = lazy (constant "CutProof")
+ let coq_enumProof = lazy (constant "EnumProof")
+
+ let coq_Zgt = lazy (constant "Zgt")
+ let coq_Zge = lazy (constant "Zge")
+ let coq_Zle = lazy (constant "Zle")
+ let coq_Zlt = lazy (constant "Zlt")
+ let coq_Eq = lazy (init_constant "eq")
+
+ let coq_Zplus = lazy (constant "Zplus")
+ let coq_Zminus = lazy (constant "Zminus")
+ let coq_Zopp = lazy (constant "Zopp")
+ let coq_Zmult = lazy (constant "Zmult")
+ let coq_Zpower = lazy (constant "Zpower")
+
+ let coq_Qgt = lazy (constant "Qgt")
+ let coq_Qge = lazy (constant "Qge")
+ let coq_Qle = lazy (constant "Qle")
+ let coq_Qlt = lazy (constant "Qlt")
+ let coq_Qeq = lazy (constant "Qeq")
+
+ let coq_Qplus = lazy (constant "Qplus")
+ let coq_Qminus = lazy (constant "Qminus")
+ let coq_Qopp = lazy (constant "Qopp")
+ let coq_Qmult = lazy (constant "Qmult")
+ let coq_Qpower = lazy (constant "Qpower")
+
+ let coq_Rgt = lazy (constant "Rgt")
+ let coq_Rge = lazy (constant "Rge")
+ let coq_Rle = lazy (constant "Rle")
+ let coq_Rlt = lazy (constant "Rlt")
+
+ let coq_Rplus = lazy (constant "Rplus")
+ let coq_Rminus = lazy (constant "Rminus")
+ let coq_Ropp = lazy (constant "Ropp")
+ let coq_Rmult = lazy (constant "Rmult")
+ let coq_Rpower = lazy (constant "pow")
+
+ let coq_PEX = lazy (constant "PEX" )
+ let coq_PEc = lazy (constant"PEc")
+ let coq_PEadd = lazy (constant "PEadd")
+ let coq_PEopp = lazy (constant "PEopp")
+ let coq_PEmul = lazy (constant "PEmul")
+ let coq_PEsub = lazy (constant "PEsub")
+ let coq_PEpow = lazy (constant "PEpow")
+
+ let coq_PX = lazy (constant "PX" )
+ let coq_Pc = lazy (constant"Pc")
+ let coq_Pinj = lazy (constant "Pinj")
+
+ let coq_OpEq = lazy (constant "OpEq")
+ let coq_OpNEq = lazy (constant "OpNEq")
+ let coq_OpLe = lazy (constant "OpLe")
+ let coq_OpLt = lazy (constant "OpLt")
+ let coq_OpGe = lazy (constant "OpGe")
+ let coq_OpGt = lazy (constant "OpGt")
+
+ let coq_PsatzIn = lazy (constant "PsatzIn")
+ let coq_PsatzSquare = lazy (constant "PsatzSquare")
+ let coq_PsatzMulE = lazy (constant "PsatzMulE")
+ let coq_PsatzMultC = lazy (constant "PsatzMulC")
+ let coq_PsatzAdd = lazy (constant "PsatzAdd")
+ let coq_PsatzC = lazy (constant "PsatzC")
+ let coq_PsatzZ = lazy (constant "PsatzZ")
+ let coq_coneMember = lazy (constant "coneMember")
+
+ let coq_make_impl = lazy
+ (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
+ let coq_make_conj = lazy
+ (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")
+
+ let coq_TT = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT")
+ let coq_FF = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF")
+ let coq_And = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj")
+ let coq_Or = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D")
+ let coq_Neg = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N")
+ let coq_Atom = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A")
+ let coq_X = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X")
+ let coq_Impl = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I")
+ let coq_Formula = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula")
+
+ (**
+ * Initialization : a few Caml symbols are derived from other libraries;
+ * QMicromega, ZArithRing, RingMicromega.
+ *)
+
+ let coq_QWitness = lazy
+ (gen_constant_in_modules "QMicromega"
+ [["Coq"; "micromega"; "QMicromega"]] "QWitness")
+ let coq_ZWitness = lazy
+ (gen_constant_in_modules "QMicromega"
+ [["Coq"; "micromega"; "ZMicromega"]] "ZWitness")
+
+ let coq_N_of_Z = lazy
+ (gen_constant_in_modules "ZArithRing"
+ [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")
+
+ let coq_Build = lazy
+ (gen_constant_in_modules "RingMicromega"
+ [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ]
+ "Build_Formula")
+ let coq_Cstr = lazy
+ (gen_constant_in_modules "RingMicromega"
+ [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")
+
+ (**
+ * Parsing and dumping : transformation functions between Caml and Coq
+ * data-structures.
+ *
+ * dump_* functions go from Micromega to Coq terms
+ * parse_* functions go from Coq to Micromega terms
+ * pp_* functions pretty-print Coq terms.
