summaryrefslogtreecommitdiff
path: root/plugins/micromega/ZMicromega.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/ZMicromega.v')
-rw-r--r--plugins/micromega/ZMicromega.v327
1 files changed, 188 insertions, 139 deletions
diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v
index d6245681..461f53b5 100644
--- a/plugins/micromega/ZMicromega.v
+++ b/plugins/micromega/ZMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* Frédéric Besson (Irisa/Inria) 2006-2011 *)
(* *)
(************************************************************************)
@@ -194,27 +194,27 @@ Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
-Require Import Tauto.
+Require Import Tauto BinNums.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
-Lemma normalise_correct : forall env t, eval_cnf (eval_nformula env) (normalise t) <-> Zeval_formula env t.
+Lemma normalise_correct : forall env t, eval_cnf eval_nformula env (normalise t) <-> Zeval_formula env t.
Proof.
Opaque padd.
unfold normalise, xnormalise ; simpl; intros env t.
rewrite Zeval_formula_compat.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
+ (fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
@@ -235,31 +235,34 @@ Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
-Lemma negate_correct : forall env t, eval_cnf (eval_nformula env) (negate t) <-> ~ Zeval_formula env t.
+Lemma negate_correct : forall env t, eval_cnf eval_nformula env (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
- unfold eval_cnf.
+ unfold eval_cnf,eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
+ (fun x : N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ (fun x : N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
+Definition Zunsat := check_inconsistent 0 Zeq_bool Zle_bool.
+
+Definition Zdeduce := nformula_plus_nformula 0 Zplus Zeq_bool.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
@@ -273,6 +276,26 @@ Definition ceiling (a b:Z) : Z :=
| _ => q + 1
end.
+
+Require Import Znumtheory.
+
+Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Zdiv a b.
+Proof.
+ unfold ceiling.
+ intros.
+ apply Zdivide_mod in H.
+ case_eq (Zdiv_eucl a b).
+ intros.
+ change z with (fst (z,z0)).
+ rewrite <- H0.
+ change (fst (Zdiv_eucl a b)) with (Zdiv a b).
+ change z0 with (snd (z,z0)).
+ rewrite <- H0.
+ change (snd (Zdiv_eucl a b)) with (Zmod a b).
+ rewrite H.
+ reflexivity.
+Qed.
+
Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
unfold ceiling.
@@ -307,40 +330,13 @@ Inductive ZArithProof : Type :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
-| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof.
-
-(* n/d <= x -> d*x - n >= 0 *)
-(*
-Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
+| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof
+(*| SplitProof : PolC Z -> ZArithProof -> ZArithProof -> ZArithProof*).
-(* x <= n/d -> d * x <= d *)
-Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in
- (PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
-Definition qceiling (q:Q) : Z :=
- let (n,d) := q in ceiling n (Zpos d).
-Definition qfloor (q:Q) : Z :=
- let (n,d) := q in Zdiv n (Zpos d).
-
-Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
- (PEsub v (PEc (qceiling q)), NonStrict).
-
-Definition neg_nformula (f : NFormula Z) :=
- let (e,o) := f in
- (PEopp (PEadd e (PEc 1%Z)), o).
+(* n/d <= x -> d*x - n >= 0 *)
-Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
-Proof.
- unfold neg_nformula.
- destruct f.
- simpl.
- intros ; subst ; simpl in *.
- split; auto with zarith.
-Qed.
-*)
(* In order to compute the 'cut', we need to express a polynomial P as a * Q + b.
- b is the constant
@@ -566,9 +562,11 @@ Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
- if andb (Zgt_bool g Z0) (andb (Zgt_bool c Z0) (negb (Zeq_bool (Zgcd g c) g)))
+ if andb (Zgt_bool g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Zgcd g c) g)))
then None (* inconsistent *)
- else Some (e, Z0,op) (* It could still be inconsistent -- but not a cut *)
+ else (* Could be optimised Zgcd_pol is recomputed *)
+ let (p,c) := makeCuttingPlane e in
+ Some (p,c,Equal)
| NonEqual => Some (e,Z0,op)
| Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in
Some (p,c,NonStrict)
@@ -596,16 +594,16 @@ Proof.
Qed.
-
-
-
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool.
-Definition check_inconsistent := check_inconsistent 0 Zeq_bool Zle_bool.
