summaryrefslogtreecommitdiff
path: root/plugins/micromega/certificate.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/certificate.ml')
-rw-r--r--plugins/micromega/certificate.ml194
1 files changed, 7 insertions, 187 deletions
diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml
index 9f39191f..3a9709b6 100644
--- a/plugins/micromega/certificate.ml
+++ b/plugins/micromega/certificate.ml
@@ -17,10 +17,9 @@
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
-type var = int
-
-
+let debug = false
+open Util
open Big_int
open Num
open Polynomial
@@ -59,9 +58,6 @@ let q_spec = {
eqb = Mc.qeq_bool
}
-let r_spec = z_spec
-
-
let dev_form n_spec p =
let rec dev_form p =
match p with
@@ -84,38 +80,6 @@ let dev_form n_spec p =
pow n in
dev_form p
-
-let monomial_to_polynomial mn =
- Monomial.fold
- (fun v i acc ->
- let v = Ml2C.positive v in
- let mn = if Int.equal i 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
- if Pervasives.(=) acc (Mc.PEc (Mc.Zpos Mc.XH)) (** FIXME *)
- then mn
- else Mc.PEmul(mn,acc))
- mn
- (Mc.PEc (Mc.Zpos Mc.XH))
-
-
-
-let list_to_polynomial vars l =
- assert (List.for_all (fun x -> ceiling_num x =/ x) l);
- let var x = monomial_to_polynomial (List.nth vars x) in
-
- let rec xtopoly p i = function
- | [] -> p
- | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
- else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
- let mn =
- if Pervasives.(=) c (Mc.PEc (Mc.Zpos Mc.XH))
- then var i
- else Mc.PEmul (c,var i) in
- let p' = if Pervasives.(=) p (Mc.PEc Mc.Z0) then mn else
- Mc.PEadd (mn, p) in
- xtopoly p' (i+1) l in
-
- xtopoly (Mc.PEc Mc.Z0) 0 l
-
let rec fixpoint f x =
let y' = f x in
if Pervasives.(=) y' x then y'
@@ -135,15 +99,6 @@ let rec_simpl_cone n_spec e =
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
-
-type cone_prod =
- Const of cone
-| Ideal of cone *cone
-| Mult of cone * cone
-| Other of cone
-and cone = Mc.zWitness
-
-
let factorise_linear_cone c =
@@ -224,14 +179,6 @@ let positivity l =
in
xpositivity 0 l
-
-let string_of_op = function
- | Mc.Strict -> "> 0"
- | Mc.NonStrict -> ">= 0"
- | Mc.Equal -> "= 0"
- | Mc.NonEqual -> "<> 0"
-
-
module MonSet = Set.Make(Monomial)
(* If the certificate includes at least one strict inequality,
@@ -261,9 +208,6 @@ let build_linear_system l =
op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
-
-let big_int_to_z = Ml2C.bigint
-
(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
let make_certificate n_spec (cert,li) =
@@ -296,8 +240,6 @@ let make_certificate n_spec (cert,li) =
(simplify_cone n_spec (scalar_product cert' li)))
-exception Found of Monomial.t
-
exception Strict
module MonMap = Map.Make(Monomial)
@@ -367,7 +309,7 @@ let simple_linear_prover l =
let linear_prover n_spec l =
let build_system n_spec l =
- let li = List.combine l (interval 0 (List.length l -1)) in
+ let li = List.combine l (CList.interval 0 (List.length l -1)) in
let (l1,l') = List.partition
(fun (x,_) -> if Pervasives.(=) (snd x) Mc.NonEqual then true else false) li in
List.map
@@ -397,7 +339,7 @@ let nlinear_prover prfdepth (sys: (Mc.q Mc.pExpr * Mc.op1) list) =
LinPoly.MonT.clear ();
max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
(* Assign a proof to the initial hypotheses *)
- let sys = mapi (fun c i -> (c,Mc.PsatzIn (Ml2C.nat i))) sys in
+ let sys = List.mapi (fun i c -> (c,Mc.PsatzIn (Ml2C.nat i))) sys in
(* Add all the product of hypotheses *)
@@ -452,39 +394,6 @@ let nlinear_prover prfdepth (sys: (Mc.q Mc.pExpr * Mc.op1) list) =
| Mc.PsatzZ -> Mc.PsatzZ in
Some (map_psatz cert)
-
-
-let make_linear_system l =
- let l' = List.map fst l in
- let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
- (Poly.constant (Int 0)) l' in
- let monomials = Poly.fold
- (fun mn _ l -> if Pervasives.(=) mn Monomial.const then l else mn::l) monomials [] in
- (List.map (fun (c,op) ->
- {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
- op = op ;
- cst = minus_num ( (Poly.get Monomial.const c))}) l
- ,monomials)
-
-
-let pplus x y = Mc.PEadd(x,y)
-let pmult x y = Mc.PEmul(x,y)
-let pconst x = Mc.PEc x
-let popp x = Mc.PEopp x
-
-(* keep track of enumerated vectors *)
-let rec mem p x l =
- match l with [] -> false | e::l -> if p x e then true else mem p x l
-
-let rec remove_assoc p x l =
- match l with [] -> [] | e::l -> if p x (fst e) then
- remove_assoc p x l else e::(remove_assoc p x l)