+ *)
+
+ (* Error datastructures *)
+
+ type parse_error =
+ | Ukn
+ | BadStr of string
+ | BadNum of int
+ | BadTerm of Term.constr
+ | Msg of string
+ | Goal of (Term.constr list ) * Term.constr * parse_error
+
+ let string_of_error = function
+ | Ukn -> "ukn"
+ | BadStr s -> s
+ | BadNum i -> string_of_int i
+ | BadTerm _ -> "BadTerm"
+ | Msg s -> s
+ | Goal _ -> "Goal"
+
+ exception ParseError
+
+ (* A simple but useful getter function *)
+
+ let get_left_construct term =
+ match Term.kind_of_term term with
+ | Term.Construct(_,i) -> (i,[| |])
+ | Term.App(l,rst) ->
+ (match Term.kind_of_term l with
+ | Term.Construct(_,i) -> (i,rst)
+ | _ -> raise ParseError
+ )
+ | _ -> raise ParseError
+
+ (* Access the Micromega module *)
+
+ module Mc = Micromega
+
+ (* parse/dump/print from numbers up to expressions and formulas *)
+
+ let rec parse_nat term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.O
+ | 2 -> Mc.S (parse_nat (c.(0)))
+ | i -> raise ParseError
+
+ let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n)
+
+ let rec dump_nat x =
+ match x with
+ | Mc.O -> Lazy.force coq_O
+ | Mc.S p -> Term.mkApp(Lazy.force coq_S,[| dump_nat p |])
+
+ let rec parse_positive term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.XI (parse_positive c.(0))
+ | 2 -> Mc.XO (parse_positive c.(0))
+ | 3 -> Mc.XH
+ | i -> raise ParseError
+
+ let rec dump_positive x =
+ match x with
+ | Mc.XH -> Lazy.force coq_xH
+ | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_positive p |])
+ | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_positive p |])
+
+ let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x)
+
+ let rec dump_n x =
+ match x with
+ | Mc.N0 -> Lazy.force coq_N0
+ | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p|])
+
+ let rec dump_index x =
+ match x with
+ | Mc.XH -> Lazy.force coq_xH
+ | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_index p |])
+ | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_index p |])
+
+ let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
+
+ let rec dump_n x =
+ match x with
+ | Mc.N0 -> Lazy.force coq_NO
+ | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p |])
+
+ let rec pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
+
+ let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
+ Term.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])
+
+ let rec parse_z term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.Z0
+ | 2 -> Mc.Zpos (parse_positive c.(0))
+ | 3 -> Mc.Zneg (parse_positive c.(0))
+ | i -> raise ParseError
+
+ let dump_z x =
+ match x with
+ | Mc.Z0 ->Lazy.force coq_ZERO
+ | Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|])
+ | Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|])
+
+ let pp_z o x = Printf.fprintf o "%i" (CoqToCaml.z x)
+
+ let dump_num bd1 =
+ Term.mkApp(Lazy.force coq_Qmake,
+ [|dump_z (CamlToCoq.bigint (numerator bd1)) ;
+ dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])
+
+ let dump_q q =
+ Term.mkApp(Lazy.force coq_Qmake,
+ [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])
+
+ let parse_q term =
+ match Term.kind_of_term term with
+ | Term.App(c, args) -> if c = Lazy.force coq_Qmake then
+ {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) }
+ else raise ParseError
+ | _ -> raise ParseError
+
+ let rec parse_list parse_elt term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> []
+ | 2 -> parse_elt c.(1) :: parse_list parse_elt c.(2)
+ | i -> raise ParseError
+
+ let rec dump_list typ dump_elt l =
+ match l with
+ | [] -> Term.mkApp(Lazy.force coq_nil,[| typ |])
+ | e :: l -> Term.mkApp(Lazy.force coq_cons,
+ [| typ; dump_elt e;dump_list typ dump_elt l|])
+
+ let pp_list op cl elt o l =
+ let rec _pp o l =
+ match l with
+ | [] -> ()
+ | [e] -> Printf.fprintf o "%a" elt e
+ | e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in
+ Printf.fprintf o "%s%a%s" op _pp l cl
+
+ let pp_var = pp_positive
+
+ let dump_var = dump_positive
+
+ let pp_expr pp_z o e =
+ let rec pp_expr o e =
+ match e with
+ | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
+ | Mc.PEc z -> pp_z o z
+ | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
+ | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n in
+ pp_expr o e
+
+ let dump_expr typ dump_z e =
+ let rec dump_expr e =
+ match e with
+ | Mc.PEX n -> mkApp(Lazy.force coq_PEX,[| typ; dump_var n |])
+ | Mc.PEc z -> mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |])
+ | Mc.PEadd(e1,e2) -> mkApp(Lazy.force coq_PEadd,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEsub(e1,e2) -> mkApp(Lazy.force coq_PEsub,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEopp e -> mkApp(Lazy.force coq_PEopp,
+ [| typ; dump_expr e|])
+ | Mc.PEmul(e1,e2) -> mkApp(Lazy.force coq_PEmul,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEpow(e,n) -> mkApp(Lazy.force coq_PEpow,