-
-
+Definition valid_cut_sign (op:Op1) :=
+ match op with
+ | Equal => true
+ | NonStrict => true
+ | _ => false
+ end.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
@@ -614,7 +612,7 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
match eval_Psatz l w with
| None => false
| Some f =>
- if check_inconsistent f then true
+ if Zunsat f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
@@ -627,29 +625,24 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
end
end
| EnumProof w1 w2 pf =>
- match eval_Psatz l w1 , eval_Psatz l w2 with
- | Some f1 , Some f2 =>
- match genCuttingPlane f1 , genCuttingPlane f2 with
- |Some (e1,z1,op1) , Some (e2,z2,op2) =>
- match op1 , op2 with
- | NonStrict , NonStrict =>
- if is_pol_Z0 (padd e1 e2)
- then
- (fix label (pfs:list ZArithProof) :=
- fun lb ub =>
- match pfs with
- | nil => if Zgt_bool lb ub then true else false
- | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
- end)
- pf (Zopp z1) z2
- else false
- | _ , _ => false
- end
- | _ , _ => false
- end
- | _ , _ => false
- end
- end.
+ match eval_Psatz l w1 , eval_Psatz l w2 with
+ | Some f1 , Some f2 =>
+ match genCuttingPlane f1 , genCuttingPlane f2 with
+ |Some (e1,z1,op1) , Some (e2,z2,op2) =>
+ if (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd e1 e2))
+ then
+ (fix label (pfs:list ZArithProof) :=
+ fun lb ub =>
+ match pfs with
+ | nil => if Zgt_bool lb ub then true else false
+ | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
+ end) pf (Zopp z1) z2
+ else false
+ | _ , _ => true
+ end
+ | _ , _ => false
+ end
+end.
@@ -702,7 +695,7 @@ Proof.
apply make_conj_in ; auto.
Qed.
-Lemma makeCuttingPlane_sound : forall env e e' c,
+Lemma makeCuttingPlane_ns_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
@@ -729,7 +722,6 @@ Proof.
intros. inv H2. auto with zarith.
Qed.
-
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
@@ -741,13 +733,51 @@ Proof.
(* Equal *)
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
- destruct (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
- intros. inv H1. unfold nformula_of_cutting_plane.
- unfold eval_nformula in *.
- unfold RingMicromega.eval_nformula in *.
- unfold eval_op1 in *.
- rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
- simpl. rewrite H0. reflexivity.
+ case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
+ case_eq (makeCuttingPlane e).
+ intros.
+ inv H3.
+ unfold makeCuttingPlane in H.
+ rewrite H1 in H.
+ revert H.
+ change (eval_pol env e = 0) in H2.
+ case_eq (Zgt_bool g 0).
+ intros.
+ rewrite <- Zgt_is_gt_bool in H.
+ rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith.
+ unfold nformula_of_cutting_plane.
+ change (eval_pol env (padd e' (Pc z)) = 0).
+ inv H3.
+ rewrite eval_pol_add.
+ set (x:=eval_pol env (Zdiv_pol (PsubC Zminus e c) g)) in *; clearbody x.
+ simpl.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite Zgt_is_gt_bool in H ; congruence.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ subst. simpl.
+ rewrite Zplus_0_r in H2.
+ apply Zmult_integral in H2.
+ intuition auto with zarith.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ assert (HH := Zgcd_is_gcd g c).
+ rewrite H0 in HH.
+ inv HH.
+ apply Zdivide_opp_r in H4.
+ rewrite Zdivide_ceiling ; auto.
+ apply Zeq_minus.
+ apply Z.div_unique_exact ; auto with zarith.
+ intros.
+ unfold nformula_of_cutting_plane.
+ inv H3.
+ change (eval_pol env (padd e' (Pc 0)) = 0).
+ rewrite eval_pol_add.
+ simpl.
+ auto with zarith.
(* NonEqual *)
intros.
inv H0.
@@ -762,7 +792,7 @@ Proof.
case_eq (makeCuttingPlane (PsubC Zminus e 1)).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
@@ -771,7 +801,7 @@ Proof.
case_eq (makeCuttingPlane e).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
assumption.
Qed.
@@ -783,23 +813,24 @@ Proof.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
- case_eq (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))).
+ case_eq (Zgt_bool g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Zgcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
- contradict H5.
rewrite <- Zgt_is_gt_bool in H3.
- rewrite <- Zgt_is_gt_bool in H.
- apply Zis_gcd_gcd; auto with zarith.
- constructor; auto with zarith.
+ rewrite negb_true_iff in H.
+ apply Zeq_bool_neq in H.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x.
+ contradict H5.
+ apply Zis_gcd_gcd; auto with zarith.
+ constructor; auto with zarith.
exists (-x).
rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith.
(**)
- discriminate.
+ destruct (makeCuttingPlane p); discriminate.
discriminate.
destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
@@ -816,11 +847,11 @@ Proof.
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
- case_eq (check_inconsistent f).
+ case_eq (Zunsat f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
- unfold check_inconsistent in H0. assumption.
+ unfold Zunsat in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
@@ -868,55 +899,54 @@ Proof.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
- case_eq (genCuttingPlane f2) ; [ | discriminate].
+ case_eq (genCuttingPlane f2).
destruct p as [ [p1 z1] op1].
- case_eq (genCuttingPlane f1) ; [ | discriminate].