-
-let eq x y = Int.equal (Vect.compare x y) 0
-
-let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-
-
(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
@@ -494,38 +403,6 @@ let develop_constraint z_spec (e,k) =
| Mc.Equal -> (dev_form z_spec e , Eq)
| _ -> assert false
-
-let op_of_op_compat = function
- | Ge -> Mc.NonStrict
- | Eq -> Mc.Equal
-
-
-let integer_vector coeffs =
- let vars , coeffs = List.split coeffs in
- List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))
-
-let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } =
- let vars , coeffs = List.split coeffs in
- match rats_to_ints (cst::coeffs) with
- | cst :: coeffs ->
- {
- coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
- op = op ; cst = Big_int cst}
- | _ -> assert false
-
-
-let pexpr_of_cstr_compat var cstr =
- let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
- try
- let expr = list_to_polynomial var (Vect.to_list coeffs) in
- let d = Ml2C.bigint (denominator cst) in
- let n = Ml2C.bigint (numerator cst) in
- (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
- with Failure _ -> failwith "pexpr_of_cstr_compat"
-
-
-
-
open Sos_types
let rec scale_term t =
@@ -555,18 +432,6 @@ let scale_term t =
let (s,t') = scale_term t in
s,t'
-
-let get_index_of_ith_match f i l =
- let rec get j res l =
- match l with
- | [] -> failwith "bad index"
- | e::l -> if f e
- then
- (if Int.equal j i then res else get (j+1) (res+1) l )
- else get j (res+1) l in
- get 0 0 l
-
-
let rec scale_certificate pos = match pos with
| Axiom_eq i -> unit_big_int , Axiom_eq i
| Axiom_le i -> unit_big_int , Axiom_le i
@@ -681,8 +546,6 @@ open Polynomial
module Env =
struct
- type t = int list
-
let id_of_hyp hyp l =
let rec xid_of_hyp i l =
match l with
@@ -749,9 +612,6 @@ let xlinear_prover sys =
| Inl _ -> None
-let output_num o n = output_string o (string_of_num n)
-let output_bigint o n = output_string o (string_of_big_int n)
-
let proof_of_farkas prf cert =
(* Printf.printf "\nproof_of_farkas %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ; *)
let rec mk_farkas acc prf cert =
@@ -894,23 +754,6 @@ let rec ext_gcd a b =
let (s,t) = ext_gcd b r in
(t, sub_big_int s (mult_big_int q t))
-
-let pp_ext_gcd a b =
- let a' = big_int_of_int a in
- let b' = big_int_of_int b in
-
- let (x,y) = ext_gcd a' b' in
- Printf.fprintf stdout "%s * %s + %s * %s = %s\n"
- (string_of_big_int x) (string_of_big_int a')
- (string_of_big_int y) (string_of_big_int b')
- (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))
-
-exception Result of (int * (proof * cstr_compat))
-
-let split_equations psys =
- List.partition (fun (c,p) -> c.op == Eq)
-
-
let extract_coprime (c1,p1) (c2,p2) =
let rec exist2 vect1 vect2 =
match vect1 , vect2 with
@@ -1058,29 +901,6 @@ let reduce_var_change psys =
Some (apply_and_normalise pivot_eq sys)
-
-
-
-let reduce_pivot psys =
- let is_equation (cstr,prf) =
- if cstr.op == Eq
- then
- try
- Some (fst (List.hd cstr.coeffs))
- with Not_found -> None
- else None in
- let (oeq,sys) = extract is_equation psys in
- match oeq with
- | None -> None (* Nothing to do *)
- | Some(v,pc) ->
- if debug then
- Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst);
- Some(pivot_sys v pc sys)
-
-
-
-
-
let iterate_until_stable f x =
let rec iter x =
match f x with
@@ -1225,7 +1045,7 @@ let xlia (can_enum:bool) reduction_equations sys =
| None -> None
| Some prf ->
(*Printf.printf "direct proof %a\n" output_proof prf ; *)
- let env = mapi (fun _ i -> i) sys in
+ let env = List.mapi (fun i _ -> i) sys in
let prf = compile_proof env prf in
(*try
if Mc.zChecker sys' prf then Some prf else
@@ -1244,7 +1064,7 @@ let lia (can_enum:bool) (prfdepth:int) sys =
max_nb_cstr := compute_max_nb_cstr sys prfdepth ;
let sys = List.map (develop_constraint z_spec) sys in
let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
- let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ let sys = List.mapi (fun i c -> (c,Hyp i)) sys in
xlia can_enum reduction_equations sys
@@ -1252,7 +1072,7 @@ let nlia enum prfdepth sys =
LinPoly.MonT.clear ();
max_nb_cstr := compute_max_nb_cstr sys prfdepth;
let sys = List.map (develop_constraint z_spec) sys in
- let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ let sys = List.mapi (fun i c -> (c,Hyp i)) sys in
let is_linear = List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in