+ [| typ; dump_expr e; dump_n n|])
+ in
+ dump_expr e
+
+ let dump_pol typ dump_c e =
+ let rec dump_pol e =
+ match e with
+ | Mc.Pc n -> mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|])
+ | Mc.Pinj(p,pol) -> mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|])
+ | Mc.PX(pol1,p,pol2) -> mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in
+ dump_pol e
+
+ let pp_pol pp_c o e =
+ let rec pp_pol o e =
+ match e with
+ | Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n
+ | Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol
+ | Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in
+ pp_pol o e
+
+ let pp_cnf pp_c o f =
+ let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) l in
+ List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f
+
+ let dump_psatz typ dump_z e =
+ let z = Lazy.force typ in
+ let rec dump_cone e =
+ match e with
+ | Mc.PsatzIn n -> mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |])
+ | Mc.PsatzMulC(e,c) -> mkApp(Lazy.force coq_PsatzMultC,
+ [| z; dump_pol z dump_z e ; dump_cone c |])
+ | Mc.PsatzSquare e -> mkApp(Lazy.force coq_PsatzSquare,
+ [| z;dump_pol z dump_z e|])
+ | Mc.PsatzAdd(e1,e2) -> mkApp(Lazy.force coq_PsatzAdd,
+ [| z; dump_cone e1; dump_cone e2|])
+ | Mc.PsatzMulE(e1,e2) -> mkApp(Lazy.force coq_PsatzMulE,
+ [| z; dump_cone e1; dump_cone e2|])
+ | Mc.PsatzC p -> mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|])
+ | Mc.PsatzZ -> mkApp( Lazy.force coq_PsatzZ,[| z|]) in
+ dump_cone e
+
+ let pp_psatz pp_z o e =
+ let rec pp_cone o e =
+ match e with
+ | Mc.PsatzIn n ->
+ Printf.fprintf o "(In %a)%%nat" pp_nat n
+ | Mc.PsatzMulC(e,c) ->
+ Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c
+ | Mc.PsatzSquare e ->
+ Printf.fprintf o "(%a^2)" (pp_pol pp_z) e
+ | Mc.PsatzAdd(e1,e2) ->
+ Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2
+ | Mc.PsatzMulE(e1,e2) ->
+ Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2
+ | Mc.PsatzC p ->
+ Printf.fprintf o "(%a)%%positive" pp_z p
+ | Mc.PsatzZ ->
+ Printf.fprintf o "0" in
+ pp_cone o e
+
+ let rec dump_op = function
+ | Mc.OpEq-> Lazy.force coq_OpEq
+ | Mc.OpNEq-> Lazy.force coq_OpNEq
+ | Mc.OpLe -> Lazy.force coq_OpLe
+ | Mc.OpGe -> Lazy.force coq_OpGe
+ | Mc.OpGt-> Lazy.force coq_OpGt
+ | Mc.OpLt-> Lazy.force coq_OpLt
+
+ let pp_op o e=
+ match e with
+ | Mc.OpEq-> Printf.fprintf o "="
+ | Mc.OpNEq-> Printf.fprintf o "<>"
+ | Mc.OpLe -> Printf.fprintf o "=<"
+ | Mc.OpGe -> Printf.fprintf o ">="
+ | Mc.OpGt-> Printf.fprintf o ">"
+ | Mc.OpLt-> Printf.fprintf o "<"
+
+ let pp_cstr pp_z o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
+ Printf.fprintf o"(%a %a %a)" (pp_expr pp_z) l pp_op op (pp_expr pp_z) r
+
+ let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
+ Term.mkApp(Lazy.force coq_Build,
+ [| typ; dump_expr typ dump_constant e1 ;
+ dump_op o ;
+ dump_expr typ dump_constant e2|])
+
+ let assoc_const x l =
+ try
+ snd (List.find (fun (x',y) -> x = Lazy.force x') l)
+ with
+ Not_found -> raise ParseError
+
+ let zop_table = [
+ coq_Zgt, Mc.OpGt ;
+ coq_Zge, Mc.OpGe ;
+ coq_Zlt, Mc.OpLt ;
+ coq_Zle, Mc.OpLe ]
+
+ let rop_table = [
+ coq_Rgt, Mc.OpGt ;
+ coq_Rge, Mc.OpGe ;
+ coq_Rlt, Mc.OpLt ;
+ coq_Rle, Mc.OpLe ]
+
+ let qop_table = [
+ coq_Qlt, Mc.OpLt ;
+ coq_Qle, Mc.OpLe ;
+ coq_Qeq, Mc.OpEq
+ ]
+
+ let parse_zop (op,args) =
+ match kind_of_term op with
+ | Const x -> (assoc_const op zop_table, args.(0) , args.(1))
+ | Ind(n,0) ->
+ if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_Z
+ then (Mc.OpEq, args.(1), args.(2))
+ else raise ParseError
+ | _ -> failwith "parse_zop"
+
+ let parse_rop (op,args) =
+ match kind_of_term op with
+ | Const x -> (assoc_const op rop_table, args.(0) , args.(1))
+ | Ind(n,0) ->
+ if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_R
+ then (Mc.OpEq, args.(1), args.(2))
+ else raise ParseError
+ | _ -> failwith "parse_zop"
+
+ let parse_qop (op,args) =
+ (assoc_const op qop_table, args.(0) , args.(1))
+
+ let is_constant t = (* This is an approx *)
+ match kind_of_term t with
+ | Construct(i,_) -> true
+ | _ -> false
+
+ type 'a op =
+ | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr)
+ | Opp
+ | Power
+ | Ukn of string
+
+ let assoc_ops x l =
+ try
+ snd (List.find (fun (x',y) -> x = Lazy.force x') l)
+ with
+ Not_found -> Ukn "Oups"
+
+ (**
+ * MODULE: Env is for environment.
+ *)
+
+ module Env =
+ struct
+ type t = constr list
+
+ let compute_rank_add env v =
+ let rec _add env n v =
+ match env with
+ | [] -> ([v],n)
+ | e::l ->
+ if eq_constr e v
+ then (env,n)
+ else
+ let (env,n) = _add l ( n+1) v in
+ (e::env,n) in
+ let (env, n) = _add env 1 v in
+ (env, CamlToCoq.idx n)
+
+ let empty = []
+
+ let elements env = env
+
+ end (* MODULE END: Env *)
+
+ (**
+ * This is the big generic function for expression parsers.