+ case_eq (genCuttingPlane f1).
destruct p as [ [p2 z2] op2].
- case_eq op1 ; case_eq op2 ; try discriminate.
- case_eq (is_pol_Z0 (padd p1 p2)) ; try discriminate.
- intros.
+ case_eq (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd p1 p2)).
+ intros Hcond.
+ flatten_bool.
+ rename H1 into HZ0.
+ rename H2 into Hop1.
+ rename H3 into Hop2.
+ intros HCutL HCutR Hfix env.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
- apply cutting_plane_sound with (1:= Hf2) in H4.
- unfold nformula_of_cutting_plane in H4.
- unfold eval_nformula in H4.
- unfold RingMicromega.eval_nformula in H4.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H4.
- unfold eval_op1 in H4.
- rewrite eval_pol_add in H4. simpl in H4.
- auto with zarith.
+ apply cutting_plane_sound with (1:= Hf2) in HCutR.
+ unfold nformula_of_cutting_plane in HCutR.
+ unfold eval_nformula in HCutR.
+ unfold RingMicromega.eval_nformula in HCutR.
+ change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutR.
+ unfold eval_op1 in HCutR.
+ destruct op1 ; simpl in Hop1 ; try discriminate;
+ rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith.
(**)
- apply is_pol_Z0_eval_pol with (env := env) in H0.
- rewrite eval_pol_add in H0.
+ apply is_pol_Z0_eval_pol with (env := env) in HZ0.
+ rewrite eval_pol_add in HZ0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
- apply cutting_plane_sound with (1:= Hf1) in H3.
- unfold nformula_of_cutting_plane in H3.
- unfold eval_nformula in H3.
- unfold RingMicromega.eval_nformula in H3.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H3.
- unfold eval_op1 in H3.
- rewrite eval_pol_add in H3. simpl in H3.
- omega.
- revert H5.
- set (FF := (fix label (pfs : list ZArithProof) (lb ub : Z) {struct pfs} : bool :=
- match pfs with
- | nil => if Z_gt_dec lb ub then true else false
- | pf :: rsr =>
- (ZChecker ((PsubC Zminus p1 lb, Equal) :: l) pf &&
- label rsr (lb + 1)%Z ub)%bool
- end)).
+ apply cutting_plane_sound with (1:= Hf1) in HCutL.
+ unfold nformula_of_cutting_plane in HCutL.
+ unfold eval_nformula in HCutL.
+ unfold RingMicromega.eval_nformula in HCutL.
+ change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in HCutL.
+ unfold eval_op1 in HCutL.
+ rewrite eval_pol_add in HCutL. simpl in HCutL.
+ destruct op2 ; simpl in Hop2 ; try discriminate ; omega.
+ revert Hfix.
+ match goal with
+ | |- context[?F pf (-z1) z2 = true] => set (FF := F)
+ end.
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z).
- clear H.
- clear H0 H1 H2 H3 H4 H7.
- revert H5.
+ clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1.
+ revert Hfix.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
@@ -931,16 +961,22 @@ Proof.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
- destruct (IHpf _ _ H1 _ H3).
+ elim IHpf with (2:=H2) (3:= H4).
destruct H4.
- exists x0 ; split;auto.
+ intros.
+ exists x0 ; split;tauto.
+ intros until 1.
+ apply H ; auto.
+ unfold ltof in *.
+ simpl in *.
+ zify. omega.
(*/asser *)
- destruct (HH _ H7) as [pr [Hin Hcheker]].
+ destruct (HH _ H1) as [pr [Hin Hcheker]].
assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
- rewrite <- make_conj_impl in H8.
- apply H8.
+ rewrite <- make_conj_impl in H2.
+ apply H2.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
@@ -948,10 +984,23 @@ Proof.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
+ discriminate.
+ (* No cutting plane *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf1) in H3.
+ apply genCuttingPlaneNone with (2:= H3) ; auto.
+ (* No Cutting plane (bis) *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf2) in H2.
+ apply genCuttingPlaneNone with (2:= H2) ; auto.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZArithProof ZChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
@@ -959,6 +1008,11 @@ Proof.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
+ intros until env.
+ unfold eval_nformula. unfold RingMicromega.eval_nformula.
+ destruct t.
+ apply (check_inconsistent_sound Zsor ZSORaddon) ; auto.
+ unfold Zdeduce. apply (nformula_plus_nformula_correct Zsor ZSORaddon).
intros env t.
rewrite normalise_correct ; auto.
intros env t.
@@ -1009,12 +1063,7 @@ Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
-Definition n_of_Z (z:Z) : BinNat.N :=
- match z with
- | Z0 => N0
- | Zpos p => Npos p
- | Zneg p => N0
- end.
+Notation n_of_Z := Z.to_N (only parsing).
(* Local Variables: *)
(* coding: utf-8 *)