+ *)
+
+ let parse_expr parse_constant parse_exp ops_spec env term =
+ if debug
+ then (Pp.pp (Pp.str "parse_expr: ");
+ Pp.pp_flush ();Pp.pp (Printer.prterm term); Pp.pp_flush ());
+
+ let constant_or_variable env term =
+ try
+ ( Mc.PEc (parse_constant term) , env)
+ with ParseError ->
+ let (env,n) = Env.compute_rank_add env term in
+ (Mc.PEX n , env) in
+
+ let rec parse_expr env term =
+ let combine env op (t1,t2) =
+ let (expr1,env) = parse_expr env t1 in
+ let (expr2,env) = parse_expr env t2 in
+ (op expr1 expr2,env) in
+
+ match kind_of_term term with
+ | App(t,args) ->
+ (
+ match kind_of_term t with
+ | Const c ->
+ ( match assoc_ops t ops_spec with
+ | Binop f -> combine env f (args.(0),args.(1))
+ | Opp -> let (expr,env) = parse_expr env args.(0) in
+ (Mc.PEopp expr, env)
+ | Power ->
+ begin
+ try
+ let (expr,env) = parse_expr env args.(0) in
+ let power = (parse_exp expr args.(1)) in
+ (power , env)
+ with _ -> (* if the exponent is a variable *)
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ end
+ | Ukn s ->
+ if debug
+ then (Printf.printf "unknown op: %s\n" s; flush stdout;);
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ )
+ | _ -> constant_or_variable env term
+ )
+ | _ -> constant_or_variable env term in
+ parse_expr env term
+
+ let zop_spec =
+ [
+ coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Zopp , Opp ;
+ coq_Zpower , Power]
+
+ let qop_spec =
+ [
+ coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Qopp , Opp ;
+ coq_Qpower , Power]
+
+ let rop_spec =
+ [
+ coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Ropp , Opp ;
+ coq_Rpower , Power]
+
+ let zconstant = parse_z
+ let qconstant = parse_q
+
+ let rconstant term =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "rconstant: ");
+ Pp.pp (Printer.prterm term); Pp.pp_flush ());
+ match Term.kind_of_term term with
+ | Const x ->
+ if term = Lazy.force coq_R0
+ then Mc.Z0
+ else if term = Lazy.force coq_R1
+ then Mc.Zpos Mc.XH
+ else raise ParseError
+ | _ -> raise ParseError
+
+ let parse_zexpr = parse_expr
+ zconstant
+ (fun expr x ->
+ let exp = (parse_z x) in
+ match exp with
+ | Mc.Zneg _ -> Mc.PEc Mc.Z0
+ | _ -> Mc.PEpow(expr, Mc.n_of_Z exp))
+ zop_spec
+
+ let parse_qexpr = parse_expr
+ qconstant
+ (fun expr x ->
+ let exp = parse_z x in
+ match exp with
+ | Mc.Zneg _ ->
+ begin
+ match expr with
+ | Mc.PEc q -> Mc.PEc (Mc.qpower q exp)
+ | _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError
+ end
+ | _ -> let exp = Mc.n_of_Z exp in
+ Mc.PEpow(expr,exp))
+ qop_spec
+
+ let parse_rexpr = parse_expr
+ rconstant
+ (fun expr x ->
+ let exp = Mc.n_of_nat (parse_nat x) in
+ Mc.PEpow(expr,exp))
+ rop_spec
+
+ let parse_arith parse_op parse_expr env cstr =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "parse_arith: ");
+ Pp.pp (Printer.prterm cstr);
+ Pp.pp_flush ());
+ match kind_of_term cstr with
+ | App(op,args) ->
+ let (op,lhs,rhs) = parse_op (op,args) in
+ let (e1,env) = parse_expr env lhs in
+ let (e2,env) = parse_expr env rhs in
+ ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env)
+ | _ -> failwith "error : parse_arith(2)"
+
+ let parse_zarith = parse_arith parse_zop parse_zexpr
+
+ let parse_qarith = parse_arith parse_qop parse_qexpr
+
+ let parse_rarith = parse_arith parse_rop parse_rexpr
+
+ (* generic parsing of arithmetic expressions *)
+
+ let rec f2f = function
+ | TT -> Mc.TT
+ | FF -> Mc.FF
+ | X _ -> Mc.X
+ | A (x,_,_) -> Mc.A x
+ | C (a,b) -> Mc.Cj(f2f a,f2f b)
+ | D (a,b) -> Mc.D(f2f a,f2f b)
+ | N (a) -> Mc.N(f2f a)
+ | I(a,_,b) -> Mc.I(f2f a,f2f b)
+
+ let is_prop t =
+ match t with
+ | Names.Anonymous -> true (* Not quite right *)
+ | Names.Name x -> false
+
+ let mkC f1 f2 = C(f1,f2)
+ let mkD f1 f2 = D(f1,f2)
+ let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1))
+ let mkI f1 f2 = I(f1,None,f2)
+
+ let mkformula_binary g term f1 f2 =
+ match f1 , f2 with
+ | X _ , X _ -> X(term)
+ | _ -> g f1 f2
+
+ (**
+ * This is the big generic function for formula parsers.
+ *)
+
+ let parse_formula parse_atom env term =
+
+ let parse_atom env tg t = try let (at,env) = parse_atom env t in
+ (A(at,tg,t), env,Tag.next tg) with _ -> (X(t),env,tg) in
+
+ let rec xparse_formula env tg term =
+ match kind_of_term term with
+ | App(l,rst) ->
+ (match rst with
+ | [|a;b|] when l = Lazy.force coq_and ->
+ let f,env,tg = xparse_formula env tg a in
+ let g,env, tg = xparse_formula env tg b in
+ mkformula_binary mkC term f g,env,tg
+ | [|a;b|] when l = Lazy.force coq_or ->
+ let f,env,tg = xparse_formula env tg a in
+ let g,env,tg = xparse_formula env tg b in
+ mkformula_binary mkD term f g,env,tg
+ | [|a|] when l = Lazy.force coq_not ->
+ let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg)
+ | [|a;b|] when l = Lazy.force coq_iff ->
+ let f,env,tg = xparse_formula env tg a in
+ let g,env,tg = xparse_formula env tg b in
+ mkformula_binary mkIff term f g,env,tg
+ | _ -> parse_atom env tg term)
+ | Prod(typ,a,b) when not (Termops.dependent (mkRel 1) b) ->
+ let f,env,tg = xparse_formula env tg a in
+ let g,env,tg = xparse_formula env tg b in
+ mkformula_binary mkI term f g,env,tg
+ | _ when term = Lazy.force coq_True -> (TT,env,tg)
+ | _ when term = Lazy.force coq_False -> (FF,env,tg)
+ | _ -> X(term),env,tg in
+ xparse_formula env term
+
+ let dump_formula typ dump_atom f =
+ let rec xdump f =
+ match f with
+ | TT -> mkApp(Lazy.force coq_TT,[|typ|])
+ | FF -> mkApp(Lazy.force coq_FF,[|typ|])
+ | C(x,y) -> mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|])
+ | D(x,y) -> mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|])
+ | I(x,_,y) -> mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|])
+ | N(x) -> mkApp(Lazy.force coq_Neg,[|typ ; xdump x|])
+ | A(x,_,_) -> mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|])
+ | X(t) -> mkApp(Lazy.force coq_X,[|typ ; t|]) in
+ xdump f
+
+ (**
+ * Given a conclusion and a list of affectations, rebuild a term prefixed by
+ * the appropriate letins.
+ * TODO: reverse the list of bindings!
+ *)
+
+ let set l concl =
+ let rec xset acc = function
+ | [] -> acc
+ | (e::l) ->
+ let (name,expr,typ) = e in
+ xset (Term.mkNamedLetIn
+ (Names.id_of_string name)
+ expr typ acc) l in
+ xset concl l
+
+end (**
+ * MODULE END: M
+ *)
+
+open M
+
+let rec sig_of_cone = function
+ | Mc.PsatzIn n -> [CoqToCaml.nat n]
+ | Mc.PsatzMulE(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
+ | Mc.PsatzMulC(w1,w2) -> (sig_of_cone w2)
+ | Mc.PsatzAdd(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
+ | _ -> []
+
+let same_proof sg cl1 cl2 =
+ let rec xsame_proof sg =
+ match sg with
+ | [] -> true
+ | n::sg -> (try List.nth cl1 n = List.nth cl2 n with _ -> false)
+ && (xsame_proof sg ) in
+ xsame_proof sg
+
+let tags_of_clause tgs wit clause =
+ let rec xtags tgs = function
+ | Mc.PsatzIn n -> Names.Idset.union tgs
+ (snd (List.nth clause (CoqToCaml.nat n) ))
+ | Mc.PsatzMulC(e,w) -> xtags tgs w
+ | Mc.PsatzMulE (w1,w2) | Mc.PsatzAdd(w1,w2) -> xtags (xtags tgs w1) w2
+ | _ -> tgs in
+ xtags tgs wit
+
+let tags_of_cnf wits cnf =
+ List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
+ Names.Idset.empty wits cnf
+
+let find_witness prover polys1 = try_any prover polys1
+
+let rec witness prover l1 l2 =
+ match l2 with
+ | [] -> Some []
+ | e :: l2 ->
+ match find_witness prover (e::l1) with
+ | None -> None
+ | Some w ->
+ (match witness prover l1 l2 with
+ | None -> None
+ | Some l -> Some (w::l)
+ )
+
+let rec apply_ids t ids =
+ match ids with
+ | [] -> t
+ | i::ids -> apply_ids (Term.mkApp(t,[| Term.mkVar i |])) ids
+
+let coq_Node = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
+let coq_Leaf = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf")
+let coq_Empty = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty")
+
+let btree_of_array typ a =
+ let size_of_a = Array.length a in
+ let semi_size_of_a = size_of_a lsr 1 in
+ let node = Lazy.force coq_Node
+ and leaf = Lazy.force coq_Leaf
+ and empty = Term.mkApp (Lazy.force coq_Empty, [| typ |]) in
+ let rec aux n =
+ if n > size_of_a
+ then empty
+ else if n > semi_size_of_a
+ then Term.mkApp (leaf, [| typ; a.(n-1) |])
+ else Term.mkApp (node, [| typ; aux (2*n); a.(n-1); aux (2*n+1) |])
+ in
+ aux 1
+
+let btree_of_array typ a =
+ try
+ btree_of_array typ a
+ with x ->
+ failwith (Printf.sprintf "btree of array : %s" (Printexc.to_string x))
+
+let dump_varmap typ env =
+ btree_of_array typ (Array.of_list env)
+
+
+let rec pp_varmap o vm =
+ match vm with
+ | Mc.Empty -> output_string o "[]"
+ | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z
+ | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r
+
+
+
+let rec dump_proof_term = function
+ | Micromega.DoneProof -> Lazy.force coq_doneProof
+ | Micromega.RatProof(cone,rst) ->
+ Term.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|])
+ | Micromega.CutProof(cone,prf) ->
+ Term.mkApp(Lazy.force coq_cutProof,
+ [| dump_psatz coq_Z dump_z cone ;
+ dump_proof_term prf|])
+ | Micromega.EnumProof(c1,c2,prfs) ->
+ Term.mkApp (Lazy.force coq_enumProof,
+ [| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ;
+ dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])
+
+let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
+
+
+let rec pp_proof_term o = function
+ | Micromega.DoneProof -> Printf.fprintf o "D"
+ | Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst
+ | Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst
+ | Micromega.EnumProof(c1,c2,rst) ->
+ Printf.fprintf o "EP[%a,%a,%a]"
+ (pp_psatz pp_z) c1 (pp_psatz pp_z) c2
+ (pp_list "[" "]" pp_proof_term) rst
+
+let rec parse_hyps parse_arith env tg hyps =
+ match hyps with
+ | [] -> ([],env,tg)
+ | (i,t)::l ->
+ let (lhyps,env,tg) = parse_hyps parse_arith env tg l in
+ try
+ let (c,env,tg) = parse_formula parse_arith env tg t in
+ ((i,c)::lhyps, env,tg)
+ with _ -> (lhyps,env,tg)
+ (*(if debug then Printf.printf "parse_arith : %s\n" x);*)
+
+
+(*exception ParseError*)
+
+let parse_goal parse_arith env hyps term =
+ (* try*)
+ let (f,env,tg) = parse_formula parse_arith env (Tag.from 0) term in
+ let (lhyps,env,tg) = parse_hyps parse_arith env tg hyps in
+ (lhyps,f,env)
+ (* with Failure x -> raise ParseError*)
+
+(**
+ * The datastructures that aggregate theory-dependent proof values.
+ *)
+
+type ('d, 'prf) domain_spec = {
+ typ : Term.constr; (* Z, Q , R *)
+ coeff : Term.constr ; (* Z, Q *)
+ dump_coeff : 'd -> Term.constr ;
+ proof_typ : Term.constr ;
+ dump_proof : 'prf -> Term.constr
+}
+
+let zz_domain_spec = lazy {
+ typ = Lazy.force coq_Z;
+ coeff = Lazy.force coq_Z;
+ dump_coeff = dump_z ;
+ proof_typ = Lazy.force coq_proofTerm ;
+ dump_proof = dump_proof_term
+}
+
+let qq_domain_spec = lazy {
+ typ = Lazy.force coq_Q;
+ coeff = Lazy.force coq_Q;
+ dump_coeff = dump_q ;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_psatz coq_Q dump_q
+}
+
+let rz_domain_spec = lazy {
+ typ = Lazy.force coq_R;
+ coeff = Lazy.force coq_Z;
+ dump_coeff = dump_z;
+ proof_typ = Lazy.force coq_ZWitness ;
+ dump_proof = dump_psatz coq_Z dump_z
+}
+
+(**
+ * Instanciate the current Coq goal with a Micromega formula, a varmap, and a
+ * witness.
+ *)
+
+let micromega_order_change spec cert cert_typ env ff gl =
+ let formula_typ = (Term.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in
+ let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in
+ let vm = dump_varmap (spec.typ) env in
+ Tactics.change_in_concl None
+ (set
+ [
+ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
+ ("__varmap", vm, Term.mkApp
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|spec.typ|]));
+ ("__wit", cert, cert_typ)
+ ]
+ (Tacmach.pf_concl gl)
+ )
+ gl
+
+(**
+ * The datastructures that aggregate prover attributes.
+ *)
+
+type ('a,'prf) prover = {
+ name : string ; (* name of the prover *)
+ prover : 'a list -> 'prf option ; (* the prover itself *)
+ hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *)
+ compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *)
+ pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *)
+ pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*)
+}
+
+(**
+ * Given a list of provers and a disjunction of atoms, find a proof of any of
+ * the atoms. Returns an (optional) pair of a proof and a prover
+ * datastructure.
+ *)
+
+let find_witness provers polys1 =
+ let provers = List.map (fun p ->
+ (fun l ->
+ match p.prover l with
+ | None -> None
+ | Some prf -> Some(prf,p)) , p.name) provers in
+ try_any provers (List.map fst polys1)
+
+(**
+ * Given a list of provers and a CNF, find a proof for each of the clauses.
+ * Return the proofs as a list.
+ *)
+
+let witness_list prover l =
+ let rec xwitness_list l =
+ match l with
+ | [] -> Some []
+ | e :: l ->
+ match find_witness prover e with
+ | None -> None
+ | Some w ->
+ (match xwitness_list l with
+ | None -> None
+ | Some l -> Some (w :: l)
+ ) in
+ xwitness_list l
+
+let witness_list_tags = witness_list
+
+(* *Deprecated* let is_singleton = function [] -> true | [e] -> true | _ -> false *)
+
+let pp_ml_list pp_elt o l =
+ output_string o "[" ;
+ List.iter (fun x -> Printf.fprintf o "%a ;" pp_elt x) l ;
+ output_string o "]"
+
+(**
+ * Prune the proof object, according to the 'diff' between two cnf formulas.
+ *)
+
+let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =
+
+ let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
+ let new_cl = Mutils.mapi (fun (f,_) i -> (f,i)) new_cl in
+ let remap i =
+ let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
+ List.assoc formula new_cl in
+ if debug then
+ begin
+ Printf.printf "\ncompact_proof : %a %a %a"
+ (pp_ml_list prover.pp_f) (List.map fst old_cl)
+ prover.pp_prf prf
+ (pp_ml_list prover.pp_f) (List.map fst new_cl) ;
+ flush stdout
+ end ;
+ let res = try prover.compact prf remap with x ->
+ if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ;
+ (* This should not happen -- this is the recovery plan... *)
+ match prover.prover (List.map fst new_cl) with
+ | None -> failwith "proof compaction error"
+ | Some p -> p
+ in
+ if debug then
+ begin
+ Printf.printf " -> %a\n"
+ prover.pp_prf res ;
+ flush stdout
+ end ;
+ res in
+
+ let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) =
+ let hyps_idx = prover.hyps prf in
+ let hyps = selecti hyps_idx old_cl in
+ is_sublist hyps new_cl in
+
+ let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *)
+
+ List.map (fun x ->
+ let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res
+ in compact_proof o p x) cnf_ff'
+
+
+(**
+ * "Hide out" tagged atoms of a formula by transforming them into generic
+ * variables. See the Tag module in mutils.ml for more.
+ *)
+
+let abstract_formula hyps f =
+ let rec xabs f =
+ match f with
+ | X c -> X c
+ | A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term)
+ | C(f1,f2) ->
+ (match xabs f1 , xabs f2 with
+ | X a1 , X a2 -> X (Term.mkApp(Lazy.force coq_and, [|a1;a2|]))
+ | f1 , f2 -> C(f1,f2) )
+ | D(f1,f2) ->
+ (match xabs f1 , xabs f2 with
+ | X a1 , X a2 -> X (Term.mkApp(Lazy.force coq_or, [|a1;a2|]))
+ | f1 , f2 -> D(f1,f2) )
+ | N(f) ->
+ (match xabs f with
+ | X a -> X (Term.mkApp(Lazy.force coq_not, [|a|]))
+ | f -> N f)
+ | I(f1,hyp,f2) ->
+ (match xabs f1 , hyp, xabs f2 with
+ | X a1 , Some _ , af2 -> af2
+ | X a1 , None , X a2 -> X (Term.mkArrow a1 a2)
+ | af1 , _ , af2 -> I(af1,hyp,af2)
+ )
+ | FF -> FF
+ | TT -> TT
+ in xabs f
+
+(**
+ * This exception is raised by really_call_csdpcert if Coq's configure didn't
+ * find a CSDP executable.
+ *)
+
+exception CsdpNotFound
+
+(**
+ * This is the core of Micromega: apply the prover, analyze the result and
+ * prune unused fomulas, and finally modify the proof state.
+ *)
+
+let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
+ let spec = Lazy.force spec in
+
+ (* Express the goal as one big implication *)
+ let (ff,ids) =
+ List.fold_right
+ (fun (id,f) (cc,ids) ->
+ match f with
+ X _ -> (cc,ids)
+ | _ -> (I(f,Some id,cc), id::ids))
+ polys1 (polys2,[]) in
+
+ (* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *)
+ let cnf_ff = cnf negate normalise ff in
+
+ if debug then
+ begin
+ Pp.pp (Pp.str "Formula....\n") ;
+ let formula_typ = (Term.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in
+ let ff = dump_formula formula_typ
+ (dump_cstr spec.typ spec.dump_coeff) ff in
+ Pp.pp (Printer.prterm ff) ; Pp.pp_flush ();
+ Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff
+ end;
+
+ match witness_list_tags prover cnf_ff with
+ | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | Some res -> (*Printf.printf "\nList %i" (List.length `res); *)
+ let hyps = List.fold_left (fun s (cl,(prf,p)) ->
+ let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in
+ if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ;
+ (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in
+ TagSet.union s tags) TagSet.empty (List.combine cnf_ff res) in
+
+ if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout;
+ Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ;
+
+ let ff' = abstract_formula hyps ff in
+ let cnf_ff' = cnf negate normalise ff' in
+
+ if debug then
+ begin
+ Pp.pp (Pp.str "\nAFormula\n") ;
+ let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
+ let ff' = dump_formula formula_typ
+ (dump_cstr spec.typ spec.dump_coeff) ff' in
+ Pp.pp (Printer.prterm ff') ; Pp.pp_flush ();
+ Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff'
+ end;
+
+ (* Even if it does not work, this does not mean it is not provable
+ -- the prover is REALLY incomplete *)
+ (* if debug then
+ begin
+ (* recompute the proofs *)
+ match witness_list_tags prover cnf_ff' with
+ | None -> failwith "abstraction is wrong"
+ | Some res -> ()
+ end ; *)
+ let res' = compact_proofs cnf_ff res cnf_ff' in
+
+ let (ff',res',ids) = (ff',res',List.map Term.mkVar (ids_of_formula ff')) in
+
+ let res' = dump_list (spec.proof_typ) spec.dump_proof res' in
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize ids ;
+ micromega_order_change spec res'
+ (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff'
+ ]) gl
+
+(**
+ * Parse the proof environment, and call micromega_tauto
+ *)
+
+let micromega_gen
+ parse_arith
+ (negate:'cst atom -> 'cst mc_cnf)
+ (normalise:'cst atom -> 'cst mc_cnf)
+ spec prover gl =
+ let concl = Tacmach.pf_concl gl in
+ let hyps = Tacmach.pf_hyps_types gl in
+ try
+ let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
+ let env = Env.elements env in
+ micromega_tauto negate normalise spec prover env hyps concl gl
+ with
+ | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl
+ | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
+ | CsdpNotFound -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str
+ (" Skipping what remains of this tactic: the complexity of the goal requires "
+ ^ "the use of a specialized external tool called csdp. \n\n"
+ ^ "Unfortunately this instance of Coq isn't aware of the presence of any \"csdp\" executable. \n\n"
+ ^ "You may need to specify the location during Coq's pre-compilation configuration step")) gl
+
+let lift_ratproof prover l =
+ match prover l with
+ | None -> None
+ | Some c -> Some (Mc.RatProof( c,Mc.DoneProof))
+
+type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list
+type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
+type provername = string * int option
+
+(**
+ * The caching mechanism.
+ *)
+
+open Persistent_cache
+
+module Cache = PHashtable(struct
+ type t = (provername * micromega_polys)
+ let equal = (=)
+ let hash = Hashtbl.hash
+end)
+
+let csdp_cache = "csdp.cache"
+
+(**
+ * Build the command to call csdpcert, and launch it. This in turn will call
+ * the sos driver to the csdp executable.
+ * Throw CsdpNotFound if a Coq isn't aware of any csdp executable.
+ *)
+
+let require_csdp =
+ match System.search_exe_in_path "csdp" with
+ | Some _ -> lazy ()
+ | _ -> lazy (raise CsdpNotFound)
+
+let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option =
+ fun provername poly ->
+
+ Lazy.force require_csdp;
+
+ let cmdname =
+ List.fold_left Filename.concat (Envars.coqlib ())
+ ["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in
+
+ match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with
+ | F str -> failwith str
+ | S res -> res
+
+(**
+ * Check the cache before calling the prover.
+ *)
+
+let xcall_csdpcert =
+ Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb)
+
+(**
+ * Prover callback functions.
+ *)
+
+let call_csdpcert prover pb = xcall_csdpcert (prover,pb)
+
+let rec z_to_q_pol e =
+ match e with
+ | Mc.Pc z -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH}
+ | Mc.Pinj(p,pol) -> Mc.Pinj(p,z_to_q_pol pol)
+ | Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2)
+
+let call_csdpcert_q provername poly =
+ match call_csdpcert provername poly with
+ | None -> None
+ | Some cert ->
+ let cert = Certificate.q_cert_of_pos cert in
+ if Mc.qWeakChecker poly cert
+ then Some cert
+ else ((print_string "buggy certificate" ; flush stdout) ;None)
+
+let call_csdpcert_z provername poly =
+ let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in
+ match call_csdpcert provername l with
+ | None -> None
+ | Some cert ->
+ let cert = Certificate.z_cert_of_pos cert in
+ if Mc.zWeakChecker poly cert
+ then Some cert
+ else ((print_string "buggy certificate" ; flush stdout) ;None)
+
+let xhyps_of_cone base acc prf =
+ let rec xtract e acc =
+ match e with
+ | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc
+ | Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in
+ if n >= base
+ then ISet.add (n-base) acc
+ else acc
+ | Mc.PsatzMulC(_,c) -> xtract c acc
+ | Mc.PsatzAdd(e1,e2) | Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in
+
+ xtract prf acc
+
+let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf
+
+let compact_cone prf f =
+ let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in
+
+ let rec xinterp prf =
+ match prf with
+ | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf
+ | Mc.PsatzIn n -> Mc.PsatzIn (np n)
+ | Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c)
+ | Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2)
+ | Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in
+
+ xinterp prf
+
+let hyps_of_pt pt =
+
+ let rec xhyps base pt acc =
+ match pt with
+ | Mc.DoneProof -> acc
+ | Mc.RatProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c)
+ | Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c)
+ | Mc.EnumProof(c1,c2,l) ->
+ let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in
+ List.fold_left (fun s x -> xhyps (base + 1) x s) s l in
+
+ xhyps 0 pt ISet.empty
+
+let hyps_of_pt pt =
+ let res = hyps_of_pt pt in
+ if debug
+ then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res);
+ res
+
+let compact_pt pt f =
+ let translate ofset x =
+ if x < ofset then x
+ else (f (x-ofset) + ofset) in
+
+ let rec compact_pt ofset pt =
+ match pt with
+ | Mc.DoneProof -> Mc.DoneProof
+ | Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
+ | Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt )
+ | Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)),
+ Mc.map (fun x -> compact_pt (ofset+1) x) l) in
+ compact_pt 0 pt
+
+(**
+ * Definition of provers.
+ * Instantiates the type ('a,'prf) prover defined above.
+ *)
+
+let lift_pexpr_prover p l = p (List.map (fun (e,o) -> Mc.denorm e , o) l)
+
+let linear_prover_Z = {
+ name = "linear prover" ;
+ prover = lift_ratproof (lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.z_spec)) ;
+ hyps = hyps_of_pt ;
+ compact = compact_pt ;
+ pp_prf = pp_proof_term;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+let linear_prover_Q = {
+ name = "linear prover";
+ prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.q_spec) ;
+ hyps = hyps_of_cone ;
+ compact = compact_cone ;
+ pp_prf = pp_psatz pp_q ;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
+}
+
+let linear_prover_R = {
+ name = "linear prover";
+ prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.z_spec) ;
+ hyps = hyps_of_cone ;
+ compact = compact_cone ;
+ pp_prf = pp_psatz pp_z ;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+let non_linear_prover_Q str o = {
+ name = "real nonlinear prover";
+ prover = call_csdpcert_q (str, o);
+ hyps = hyps_of_cone;
+ compact = compact_cone ;
+ pp_prf = pp_psatz pp_q ;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
+}
+
+let non_linear_prover_R str o = {
+ name = "real nonlinear prover";
+ prover = call_csdpcert_z (str, o);
+ hyps = hyps_of_cone;
+ compact = compact_cone;
+ pp_prf = pp_psatz pp_z;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+let non_linear_prover_Z str o = {
+ name = "real nonlinear prover";
+ prover = lift_ratproof (call_csdpcert_z (str, o));
+ hyps = hyps_of_pt;
+ compact = compact_pt;
+ pp_prf = pp_proof_term;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+module CacheZ = PHashtable(struct
+ type t = (Mc.z Mc.pol * Mc.op1) list
+ let equal = (=)
+ let hash = Hashtbl.hash
+end)
+
+let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)
+
+let linear_Z = {
+ name = "lia";
+ prover = memo_zlinear_prover ;
+ hyps = hyps_of_pt;
+ compact = compact_pt;
+ pp_prf = pp_proof_term;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+(**
+ * Functions instantiating micromega_gen with the appropriate theories and
+ * solvers
+ *)
+
+let psatzl_Z gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [ linear_prover_Z ] gl
+
+let psatzl_Q gl =
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ [ linear_prover_Q ] gl
+
+let psatz_Q i gl =
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ [ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] gl
+
+let psatzl_R gl =
+ micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
+ [ linear_prover_R ] gl
+
+let psatz_R i gl =
+ micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
+ [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl
+
+let psatz_Z i gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl
+
+let sos_Z gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [ non_linear_prover_Z "pure_sos" None ] gl
+
+let sos_Q gl =
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ [ non_linear_prover_Q "pure_sos" None ] gl
+
+let sos_R gl =
+ micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
+ [ non_linear_prover_R "pure_sos" None ] gl
+
+let xlia gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [ linear_Z ] gl
+
+(* Local Variables: *)
+(* coding: utf-8 *)
+(* End: *)